Optimization of Composite Enzymatic Extraction, Structural Characterization and Biological Activity of Soluble Dietary Fiber from Akebia trifoliata Peel
Abstract
:1. Introduction
2. Results and Discussion
2.1. Single-Factor Experimental Results
2.1.1. Effect of Enzyme Addition on SDF Yield
2.1.2. Effect of Enzymolysis Time on SDF Yield
2.1.3. Effect of Solid–Liquid Ratio on SDF Yield
2.1.4. Effect of Enzymolysis Temperature on SDF Yield
2.2. Response Surface Analysis Results
2.2.1. Model Fitting and Variance Analysis
2.2.2. Response Surface Interaction Analysis
2.2.3. Optimization and Verification of Extraction Conditions
2.3. Characterization of AP-SDF
2.3.1. Chemical Composition, Monosaccharide Composition and Mw of AP-SDF
2.3.2. FT-IR Spectrum of AP-SDF
2.3.3. XRD of AP-SDF
2.3.4. SEM of AP-SDF
2.3.5. UV–Visible Spectroscopy of AP-SDF
2.4. Functional Properties of AP-SDF
2.5. Bioactivity of AP-SDF
2.5.1. Antioxidant Activities of AP-SDF
2.5.2. α-Glucosidase Inhibitory Activity of AP-SDF
2.5.3. Hypolipidemic Activity of AP-SDF
3. Materials and Methods
3.1. Materials and Reagents
3.2. Material Preparation
3.3. Extraction of SDF from Akebia trifoliata Peel
3.4. Optimization of Extraction Condition
3.4.1. Single-Factor Experiment
3.4.2. Response Surface Methodology (RSM) Design
3.5. Purification of SDF from Akebia trifoliata Peel
3.6. Characterization Analysis
3.6.1. Chemical Composition Analysis
3.6.2. Monosaccharide Composition Analysis
3.6.3. Molecular Weight (Mw) Analysis
3.6.4. Fourier Transform–Infrared (FT-IR) Spectroscopy Analysis
3.6.5. X-ray Diffraction (XRD) Analysis
3.6.6. Scanning Electron Microscope (SEM) Analysis
3.6.7. Ultraviolet (UV)–Visible Spectroscopy Analysis
3.7. Functional Properties
3.7.1. Water/Oil-Holding Capacity (WHC/OHC) Analysis
3.7.2. Swelling Capacity (SC) Analysis
3.8. Bioactivity Analysis
3.8.1. Antioxidant Activity
3.8.2. α-Glucosidase Inhibitory Activity
3.8.3. Cholate Binding Activity
3.8.4. Cholesterol Adsorption Capacity (CAC)
3.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jiang, Y.; Ding, Y.; Wang, D.; Deng, Y.; Zhao, Y. Radio frequency-assisted enzymatic extraction of anthocyanins from Akebia trifoliata (Thunb.) Koidz. flowers: Process optimization, structure, and bioactivity determination. Ind. Crops Prod. 2020, 149, 112327. [Google Scholar] [CrossRef]
- Zou, S.; Yao, X.; Zhong, C.; Zhao, T.; Huang, H. Effectiveness of recurrent selection in Akebia trifoliata (Lardizabalaceae) breeding. Sci. Hortic. 2019, 246, 79–85. [Google Scholar] [CrossRef]
- Maciąg, D.; Dobrowolska, E.; Sharafan, M.; Ekiert, H.; Tomczyk, M.; Szopa, A. Akebia quinata and Akebia trifoliata—A review of phytochemical composition, ethnopharmacological approaches and biological studies. J. Ethnopharmacol. 2021, 280, 114486. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Deng, H.; Qiu, X.; Wang, P.; Yang, F. Determining the impact of key climatic factors on geographic distribution of wild Akebia trifoliate. Ecol. Indic. 2020, 112, 106093. [Google Scholar] [CrossRef]
