Microwave-Assisted Atom Transfer Radical Cyclization in the Synthesis of 3,3-Dichloro-γ- and δ-Lactams from N-Alkenyl-Tethered Trichloroacetamides Catalyzed by RuCl2(PPh3)3 and Their Cytotoxic Evaluation
Abstract
:1. Introduction
2. Results
2.1. Synthesis of γ- and δ-Lactams Using Microwave Activation
2.2. Hemocompatibility Studies and Cell Viability Assays of Selected Lactams
2.2.1. Hemocompatibility Studies
2.2.2. Cell Viability Assays
3. Materials and Methods
3.1. Materials and Methods for the Synthesis of Lactams
3.1.1. General Experimental Procedures
3.1.2. Synthesis of Trichloro and Dichloroacetamides 1
3.1.3. General Procedure for the ATRC Reactions of Trichloro- and Dichloroacetamides 1 in the Presence of RuCl2(PPh3)3
3.1.4. Radical Trapping Experiment
3.2. Materials and Methods for the Biological Assays
3.2.1. Materials
3.2.2. Methods
In Vitro Assay Using Human Erythrocytes
- Acquisition and Extraction of the Erythrocytes
- Hemolysis Assay
Cell Cultures
Cell Viability Assays
- NRU Assay
- MTT Assay
Selectivity towards Cancer Cells
Statistical Analyses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Iqbal, J.; Bhatia, B.; Nayyar, N.K. Transition metal-promoted free-radical reactions in organic synthesis: The formation of carbon-carbon bonds. Chem. Rev. 1994, 94, 519–564. [Google Scholar] [CrossRef]
- Clark, A.J. Atom transfer radical cyclisation reactions mediated by copper complexes. Chem. Soc. Rev. 2002, 31, 1–11. [Google Scholar] [CrossRef]
- Muñoz-Molina, J.M.; Belderrain, T.R.; Pérez, P.J. Atom transfer radical reactions as a tool for olefin functionalization—On the way to practical applications. Eur. J. Inorg. Chem. 2011, 2011, 3155–3164. [Google Scholar] [CrossRef]
- Curran, D.P. The design and application of free radical chain reactions in organic synthesis. Part 1. Synthesis 1988, 1988, 417–439. [Google Scholar] [CrossRef]
- Chen, V.X.; Boyer, F.-D.; Rameau, C.; Pillot, J.-P.; Vors, J.-P.; Beau, J.-M. New synthesis of A-Ring aromatic strigolactone analogues and their evaluation as plant hormones in pea (Pisum sativum). Chem. Eur. J. 2013, 19, 4849–4857. [Google Scholar] [CrossRef]
- De Buyck, L.; Forzato, C.; Ghelfi, F.; Mucci, A.; Nitti, P.; Pagnoni, U.M.; Parsons, A.F.; Pitacco, G.; Roncaglia, F. A new and effective route to (±)-botryodiplodin and (±)-epi-botryodiplodin acetates using a halogen atom transfer Ueno–Stork cyclization. Tetrahedron Lett. 2006, 47, 7759–7762. [Google Scholar] [CrossRef]
- Edlin, C.D.; Faulkner, J.; Helliwell, M.; Knight, C.K.; Parker, J.; Quayle, P.; Raftery, J. Atom transfer radical cyclization reactions (ATRC): Synthetic applications. Tetrahedron 2006, 62, 3004–3015. [Google Scholar] [CrossRef]
- Helliwell, M.; Fengas, D.; Knight, C.K.; Parker, J.; Quayle, P.; Raftery, J.; Richards, S.N. Bifurcate, tandem ATRC reactions: Towards 2-oxabicyclo[4.3.0]nonane core of eunicellins. Tetrahedron Lett. 2005, 46, 7129–7134. [Google Scholar] [CrossRef]
- Minisci, F. Free-radical additions to olefins in the presence of redox systems. Acc. Chem. Res. 1975, 8, 165–171. [Google Scholar] [CrossRef]
- Martin, P.; Steiner, E.; Streith, J.; Winkler, T.; Belluš, D. Convenient approaches to heterocycles via copper-catalysed additions of organic polyhalides to activated oleffns. Tetrahedron 1985, 41, 4057–4078. [Google Scholar] [CrossRef]
- Severin, K. Ruthenium catalysts for the Kharasch reaction. Curr. Org. Chem. 2006, 10, 217–224. [Google Scholar] [CrossRef]
