Removal of Azo Dyes from Water Using Natural Luffa cylindrica as a Non-Conventional Adsorbent
Abstract
:1. Introduction
2. Results
2.1. Azo Dye Mixture Removal
2.2. The Effect of pH
2.3. Adsorption Capacity
2.4. Adsorption Isotherms
2.5. Adsorption Kinetics
2.6. FTIR Spectroscopy
2.7. Morphology of Lc
3. Discussion
4. Materials and Methods
4.1. Luffa Cylindrica (Lc)
4.2. Azo Dye Mixture
4.3. Experimental Design
4.4. Adsorption Kinetics
4.5. Adsorption Isotherms
4.6. Influence of pH on ADM Removal
4.7. Fourier-Transform Infrared (FTIR) Spectroscopy
4.8. Field Emission Scanning Electron Microscopy (FESEM)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Holkar, C.R.; Jadhav, A.J.; Pinjari, D.V.; Mahamuni, N.M.; Pandit, A.B. A critical review on textile wastewater treatments: Possible approaches. J. Environ. Manag. 2016, 182, 351–366. [Google Scholar] [CrossRef] [PubMed]
- Jan, S.U.; Ahmad, A.; Khan, A.A.; Melhi, S.; Ahmad, I.; Sun, G.; Ahmad, R. Removal of azo dye from aqueous solution by a low-cost activated carbon prepared from coal: Adsorption kinetics, isotherms study, and DFT simulation. Environ. Sci. Pollut. Res. 2021, 28, 10234–10247. [Google Scholar] [CrossRef] [PubMed]
- Kakavandi, B.; Ahmadi, M. Efficient treatment of saline recalcitrant petrochemical wastewater using heterogeneous UV-assisted sono-Fenton process. Ultrason. Sonochem. 2019, 56, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Alwadani, N.; Fatehi, P. Synthetic and lignin-based surfactants: Challenges and opportunities. Carbon Resour. Convers. 2008, 1, 126–138. [Google Scholar] [CrossRef]
- Di Maria, F.S.; Daskal, S.O.; Ayalon, O. A methodological approach for comparing wastewater effluent’s regulatory and management frameworks based on sustainability assessment. Ecol. Indic. 2020, 118, 106805. [Google Scholar] [CrossRef]
- Kubra, K.T.; Salman, M.S.; Hasan, M.N. Enhanced toxic dye removal from wastewater using biodegradable polymeric natural adsorbent. J. Mol. Liq. 2021, 328, 115468. [Google Scholar] [CrossRef]
- Zhou, Y.; Lu, J.; Zhou, Y.; Liu, Y. Recent advances for dyes removal using novel adsorbents: A review. Environ. Pollut. 2019, 253, 352–365. [Google Scholar] [CrossRef] [PubMed]
- Tantak, N.P.; Chaudhari, S. Degradation of azo dyes by sequential Fenton’s oxidation and aerobic biological treatment. J. Hazard. Mater. 2006, 136, 698–705. [Google Scholar] [CrossRef] [PubMed]
- Zaruma, P.; Proal, J.; Hernández, I.C.; Salas, H.I. Los colorantes textiles industriales y tratamientos óptimos de sus efluentes de agua residual: Una breve revisión. Rev. La Fac. Cienc. Químicas 2018, 19, 38–47. [Google Scholar]
- Cabrera Rodríguez, E.; León Fernández, V.; Montano Pérez, A.C.; Dopico Ramírez, D. Caracterización de residuos agroindustriales con vistas a su aprovechamiento. Cent. Azúcar 2016, 43, 27–35. [Google Scholar]
- Crini, G. Non-conventional low-cost adsorbents for dye removal: A review. Bioresour. Technol. 2006, 97, 1061–1085. [Google Scholar] [CrossRef] [PubMed]
- Soares, A. Wastewater treatment in 2050, Challenges ahead and future vision in a European context. Environ. Sci. Ecotechnol. 2020, 2, 100030. [Google Scholar] [CrossRef] [PubMed]