- Jiang, Y.; Du, Y.; Zhu, X.; Xiong, H.; Woo, M.W.; Hu, J. Physicochemical and comparative properties of pectins extracted from Akebia trifoliata var. australis peel. Carbohydr. Polym. 2012, 87, 1663–1669. [Google Scholar] [CrossRef]
- Jiang, Y.; Yin, H.; Zhou, X.; Wang, D.; Zhong, Y.; Xia, Q.; Deng, Y.; Zhao, Y. Antimicrobial, antioxidant and physical properties of chitosan film containing Akebia trifoliata (Thunb.) Koidz. peel extract/montmorillonite and its application. Food Chem. 2021, 361, 130111. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Wang, B.; Wen, L.; Wang, F.; Yu, H.; Chen, D.; Su, X.; Zhang, C. Effects of dietary fiber on human health. Food Sci. Hum. Wellness 2022, 11, 1–10. [Google Scholar] [CrossRef]
- Peng, F.; Ren, X.; Du, B.; Chen, L.; Yu, Z.; Yang, Y. Structure, Physicochemical Property, and Functional Activity of Dietary Fiber Obtained from Pear Fruit Pomace (Pyrus ussuriensis Maxim) via Different Extraction Methods. Foods 2022, 11, 2161. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Xu, X.; Cao, X.; Liu, T. The structural characteristics of dietary fibers from Tremella fuciformis and their hypolipidemic effects in mice. Food Sci. Hum. Wellness 2023, 12, 503–511. [Google Scholar] [CrossRef]
- Chen, H.; He, S.; Sun, H.; Li, Q.; Gao, K.; Miao, X.; Xiang, J.; Wu, X.; Gao, L.; Zhang, Y. A Comparative Study on Extraction and Physicochemical Properties of Soluble Dietary Fiber from Glutinous Rice Bran Using Different Methods. Separations 2023, 10, 90. [Google Scholar] [CrossRef]
- Guan, Z.-W.; Yu, E.-Z.; Feng, Q. Soluble Dietary Fiber, One of the Most Important Nutrients for the Gut Microbiota. Molecules 2021, 26, 6802. [Google Scholar] [CrossRef] [PubMed]
- Zadeike, D.; Vaitkeviciene, R.; Degutyte, R.; Bendoraitiene, J.; Rukuiziene, Z.; Cernauskas, D.; Svazas, M.; Juodeikiene, G. A comparative study on the structural and functional properties of water-soluble and alkali-soluble dietary fibres from rice bran after hot-water, ultrasound, hydrolysis by cellulase, and combined pre-treatments. Int. J. Food Sci. Technol. 2022, 57, 1137–1149. [Google Scholar] [CrossRef]
- Wang, S.; Fang, Y.; Xu, Y.; Zhu, B.; Piao, J.; Zhu, L.; Yao, L.; Liu, K.; Wang, S.; Zhang, Q.; et al. The effects of different extraction methods on physicochemical, functional and physiological properties of soluble and insoluble dietary fiber from Rubus chingiiHu. fruits. J. Funct. Foods 2022, 93, 105081. [Google Scholar] [CrossRef]
- Luo, M.; Zhou, D.-D.; Shang, A.; Gan, R.-Y.; Li, H.-B. Influences of Microwave-Assisted Extraction Parameters on Antioxidant Activity of the Extract from Akebia trifoliata Peels. Foods 2021, 10, 1432. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Yin, H.; Zheng, Y.; Wang, D.; Liu, Z.; Deng, Y.; Zhao, Y. Structure, physicochemical and bioactive properties of dietary fibers from Akebia trifoliata (Thunb.) Koidz. seeds using ultrasonication/shear emulsifying/microwave-assisted enzymatic extraction. Food Res. Int. 2020, 136, 109348. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Song, H.; Yang, Y.; Liu, Y.; Liu, Z.; Hu, H.; Zhang, Y. Optimization of microwave-assisted enzymatic extraction of polysaccharides from the fruit of Schisandra chinensis Baill. Int. J. Biol. Macromol. 2015, 76, 161–168. [Google Scholar] [CrossRef]