- Grove, M.D.; Van Koten, G.; Verschuuren, A.H.M. New homogeneous catalysts in the addition of polyhalogenoalkanes to olefins; organonickel(II) Complexes [Ni{C6H3(CH2NMe2)2-o,o′}X] (X = Cl, Br, I). J. Mol. Catal. 1988, 45, 169–174. [Google Scholar] [CrossRef]
- Matsumoto, H.; Nakano, T.; Nagai, Y. Radical reactions in the coordination sphere I. Addition of carbon tetrachloride and chloroform to 1-olefins catalyzed by ruthenium (II) complexes. Tetrahedron Lett. 1973, 14, 5147–5150. [Google Scholar] [CrossRef]
- Matsumoto, H.; Nikaido, T.; Nagai, Y. Radical reactions in the coordination sphere II. Stereoselective addition of carbon tetracrloride to cyclohexene catalyzed by dicrlorotris(triphenylphosphine)-rutrenium(II). Tetrahedron Lett. 1975, 16, 899–902. [Google Scholar] [CrossRef]
- Matsumoto, H.; Nikaido, T.; Nagai, Y. Radical reactions in the coordination sphere. III. Reactions of dichloro- and trichloroacetic acid esters with 1-olefins catalyzed by dichlorotris(triphenylphosphine) ruthenium(II). J. Org. Chem. 1976, 41, 396–398. [Google Scholar] [CrossRef]
- Nagashima, H.; Wakamatsu, H.; Itoh, K. A novel preparative method for γ-butyrolactams via carbon-carbon bond formation: Copper or ruthenium-catalysed cyclization of N-ally trichloroacetamides. J. Chem. Soc. Chem. Commun. 1984, 10, 652–653. [Google Scholar] [CrossRef]
- Nagashima, H.; Ara, K.; Wakamatsu, H.; Itoh, K. Stereoselective preparation of bicyclic lactams by copper- or ruthenium-catalysed cyclization of N-allyltrichloroacetamides: A novel entry to pyrrolidine alkaloid skeletons. J. Chem. Soc. Chem. Commun. 1985, 53, 518–519. [Google Scholar] [CrossRef]
- Rachita, M.A.; Slough, G.A. Ruthenium (II) catalyzed ring closure of prochiral α-chloro-N-tosyl amides: A diastereoselectivity study. Tetrahedron Lett. 1993, 34, 6821–6824. [Google Scholar] [CrossRef]
- Swift, M.D.; Donaldson, A.; Sutherland, A. Tandem aza-Claisen rearrangement and ring-closing metathesis reactions: The stereoselective synthesis of functionalised carbocyclic amides. Tetrahedron Lett. 2009, 50, 3241–3244. [Google Scholar] [CrossRef]
- Caruano, J.; Mucciolib, G.G.; Robiette, R. Biologically active γ-lactams: Synthesis and natural sources. Org. Biomol. Chem. 2016, 14, 10134–10156. [Google Scholar] [CrossRef]
- del Corte, X.; López-Francés, A.; Villate-Beitia, I.; Sainz-Ramos, M.; Martínez de Marigorta, E.; Palacios, F.; Alonso, C.; de los Santos, J.M.; Pedraz, J.L.; Vicario, J. Multicomponent synthesis of unsaturated γ-lactam derivatives. Applications as antiproliferative agents through the bioisosterism approach: Carbonyl vs. phosphoryl group. Pharmaceuticals 2022, 15, 511. [Google Scholar] [CrossRef] [PubMed]
- Saldívar-González, F.I.; Lenci, E.; Trabocchi, A.; Medina-Franco, J.L. Exploring the chemical space and the bioactivity profile of lactams: A chemoinformatic study. RSC Adv. 2019, 9, 27105–27116. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.-H.; Kanoh, K.; Adachi, K.; Shizuri, Y. Awajanomycin, a Cytotoxic γ-lactone-δ-lactam metabolite from marine-derived Acremonium sp. AWA16-1. J. Nat. Prod. 2006, 69, 1358–1360. [Google Scholar] [CrossRef] [PubMed]