- Yaashikaa, P.R.; Kumar, P.S.; Saravanan, A.N.; Vo, D.V. Advances in biosorbents for removal of environmental pollutants: A review on pretreatment, removal mechanism and future outlook. J. Hazard. Mater. 2021, 420, 126596. [Google Scholar] [CrossRef] [PubMed]
- Adewuyi, A.; Pereira, F.V. Underutilized Luffa cylindrica sponge: A local bio-adsorbent for the removal of Pb(II) pollutant from water system. Beni-Suef Univ. J. Basic Appl. Sci. 2017, 6, 118–126. [Google Scholar] [CrossRef]
- Anastopoulos, I.; Pashalidis, I. Environmental applications of Luffa cylindrica-based. J. Mol. Liq. 2020, 319, 114127. [Google Scholar] [CrossRef]
- Thomas, A. Functional materials: From hard to soft porous frameworks. Angew. Chem. Int. Ed. 2010, 49, 8328–8344. [Google Scholar] [CrossRef]
- Soler-Illia, G.J.; Azzaroni, O. Multifunctional hybrids by combining ordered mesoporous materials and macromolecular building blocks. Chem. Soc. Rev. 2011, 40, 1107–1150. [Google Scholar] [CrossRef] [PubMed]
- Slater, A.G.; Cooper, A.I. Function-led design of new porous materials. Science 2015, 348, 988. [Google Scholar] [CrossRef] [PubMed]
- De la Cruz, P.; Melgoza, R.; Valerio, C.; Valladares, M. Adsorbentes noconvencionales, alternativas sustentables para el tratamiento de aguas residuales. Rev. Ing. Univ. Medellín 2017, 16, 55–73. [Google Scholar] [CrossRef]
- Mohan Kumar, K.; Naik, V.; Kaup, V.; Waddar, S.; Santhosh, N.; Harish, H.V. Nontraditional Natural Filler-Based Biocomposites for Sustainable Structures. Adv. Polym. Technol. 2023, 2023, 8838766. [Google Scholar] [CrossRef]
- El Naeem, G.A.; Abd-Elhamid, A.I.; Farahat, O.O.; El-Bardan, A.A.; Soliman, H.M.; Nayl, A.A. Adsorption of crystal violet and methylene blue dyes using a cellulose-based adsorbent from sugercane bagasse: Characterization, kinetic and isotherm studies. J. Mater. Res. Technol. 2022, 19, 3241–3254. [Google Scholar] [CrossRef]
- Jain, S.N.; Tamboli, S.R.; Sutar, D.S.; Jadhav, S.R.; Marathe, J.V.; Shaikh, A.A.; Prajapati, A.A. Batch and continuous studies for adsorption of anionic dye onto waste tea residue: Kinetic, equilibrium, breakthrough and reusability studies. J. Clean. Prod. 2020, 252, 119778. [Google Scholar] [CrossRef]
- Lemos, E.S.; Fiorentini, E.F.; Bonilla-Petriciolet, A.; Escudero, L.B. Malachite green removal by grape stalks biosorption from natural waters and effluents. Adsorpt. Sci. Technol. 2023, 2023, 6695937. [Google Scholar] [CrossRef]
- Rajoriya, S.; Saharan, V.K.; Pundir, A.S.; Nigam, M.; Roy, K. Adsorption of methyl red dye from aqueous solution onto eggshell waste material: Kinetics, isotherms and thermodynamic studies. Curr. Res. Green Sustain. Chem. 2021, 4, 100180. [Google Scholar] [CrossRef]
- Kaya, A. Adsorption studies of Cibacron Blue onto both untreated and chemically treated pistachio shell powder from aqueous solutions. Sep. Sci. Technol. 2021, 56, 2546–2561. [Google Scholar] [CrossRef]
- Abbas, M.; Harrache, Z.; Trari, M. Mass-transfer processes in the adsorption of crystal violet by activated carbon derived from pomegranate peels: Kinetics and thermodynamic studies. J. Eng. Fibers Fabr. 2020, 15, 1558925020919847. [Google Scholar] [CrossRef]
- Brice, D.N.C.; Manga, N.H.; Arnold, B.S.; Daouda, K.; Victoire, A.A.; Giresse, N.N.A.; Nangah, C.R.; Nsami, N.J. Adsorption of tartrazine onto activated carbon based cola nuts shells: Equilibrium, kinetics, and thermodynamics studies. Open J. Inorg. Chem. 2021, 11, 1–9. [Google Scholar] [CrossRef]