- Gu, H.; Liang, L.; Zhu, X.p.; Jiang, X.; Du, M.; Wang, Z. Optimization of enzymatic extraction, characterization and bioactivities of Se-polysaccharides from Se-enriched Lentinus edodes. Food Biosci. 2023, 51, 102346. [Google Scholar] [CrossRef]
- Lin, Y.; Pi, J.; Jin, P.; Liu, Y.; Mai, X.; Li, P.; Fan, H. Enzyme and microwave co-assisted extraction, structural characterization and antioxidant activity of polysaccharides from Purple-heart Radish. Food Chem. 2022, 372, 131274. [Google Scholar] [CrossRef] [PubMed]
- Yun, C.; Ji, X.; Chen, Y.; Zhao, Z.; Gao, Y.; Gu, L.; She, D.; Ri, I.; Wang, W.; Wang, H. Ultrasound-assisted enzymatic extraction of Scutellaria baicalensis root polysaccharide and its hypoglycemic and immunomodulatory activities. Int. J. Biol. Macromol. 2023, 227, 134–145. [Google Scholar] [CrossRef]
- Chen, W.; Jia, Z.; Zhu, J.; Zou, Y.; Huang, G.; Hong, Y. Optimization of ultrasonic-assisted enzymatic extraction of polysaccharides from thick-shell mussel (Mytilus coruscus) and their antioxidant activities. Int. J. Biol. Macromol. 2019, 140, 1116–1125. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, X.; Sun, M.; Li, D.; Hua, M.; Miao, X.; Su, Y.; Chi, Y.; Wang, J.; Niu, H. Optimization of Mixed Fermentation Conditions of Dietary Fiber from Soybean Residue and the Effect on Structure, Properties and Potential Biological Activity of Dietary Fiber from Soybean Residue. Molecules 2023, 28, 1322. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Tang, M.; Jiang, Z.; Ruan, Y.; Liu, L.; Kong, Q.; Xiang, Z.; Chen, T.; Zhou, L.; Yang, H.; et al. Optimization of Extraction Process, Structure Characterization, and Antioxidant Activity of Polysaccharides from Different Parts of Camellia oleifera Abel. Foods 2022, 11, 3185. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Liu, S.; Zhang, L.; Pan, L.; Xu, L. Polysaccharides from Nitraria retusa Fruit: Extraction, Purification, Structural Characterization, and Antioxidant Activities. Molecules 2023, 28, 1266. [Google Scholar] [CrossRef]
- Li, X.; Wei, J.; Lin, L.; Li, J.; Zheng, G. Structural characterization, antioxidant and antimicrobial activities of polysaccharide from Akebia trifoliata (Thunb.) Koidz stem. Colloids Surf. B Biointerfaces 2023, 231, 113573. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Wang, L.; Ruan, Y.; Wen, C.; Ge, M.; Qian, Y.; Ma, B. Physicochemical properties and biological activities of polysaccharides from the peel of Dioscorea opposita Thunb. extracted by four different methods. Food Sci. Hum. Wellness 2023, 12, 130–139. [Google Scholar] [CrossRef]