- Diaba, F.; Sandor, A.G.; Morán, M.d.C. Cytotoxic assessment of 3,3-dichloro-β-lactams prepared through microwave-assisted benzylic C-H activation from benzyl-tethered trichloroacetamides catalyzed by RuCl2(PPh3)3. Molecules 2022, 27, 5975. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Fang, X.; Wang, Z.; Liu, K.; Li, C. Stereoselectivity of 6-exo cyclization of α-carbamoyl radicals. J. Org. Chem. 2016, 81, 2442–2450. [Google Scholar] [CrossRef] [PubMed]
- Diaba, F.; Martínez-Laporta, A.; Bonjoch, J.; Pereira, A.; Muñoz-Molina, J.M.; Pérez, P.J.; Belderrain, T.R. Cu(I)-catalyzed atom transfer radical cyclization of trichloroacetamides tethered to electron-deficient, -neutral, and -rich alkenes: Synthesis of polyfunctionalized 2-azabicyclo[3.3.1]nonanes. Chem. Commun. 2012, 48, 8799–8801. [Google Scholar] [CrossRef] [PubMed]
- Benedetti, M.; Forti, L.; Ghelfi, F.; Pagnoni, U.M.; Ronzoni, R. Halogen atom transfer radical cyclization of N-allyl-N-benzyl-2,2-dihaloamides to 2-pyrrolidinones, promoted by Fe0-FeCl3 or CuCl-TMEDA. Tetrahedron 1997, 53, 14031–14042. [Google Scholar] [CrossRef]
- Baldovini, N.; Bertrand, M.-P.; Carrière, A.; Nouguier, R.; Plancher, J.-M. 3-Oxa- and 3-azabicyclo[3.1.0]hexan-2-ones via tandem radical cyclization–intramolecular SN2 reactions. J. Org. Chem. 1996, 61, 3205–3208. [Google Scholar] [CrossRef]
- Bland, W.J.; Davis, R.; Durrant, J.L.A. The mechanism of the addition of haloalkanes to alkenes in the presence of dichlorotris(triphenylphosphine)ruthenium(II), [RuCl2(PPh3)3]. J. Organomet. Chem. 1985, 280, 397–406. [Google Scholar] [CrossRef]
- Takahashi, H.; Ando, T.; Kamigaito, M.; Sawamoto, M. Half-Metallocene-Type Ruthenium Complexes as Active Catalysts for Living Radical Polymerization of Methyl Methacrylate and Styrene. Macromolecules 1999, 32, 3820–3823. [Google Scholar] [CrossRef]
- Trenchs, G.; Diaba, F. Photoredox catalysis in the synthesis of γ- and δ-lactams from N-alkenyl trichloro- and dichloroacetamides. Org. Biomol. Chem. 2022, 20, 3118–3123. [Google Scholar] [CrossRef]
- ISO 10993-4:2017; Biological Evaluation of Medical Devices—Part 4: Selection of Tests for Interactions with Blood. ISO: Geneva, Switzerland, 2017.
- Dobrovolskaia, M.A.; Clogston, J.D.; Neun, B.W.; Hall, J.B.; Patri, A.K.; McNeil, S.E. Method for analysis of nanoparticle hemolytic properties in vitro. Nano Lett. 2008, 8, 2180–2187. [Google Scholar] [CrossRef] [PubMed]
- Samarasinghe, V.; Madan, V. Nonmelanoma skin cancer. J. Cutan. Aesthet. Surg. 2012, 5, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Smith, V. Wonder woman: The life, death, and life after death of Henrietta Lacks, unwitting heroine of modern medical science. Baltimore City Paper, 17 April 2002. [Google Scholar]
- Sweeney, E.E.; Mcdaniel, R.E.; Maximov, P.Y.; Fan, P.; Jordan, V.C. Models and mechanisms of acquired antihormone resistance in breast cancer: Significant clinical progress despite limitations. Horm. Mol. Biol. Clin. Investig. 2012, 9, 143–163. [Google Scholar] [CrossRef]
- Todaro, G.J.; Green, H. Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines. J. Cell Biol. 1963, 17, 299–313. [Google Scholar] [CrossRef] [PubMed]
- Berridge, M.V.; Herst, P.M.; Tan, A.S. Tetrazolium dyes as tools in cell biology: New insight into their cellular reduction. Biotechnol. Annu. Rev. 2005, 11, 127–152. [Google Scholar] [PubMed]
- Repetto, G.; del Peso, A.; Zurita, J.L. Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat. Protoc. 2008, 3, 1125–1131. [Google Scholar] [CrossRef]
- Rodriguez, S.; Castillo, E.; Carda, M.; Marco, J.A. Synthesis of conjugated δ-lactams using ring-closing metathesis. Tetrahedron 2002, 58, 1185–1192. [Google Scholar] [CrossRef]