- Kesraoui, A.; Moussa, A.; Ali, G.B.; Seffen, M. Biosorption of alpacide blue from aqueous solution by lignocellulosic biomass: Luffa cylindrica fibers. Environ. Sci. Pollut. Res. 2016, 23, 15832–15840. [Google Scholar] [CrossRef] [PubMed]
- Nadaroglu, H.; Cicek, S.; Gungor, A.A. Removing Trypan blue dye using nano-Zn modified Luffa sponge. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 172, 2–8. [Google Scholar] [CrossRef]
- Boudechiche, N.; Mokaddem, H.; Sadaoui, Z.; Trari, M. Biosorption of cationic dye from aqueous solutions onto lignocellulosic biomass (Luffa cylindrica): Characterization, equilibrium, kinetic and thermodynamic studies. Int. J. Ind. Chem. 2016, 7, 167–180. [Google Scholar] [CrossRef]
- Mashkoor, F.; Nasar, A. Preparation, characterization and adsorption studies of the chemically modified Luffa aegyptica peel as a potential adsorbent for the removal of malachite green from aqueous solution. J. Mol. Liq. 2019, 274, 315–327. [Google Scholar] [CrossRef]
- Ng, H.W.; Lee, L.Y.; Chan, W.L.; Gan, S.; Chemmangattuvalappil, N. Luffa acutangula peel as an effective natural biosorbent for malachite green removal in aqueous media: Equilibrium, kinetic and thermodynamic investigations. Desalination Water Treat. 2016, 16, 7302–7311. [Google Scholar] [CrossRef]
- Altınışık, A.; Gür, E.; Seki, Y. A natural sorbent, Luffa cylindrica for the removal of a model basic dye. J. Hazard. Mater. 2010, 179, 1–3. [Google Scholar] [CrossRef]
- Manna, S.; Roy, D.; Saha, P.; Gopakumar, D.; Thomas, S. Rapid methylene blue adsorption using modified lignocellulosic materials. Process. Saf. Environ. Prot. 2017, 107, 346–356. [Google Scholar] [CrossRef]
- Ajuru, M.; Nmom, F. A review on the economic uses of species of Cucurbitaceae and their sustainability in Nigeria. Am. J. Plant. Biol. 2017, 2, 17–24. [Google Scholar]
- Emenea, A.; Akpanb, U.G.; Edyveana, R. Light-assisted adsorption of methylene blue dye onto Luffa cylindrica. Desalination Water Treat. 2021, 216, 379–388. [Google Scholar] [CrossRef]
- Javadian, H.; Sorkhrodi, F.; Koutenaei, B. Experimental investigation on enhancing aqueous cadmium removal via nanostructure composite of modified hexagonal type mesoporous silica with polyaniline/polypyrrole nanoparticles. J. Ind. Eng. Chem. 2014, 20, 3678–3688. [Google Scholar] [CrossRef]
- Crini, G.; Peindy, H.; Gimbert, F.; Robert, C. Removal of C.I. Basic Green 4 (malachite green) from aqueous solutions by adsorption using cyclodextrin based adsorbent: Kinetic and equilibrium studies. Sep. Purif. Technol. 2007, 53, 97–110. [Google Scholar] [CrossRef]
- Saeed, A.; Iqbal, M.; Zafar, I. Immobilization of Trichoderma viride for enhanced methylene blue biosorption: Batch and column studies. J. Hazard. Mater. 2009, 168, 406–415. [Google Scholar] [CrossRef]
- Han, R.; Wang, Y.; Han, P.; Shi, J.; Yang, J.; Lu, Y. Removal of methylene blue from aqueous solution by chaff in batch mode. J. Hazard. Mater. 2006, B137, 550–557. [Google Scholar] [CrossRef]
- Sims, R.A.; Harmer, S.L.; Quinton, J.S. The role of physisorption and chemisorption in the oscillatory adsorption of organosilanes on aluminium oxide. Polymers 2019, 11, 410. [Google Scholar] [CrossRef] [PubMed]