- Tang, Y.; He, X.; Liu, G.; Wei, Z.; Sheng, J.; Sun, J.; Li, C.; Xin, M.; Li, L.; Yi, P. Effects of different extraction methods on the structural, antioxidant and hypoglycemic properties of red pitaya stem polysaccharide. Food Chem. 2023, 405, 134804. [Google Scholar] [CrossRef] [PubMed]
- Cai, T.; Xiao, P.; Yu, N.; Zhou, Y.; Mao, J.; Peng, H.; Deng, S. A novel pectin from Akebia trifoliata var. australis fruit peel and its use as a wall-material to coat curcumin-loaded zein nanoparticle. Int. J. Biol. Macromol. 2020, 152, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Huang, J.; Wang, S.; Yin, J.; Zhang, F. Polysaccharides from Pachyrhizus erosus roots: Extraction optimization and functional properties. Food Chem. 2022, 382, 132413. [Google Scholar] [CrossRef] [PubMed]
- Yu, N.; Wang, X.; Ning, F.; Jiang, C.; Li, Y.; Peng, H.; Xiong, H. Development of antibacterial pectin from Akebia trifoliata var. australis waste for accelerated wound healing. Carbohydr. Polym. 2019, 217, 58–68. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, Q.; Wang, L.; Zha, S.; Zhang, L.; Zhao, B. Physicochemical and functional properties of dietary fiber from maca (Lepidium meyenii Walp.) liquor residue. Carbohydr. Polym. 2015, 132, 509–512. [Google Scholar] [CrossRef]
- Dong, W.; Wang, D.; Hu, R.; Long, Y.; Lv, L. Chemical composition, structural and functional properties of soluble dietary fiber obtained from coffee peel using different extraction methods. Food Res. Int. 2020, 136, 109497. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Sun, S.; Li, R.; Shen, Z.; Wang, P.; Jiang, X. Antioxidant activity of polysaccharides produced by Hirsutella sp. and relation with their chemical characteristics. Carbohydr. Polym. 2015, 117, 452–457. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.-Q.; Li, C.; Huang, Q.; You, L.-J.; Chen, C.; Fu, X.; Liu, R.H. Comparative study on the physicochemical properties and bioactivities of polysaccharide fractions extracted from Fructus Mori at different temperatures. Food Funct. 2019, 10, 410–421. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Zhou, H.; Zhang, J.; Li, F.; Wei, K.; Wei, X.; Wang, Y. Valorization of Polysaccharides Obtained from Dark Tea: Preparation, Physicochemical, Antioxidant, and Hypoglycemic Properties. Foods 2021, 10, 2276. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-S.; Han, J.-M.; Shin, Y.-N.; Park, Y.-S.; Shin, Y.-R.; Park, S.-W.; Roy, V.C.; Lee, H.-J.; Kumagai, Y.; Kishimura, H.; et al. Exploring Bioactive Compounds in Brown Seaweeds Using Subcritical Water: A Comprehensive Analysis. Mar. Drugs 2023, 21, 328. [Google Scholar] [CrossRef]
- Yang, W.; Wu, J.; Liu, W.; Ai, Z.; Cheng, Y.; Wei, Z.; Zhang, H.; Ma, H.; Cui, F.; Zhou, C.; et al. Structural characterization, antioxidant and hypolipidemic activity of Grifola frondosa polysaccharides in novel submerged cultivation. Food Biosci. 2021, 42, 101187. [Google Scholar] [CrossRef]