- Quirante, J.; Escolano, C.; Diaba, F.; Bonjoch, J. A radical route to morphans. Synthesis and spectroscopic data of the 2-azabicyclo[3.3.1]nonane. Heterocycles 1999, 50, 731–738. [Google Scholar]
Entry | RuCl2(PPh3)3 (mol%) | Solvent | Temp (°C) | Time (min) | 2a (%) | 1a (%) |
---|---|---|---|---|---|---|
1 | 5 | PhMe | 140 | 75 | 0 | 100 |
2 | 10 | PhMe | 160 | 30 | 79 | traces |
3 | 5 | PhMe | 160 | 30 | 82 | Traces |
4 | 5 | PhMe | 160 | 15 | 83 | Traces |
5 | 5 | PhMe | 160 | 10 | 79 | Traces |
6 | 2.5 | PhMe | 160 | 20 | 61 | 12 |
7 | 3 | PhMe | 160 | 60 | 71 | 5 |
8 | 5 | ACN | 160 | 15 | 0 | 100 |
9 | 5 | PhMe | 160 b | 15 | 30 | 60 |
10 | 5 c | PhMe | 160 | 15 | 35 | 42 |
Entry | R | 1 | Time (min) | 2 | Yield% | 1 (Recovered %) |
---|---|---|---|---|---|---|
1 | H | 1b | 15 | 2b | 62 | 8 |
2 | H | 1b | 30 | 2b | 68 | 7 |
3 | nBu | 1c | 15 | 2c | 90 | 0 |
4 | Ph | 1d | 15 | 2d | 48 | 45 |
5 | Ph | 1d | 45 | 2d | 84 | 13 |
6 | Bn | 1e | 15 | 2e | 78 | traces |
7 | Allyl | 1f | 15 | 2f | 78 | traces |
Entry | R′ | 1 | Time (min) | 2 | Yield % | trans/cis |
---|---|---|---|---|---|---|
1 | H | 1l | 15 | 2l | 75 | trans-2l/cis-2l: 1.8/1 |
2 | Me | 1m | 30 | 2m | 80 | trans-2m/cis-2m: 1/1.9 |
3 | CO2Et | 1n | 15 | 2n | 70 | trans-2n/cis-2n: 1/1 |
Compound | MTT IC50 (µg/mL) | NRU IC50 (µg/mL) | MTT SI | NRU SI | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3T3 | A431 | Hela | MCF7 | 3T3 | A431 | HeLa | MCF7 | A431 | HeLa | MCF7 | A431 | HeLa | MCF7 | |
2a | 172 | 126 | 109 | >250 | >250 | 82 | >250 | >250 | 1.4 | 1.68 | <0.69 | >3.1 | n.d.a | n.d. |
2b | >250 | >250 | >250 | >250 | >250 | >250 | >250 | >250 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
2d | >250 | 93 | >250 | >250 | >250 | >250 | >250 | >250 | >2.7 | n.d. | n.d. | n.d. | n.d. | n.d. |
2i | >250 | >250 | >250 | >250 | >250 | >250 | >250 | >250 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
2p | >250 | >250 | >250 | >250 | >250 | >250 | >250 | >250 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diaba, F.; Sandor, A.G.; Morán, M.d.C. Microwave-Assisted Atom Transfer Radical Cyclization in the Synthesis of 3,3-Dichloro-γ- and δ-Lactams from N-Alkenyl-Tethered Trichloroacetamides Catalyzed by RuCl2(PPh3)3 and Their Cytotoxic Evaluation. Molecules 2024, 29, 2035. https://doi.org/10.3390/molecules29092035
Diaba F, Sandor AG, Morán MdC. Microwave-Assisted Atom Transfer Radical Cyclization in the Synthesis of 3,3-Dichloro-γ- and δ-Lactams from N-Alkenyl-Tethered Trichloroacetamides Catalyzed by RuCl2(PPh3)3 and Their Cytotoxic Evaluation. Molecules. 2024; 29(9):2035. https://doi.org/10.3390/molecules29092035
Chicago/Turabian StyleDiaba, Faïza, Alexandra G. Sandor, and María del Carmen Morán. 2024. "Microwave-Assisted Atom Transfer Radical Cyclization in the Synthesis of 3,3-Dichloro-γ- and δ-Lactams from N-Alkenyl-Tethered Trichloroacetamides Catalyzed by RuCl2(PPh3)3 and Their Cytotoxic Evaluation" Molecules 29, no. 9: 2035. https://doi.org/10.3390/molecules29092035
APA StyleDiaba, F., Sandor, A. G., & Morán, M. d. C. (2024). Microwave-Assisted Atom Transfer Radical Cyclization in the Synthesis of 3,3-Dichloro-γ- and δ-Lactams from N-Alkenyl-Tethered Trichloroacetamides Catalyzed by RuCl2(PPh3)3 and Their Cytotoxic Evaluation. Molecules, 29(9), 2035. https://doi.org/10.3390/molecules29092035