- Shakoor, S.; Nasar, A. Removal of methylene blue dye from artificially contaminated water using Citrus limetta peel waste as a very low-cost adsorbent. J. Taiwan Inst. Chem. Eng. 2016, 66, 154–163. [Google Scholar] [CrossRef]
- Aliabadi, H.; Saberikhah, E.; Pirbazari, A.; Khakpour, R.; Alipour, H. Triethoxysilylpropylamine modified alkali treated wheat straw: An efficient adsorbent for methyl orange adsorption. Cellul. Chem. Technol. 2018, 52, 129–140. [Google Scholar]
- Liang, J.; Wu, J.; Li, P.; Wang, X.; Yang, B. Shaddock peel as a novel low-cost adsorbent for removal of methylene blue from dye wastewater. Desalination Water Treat. 2012, 39, 70–75. [Google Scholar] [CrossRef]
- Gong, W.Q.; Zhou, Q.; Xie, C.X.; Yuan, X.A.; Li, Y.B.; Bai, C.P.; Chen, S.H.; Xu, N.A. Biosorption of Methylene Blue from aqueous solution on spent cottonseed hull substrate for Pleurotus ostreatus cultivation. Desalination Water Treat. 2011, 29, 317–325. [Google Scholar] [CrossRef]
- Sharma, R.K.; Kumar, R. Functionalized cellulose with hydroxyethyl methacrylate and glycidyl methacrylate for metal ions and dye adsorption applications. Int. J. Biol. Macromol. 2019, 134, 704–721. [Google Scholar] [CrossRef] [PubMed]
- Al-Ghouti, M.A.; Da’ana, D.A. Guidelines for the use and interpretation of adsorption isotherm models: A review. J. Hazard. Mater. 2020, 392, 122382. [Google Scholar] [CrossRef]
- Anastopoulos, I.; Pashalidis, I. Τhe application of oxidized carbon derived from Luffa cylindrica for caffeine removal. Equilibrium, thermodynamic, kinetic and mechanistic analysis. J. Mol. Liq. 2019, 296, 112078. [Google Scholar] [CrossRef]
- Mckay, G.B.H.S.; Blair, H.S.; Gardner, J.R. Adsorption of dyes on chitin. I. Equilibrium studies. J. Appl. Polym. Sci. 1982, 27, 3043–3057. [Google Scholar] [CrossRef]
- Oliveira, E.A.; Montanher, S.F.; Rollemberg, M.C. Removal of textile dyes by sorption on low-cost sorbents. A case study: Sorption of reactive dyes onto Luffa cylindrica. Desalination Water Treat. 2011, 25, 54–64. [Google Scholar] [CrossRef]
- Zulkefli, S.; Abdulmalek, E.; Rahman, M.B.A. Pretreatment of oil palm trunk in deep eutectic solvent and optimization of enzymatic hydrolysis of pretreated oil palm trunk. Renew. Energy 2017, 107, 36–41. [Google Scholar] [CrossRef]
- Rosli, M.I.; Abdullah, M.; Krishnan, G.; Harun, S.W.; Aziz, M.S. Power-dependent nonlinear optical behaviours of ponceau BS chromophore at 532 nm via Z-scan technique. J. Photochem. Photobiol. A Chem. 2020, 397, 112574. [Google Scholar] [CrossRef]
- Bellamy, L.J. The Infrared Spectra of Complex Molecules, 3rd ed.; Springer Science & Business Media: London, UK, 2013; Volume II, pp. 303–315. [Google Scholar]
- Al-Ghouti, M.; Hawari, A.; Khraisheh, M. A solid-phase extractant based on microemulsion modified date pits for toxic pollutants. J. Environ. Manag. 2013, 130, 80–89. [Google Scholar] [CrossRef] [PubMed]
- El-Hendawy, A.N.A. Variation in the FTIR spectra of a biomass under impregnation, carbonization and oxidation conditions. J. Anal. Appl. Pyrolysis 2006, 72, 159–166. [Google Scholar] [CrossRef]
- Ighalo, J.O.; Adeniyi, A.G.; Oke, E.O.; Adewoye, L.T.; Motolani, F.O. Evaluation of Luffa cylindrica fibers in a bio-mass packed bed for the treatment of paint industry effluent before environmental release. Eur. J. Sustain. Dev. Res. 2020, 4, em0132. [Google Scholar] [CrossRef] [PubMed]