- Wang, M.-M.; Wang, F.; Li, G.; Tang, M.-T.; Wang, C.; Zhou, Q.-Q.; Zhou, T.; Gu, Q. Antioxidant and hypolipidemic activities of pectin isolated from citrus canning processing water. LWT 2022, 159, 113203. [Google Scholar] [CrossRef]
- Zhang, S.; Waterhouse, G.I.N.; Cui, T.; Sun-Waterhouse, D.; Wu, P. Pectin fractions extracted sequentially from Cerasus humilis: Their compositions, structures, functional properties and antioxidant activities. Food Sci. Hum. Wellness 2023, 12, 564–574. [Google Scholar] [CrossRef]
- Zhang, W.; Zeng, G.; Pan, Y.; Chen, W.; Huang, W.; Chen, H.; Li, Y. Properties of soluble dietary fiber-polysaccharide from papaya peel obtained through alkaline or ultrasound-assisted alkaline extraction. Carbohydr. Polym. 2017, 172, 102–112. [Google Scholar] [CrossRef]
- Liu, J.; Song, J.; Gao, F.; Chen, W.; Zong, Y.; Li, J.; He, Z.; Du, R. Extraction, Purification, and Structural Characterization of Polysaccharides from Sanghuangporus vaninii with Anti-Inflammatory Activity. Molecules 2023, 28, 6081. [Google Scholar] [CrossRef]
- Guerreiro, B.M.; Freitas, F.; Lima, J.C.; Silva, J.C.; Reis, M.A.M. Photoprotective effect of the fucose-containing polysaccharide FucoPol. Carbohydr. Polym. 2021, 259, 117761. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Teng, H.; He, Z.; Li, X.; Shen, W.; Wang, J.; Zhao, D.; Sun, H.; Xu, X.; Li, C.; Zha, X. Chemical structure, antioxidant and anti-inflammatory activities of two novel pectin polysaccharides from purple passion fruit (Passiflora edulia Sims) peel. J. Mol. Struct. 2022, 1264, 133309. [Google Scholar] [CrossRef]
- Bitter, T.; Muir, H.M. A modified uronic acid carbazole reaction. Anal. Biochem. 1962, 4, 330–334. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Huang, R.; Wen, P.; Song, Y.; He, B.; Tan, J.; Hao, H.; Wang, H. Structural characterization and immunological activity of pectin polysaccharide from kiwano (Cucumis metuliferus) peels. Carbohydr. Polym. 2021, 254, 117371. [Google Scholar] [CrossRef] [PubMed]
- Shen, S.; Zhou, C.; Zeng, Y.; Zhang, H.; Hossen, M.A.; Dai, J.; Li, S.; Qin, W.; Liu, Y. Structures, physicochemical and bioactive properties of polysaccharides extracted from Panax notoginseng using ultrasonic/microwave-assisted extraction. LWT 2022, 154, 112446. [Google Scholar] [CrossRef]
- Vandanjon, L.; Burlot, A.-S.; Zamanileha, E.F.; Douzenel, P.; Ravelonandro, P.H.; Bourgougnon, N.; Bedoux, G. The Use of FTIR Spectroscopy as a Tool for the Seasonal Variation Analysis and for the Quality Control of Polysaccharides from Seaweeds. Mar. Drugs 2023, 21, 482. [Google Scholar] [CrossRef]
- Liu, Y.; Kan, Y.; Huang, Y.; Jiang, C.; Zhao, L.; Hu, J.; Pang, W. Physicochemical Characteristics and Antidiabetic Properties of the Polysaccharides from Pseudostellaria heterophylla. Molecules 2022, 27, 3719. [Google Scholar] [CrossRef] [PubMed]