- Collins, M.N.; Nechifor, M.; Tanasă, F.; Zănoagă, M.; McLoughlin, A.; Stróżyk, M.A.; Culebras, M.; Teacă, C.A. Valorization of lignin in polymer and composite systems for advanced engineering applications: A review. Int. J. Biol. Macromol. 2019, 131, 828. [Google Scholar] [CrossRef] [PubMed]
- Wakkel, M.; Khiari, B.; Zagrouba, F. Textile wastewater treatment by agro-industrial waste: Equilibrium modelling, thermodynamics and mass transfer mechanisms of cationic dyes adsorption onto low-cost lignocellulosic adsorbent. J. Taiwan Inst. Chem. Eng. 2019, 96, 439–452. [Google Scholar] [CrossRef]
- Crini, G. Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog. Polym. Sci. 2005, 30, 30–70. [Google Scholar] [CrossRef]
- Cardoso, N.; Lima, E.; Pinto, I.; Amavisca, C.; Royer, B.; Pinto, R.; Alencar, W.; Pereira, S. Application of Cupuassu shell as biosorbent for the removal of textile dyes from aqueous solution. J. Environ. Manag. 2011, 92, 1237–1247. [Google Scholar] [CrossRef]
- Alencar, W.; Lima, E.; Royer, B.; Dos Santos, B.; Calvete, T.; Da Silva, E.; Alves, C. Application of aqai stalks as biosorbents for the removal of the dye Procion Blue MX-R from aqueous solution. Sep. Sci. Technol. 2012, 47, 513–526. [Google Scholar] [CrossRef]
- Cardoso, N.; Lima, E.; Calvete, T.; Pinto, I.; Amavisca, C.; Fernandes, T.; Pinto, R.; Alencar, W. Application of aqai stalks as biosorbents for the removal of the dyes Reactive Black 5 and Reactive Orange 16 from aqueous solution. J. Chem. Eng. Data 2011, 56, 1857–1858. [Google Scholar] [CrossRef]
- Khadir, A.; Motamedi, M.; Pakzad, E.; Sillanpää, M.; Mahajan, S. The prospective utilization of Luffa fibres as a lignocellulosic bio-material for environmental remediation of aqueous media: A Review. J. Environ. Chem. Eng. 2021, 9, 104691. [Google Scholar] [CrossRef]
- Karaghool, H.A.; Hashim, K.; Kot, P.; Muradov, M. Preliminary Studies of Methylene Blue Remotion from Aqueous Solutions by Ocimum basilicum. Environments 2022, 9, 17. [Google Scholar] [CrossRef]
- Mall, I.; Srivastava, V.; Kumar, G.; Mishra, I. Characterization and utilization of mesoporous fertilizer plant waste carbon for adsorptive removal of dyes from aqueous solution. Colloids Surf. 2006, 278, 175–187. [Google Scholar] [CrossRef]
- El Kassimi, A.; Achour, Y.; El Himri, M.; Laamari, R.; El Haddad, M. Removal of two cationic dyes from aqueous solutions by adsorption onto local clay: Experimental and theoretical study using DFT method. Int. J. Environ. Anal. Chem. 2023, 103, 1223–1224. [Google Scholar] [CrossRef]
- Jaafari, J.; Barzanouni, H.; Mazloomi, S.; Farahani, N.A.A.; Sharafi, K.; Soleimani, P.; Haghighat, G.A. Effective adsorptive removal of reactive dyes by magnetic chitosan nanoparticles: Kinetic, isothermal studies and response surface methodology. Int. J. Biol. Macromol. 2020, 164, 344–355. [Google Scholar] [CrossRef] [PubMed]
- Debord, J.; Harel, M.; Bollinger, J.C.; Chu, K.H. The Elovich isotherm equation: Back to the roots and new developments. Chem. Eng. Sci. 2022, 262, 118012. [Google Scholar] [CrossRef]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef]
- Said, K.A.M.; Ismail, N.Z.; Jama’in, R.L.; Alipah, N.A.M.; Sutan, N.M.; Gadung, G.G.; Baini, R.; Zauzi, N.S.A. Application of Freundlich and Temkin isotherm to study the removal of Pb(II) via adsorption on activated carbon equipped polysulfone membrane. Int. J. Eng. Technol. 2018, 7, 91–93. [Google Scholar] [CrossRef]
Kinetic Model | Parameters | Value | R2 |
---|---|---|---|
Pseudo-first order | k1 (min−1) | −0.0007 | 0.7974 |
, observed | 24.8756 | ||
, calculated | 26.7384 | ||
Pseudo-second order | k2 (g min mg−1) | 0.0008 | 0.9922 |
, calculated | 15.0150 | ||
Intraparticle diffusion | kid (mg min1/2 g−1) | 0.3085 | 0.8456 |
C | 4.0895 | ||
Elovich | Β (g mg−1) | 0.5967 | 0.9595 |
Study | Adsorbent (g L−1) | Dye (mg L−1) | pH | T (°K) | t (h) | Qm (mg g−1) | Isotherm Model | k2 (g mg−1min−1) | R2 | Reference |
---|---|---|---|---|---|---|---|---|---|---|
MG-Lc | 0.05 | 20 | 5.0 | 308 | 5.0 | 29.40 | L | 0.013 | 0.996 | [33] |
MG-Lap | 0.6 | 50 | 7.0 | 303 | 2.5 | 166.67 | L | 0.003 | 0.995 | [31] |
TB-Lc | 1 | 10 | 7.0 | 303 | 0.5 | 45.60 | L | 0.0029 | 0.919 | [29] |
AB-Lc | 1 | 20 | 2.0 | 293 | 4.0 | 9.63 | F and T | 0.004 | 0.999 | [28] |
MB-Lc | 3 | 300 | 5.8 | 293 | 25.0 | 49.46 | L | 0.0051 | 0.999 | [30] |
MG-Lap | 8 | 50 | 4.0 | 323 | 3.0 | 69.64 | L | 3.615 | 0.999 | [32] |
This study | 2.5 | 125 | 7.0 | 298 ± 2 | 24 | 24.88 | L | 0.0008 | 0.992 | This study |
250 | 71.43 | 0.0002 | 0.954 | |||||||
500 | 161.29 | 0.0002 | 0.973 |
Material | Element Content (%) | |||||
---|---|---|---|---|---|---|
C | N | O | Na | Al | Si | |
Untreated Lc | 56.2 | N.D. | 38.2 | N.D. | 5.2 | 0.4 |
Lc-ADM | 53.4 | 15.2 | 24.7 | 0.8 | 4.6 | 0.4 |
Independent Variables | Level of Significance | ||
---|---|---|---|
Low (−1) | Medium (0) | High (+1) | |
Lc (g L−1) | 2.5 | 5.0 | 10.0 |
ADM (g L−1) | 0.125 | 0.250 | 0.500 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aranda-Figueroa, M.G.; Rodríguez-Torres, A.; Rodríguez, A.; Bolio-López, G.I.; Salinas-Sánchez, D.O.; Arias-Atayde, D.M.; Romero, R.J.; Valladares-Cisneros, M.G. Removal of Azo Dyes from Water Using Natural Luffa cylindrica as a Non-Conventional Adsorbent. Molecules 2024, 29, 1954. https://doi.org/10.3390/molecules29091954
Aranda-Figueroa MG, Rodríguez-Torres A, Rodríguez A, Bolio-López GI, Salinas-Sánchez DO, Arias-Atayde DM, Romero RJ, Valladares-Cisneros MG. Removal of Azo Dyes from Water Using Natural Luffa cylindrica as a Non-Conventional Adsorbent. Molecules. 2024; 29(9):1954. https://doi.org/10.3390/molecules29091954
Chicago/Turabian StyleAranda-Figueroa, Ma. Guadalupe, Adriana Rodríguez-Torres, Alexis Rodríguez, Gloria Ivette Bolio-López, David Osvaldo Salinas-Sánchez, Dulce Ma. Arias-Atayde, Rosenberg J. Romero, and Maria Guadalupe Valladares-Cisneros. 2024. "Removal of Azo Dyes from Water Using Natural Luffa cylindrica as a Non-Conventional Adsorbent" Molecules 29, no. 9: 1954. https://doi.org/10.3390/molecules29091954
APA StyleAranda-Figueroa, M. G., Rodríguez-Torres, A., Rodríguez, A., Bolio-López, G. I., Salinas-Sánchez, D. O., Arias-Atayde, D. M., Romero, R. J., & Valladares-Cisneros, M. G. (2024). Removal of Azo Dyes from Water Using Natural Luffa cylindrica as a Non-Conventional Adsorbent. Molecules, 29(9), 1954. https://doi.org/10.3390/molecules29091954