- Fan, R.; Mao, G.; Xia, H.; Zeng, J. Chemical elucidation and rheological properties of a pectic polysaccharide extracted from Citrus medica L. fruit residues by gradient ethanol precipitation. Int. J. Biol. Macromol. 2022, 198, 46–53. [Google Scholar] [CrossRef]
- Si, J.; Yang, C.; Ma, W.; Chen, Y.; Xie, J.; Qin, X.; Hu, X.; Yu, Q. Screen of high efficiency cellulose degrading strains and effects on tea residues dietary fiber modification: Structural properties and adsorption capacities. Int. J. Biol. Macromol. 2022, 220, 337–347. [Google Scholar] [CrossRef]
- Yu, M.; Chen, M.; Gui, J.; Huang, S.; Liu, Y.; Shentu, H.; He, J.; Fang, Z.; Wang, W.; Zhang, Y. Preparation of Chlorella vulgaris polysaccharides and their antioxidant activity in vitro and in vivo. Int. J. Biol. Macromol. 2019, 137, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.-Y.; He, X.-M.; Sun, J.; Li, C.-B.; Li, L.; Sheng, J.-F.; Xin, M.; Li, Z.-C.; Zheng, F.-J.; Liu, G.-M.; et al. Polyphenols and Alkaloids in Byproducts of Longan Fruits (Dimocarpus Longan Lour.) and Their Bioactivities. Molecules 2019, 24, 1186. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Jinfeng, d.; Wu, C.; Fan, G.; Li, X.; Sun, W.; Suo, A.; Li, Z.; Zhang, L. Effects of ultrasound-assisted Fenton treatment on structure and hypolipidemic activity of apricot polysaccharides. Food Biosci. 2022, 50, 102073. [Google Scholar] [CrossRef]
- Yang, C.; Si, J.; Chen, Y.; Xie, J.; Tian, S.; Cheng, Y.; Hu, X.; Yu, Q. Physicochemical structure and functional properties of soluble dietary fibers obtained by different modification methods from Mesona chinensis Benth. residue. Food Res. Int. 2022, 157, 111489. [Google Scholar] [CrossRef] [PubMed]
Run | X 1 Enzyme Addition (U/g) | X 2 Enzymolysis Time (min) | X 3 Solid–liquid Ratio (g/mL) | X 4 Enzymolysis Temperature (°C) | Y SDF Yield (%) |
---|---|---|---|---|---|
1 | −1 | −1 | 0 | 0 | 17.04 |
2 | 1 | −1 | 0 | 0 | 16.49 |
3 | −1 | 1 | 0 | 0 | 16.07 |
4 | 1 | 1 | 0 | 0 | 16.93 |
5 | 0 | 0 | −1 | −1 | 18.45 |
6 | 0 | 0 | 1 | −1 | 16.01 |
7 | 0 | 0 | −1 | 1 | 18.92 |
8 | 0 | 0 | 1 | 1 | 17.85 |
9 | −1 | 0 | 0 | −1 | 14.31 |
10 | 1 | 0 | 0 | −1 | 14.92 |
11 | −1 | 0 | 0 | 1 | 15.68 |
12 | 1 | 0 | 0 | 1 | 16.15 |
13 | 0 | −1 | −1 | 0 | 19.74 |
14 | 0 | 1 | −1 | 0 | 19.87 |
15 | 0 | −1 | 1 | 0 | 18.63 |
16 | 0 | 1 | 1 | 0 | 18.98 |
17 | −1 | 0 | −1 | 0 | 16.14 |
18 | 1 | 0 | −1 | 0 | 16.77 |
19 | −1 | 0 | 1 | 0 | 14.81 |
20 | 1 | 0 | 1 | 0 | 15.21 |
21 | 0 | −1 | 0 | −1 | 18.26 |
22 | 0 | 1 | 0 | −1 | 18.22 |
23 | 0 | −1 | 0 | 1 | 19.05 |
24 | 0 | 1 | 0 | 1 | 19.13 |
25 | 0 | 0 | 0 | 0 | 20.64 |
26 | 0 | 0 | 0 | 0 | 20.82 |
27 | 0 | 0 | 0 | 0 | 20.54 |
28 | 0 | 0 | 0 | 0 | 20.19 |
29 | 0 | 0 | 0 | 0 | 20.81 |
Source | Sum of Squares | Df | Mean Square | F -Value | p-Value | Significance |
---|---|---|---|---|---|---|
Model | 110.48 | 14 | 7.89 | 121.05 | <0.0001 | ** |
X1 | 0.49 | 1 | 0.49 | 7.49 | 0.0161 | * |
X2 | 8.33 × 10−6 | 1 | 8.33 × 10−6 | 1.2 8 × 10−4 | 0.9911 | |
X3 | 5.88 | 1 | 5.88 | 90.19 | <0.0001 | ** |
X4 | 3.64 | 1 | 3.64 | 55.85 | <0.0001 | ** |
X1X2 | 0.50 | 1 | 0.50 | 7.62 | 0.0153 | * |
X1X3 | 0.013 | 1 | 0.013 | 0.20 | 0.6593 | |
X1X4 | 4.90 × 10−3 | 1 | 4.90 × 10−3 | 0.075 | 0.7880 | |
X2X3 | 0.012 | 1 | 0.012 | 0.19 | 0.6732 | |
X2X4 | 3.60 × 10−3 | 1 | 3.60 × 10−3 | 0.055 | 0.8176 | |
X3X4 | 0.47 | 1 | 0.47 | 7.20 | 0.0178 | * |
X12 | 89.74 | 1 | 89.74 | 1376.56 | <0.0001 | ** |
X22 | 0.35 | 1 | 0.35 | 5.42 | 0.0355 | * |
X32 | 8.02 | 1 | 8.02 | 123.05 | <0.0001 | ** |
X42 | 18.00 | 1 | 18.00 | 276.10 | <0.0001 | ** |
Residual | 0.91 | 14 | 0.065 | |||
Lack of Fit | 0.65 | 10 | 0.065 | 0.97 | 0.5607 | not significant |
Pure Error | 0.27 | 4 | 0.066 | |||
Cor Total | 111.39 | 28 | ||||
R2 = 0.9918 | R2Adj = 0.9836 | Adeq Precision = 33.616 | C.V. % = 1.43 |
Characteristics | Values |
---|---|
Chemical Composition (%) | |
Total Carbohydrate Content | 52.46 ± 0.13 |
Protein Content | 8.33 ± 0.44 |
Uronic Acid Content | 34.90 ± 0.31 |
Monosaccharide Composition (%) | |
Fucose | 0.50 ± 0.01 |
Arabinose | 36.03 ± 0.36 |
Rhamnose | 7.16 ± 0.47 |
Galactose | 5.43 ± 0.16 |
Glucose | 19.00 ± 0.24 |
Xylose | 2.79 ± 0.02 |
Mannose | 1.25 ± 0.02 |
Galacturonic Acid | 27.40 ± 1.01 |
Glucuronic Acid | 0.44 ± 0.05 |
Mw(kDa) | |
Mw | 95.52 |
Mn | 37.13 |
Mp | 55.63 |
Mz | 645.82 |
Mw/Mn | 2.57 |
Sample | WHC (g/g) | OHC (g/g) | SC (mL/g) |
---|---|---|---|
AP-SDF | 1.31 ± 0.16 | 15.11 ± 0.60 | 4.68 ± 0.47 |
Factors | Levels | ||
---|---|---|---|
−1 | 0 | 1 | |
X1 Enzyme Addition (U/g) | 450 | 600 | 750 |
X2 Enzymolysis Time (min) | 80 | 100 | 120 |
X3 Solid–Liquid Ratio (g/mL) | 1:20 | 1:25 | 1:30 |
X4 Enzymolysis Temperature (°C) | 45 | 50 | 55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Sun, G.; Wang, D.; Chen, J.; Lv, J.; Jiang, S.; Zhang, G.; Yu, S.; Zheng, H. Optimization of Composite Enzymatic Extraction, Structural Characterization and Biological Activity of Soluble Dietary Fiber from Akebia trifoliata Peel. Molecules 2024, 29, 2085. https://doi.org/10.3390/molecules29092085
Song Y, Sun G, Wang D, Chen J, Lv J, Jiang S, Zhang G, Yu S, Zheng H. Optimization of Composite Enzymatic Extraction, Structural Characterization and Biological Activity of Soluble Dietary Fiber from Akebia trifoliata Peel. Molecules. 2024; 29(9):2085. https://doi.org/10.3390/molecules29092085
Chicago/Turabian StyleSong, Ya, Guoshun Sun, Dian Wang, Jin Chen, Jun Lv, Sixia Jiang, Guoqiang Zhang, Shirui Yu, and Huayan Zheng. 2024. "Optimization of Composite Enzymatic Extraction, Structural Characterization and Biological Activity of Soluble Dietary Fiber from Akebia trifoliata Peel" Molecules 29, no. 9: 2085. https://doi.org/10.3390/molecules29092085
APA StyleSong, Y., Sun, G., Wang, D., Chen, J., Lv, J., Jiang, S., Zhang, G., Yu, S., & Zheng, H. (2024). Optimization of Composite Enzymatic Extraction, Structural Characterization and Biological Activity of Soluble Dietary Fiber from Akebia trifoliata Peel. Molecules, 29(9), 2085. https://doi.org/10.3390/molecules29092085