Synthesis of Composite Sorbents with Chitosan and Varied Silica Phases for the Adsorption of Anionic Dyes
Abstract
:1. Introduction
2. Results and Discussions
2.1. Material Characterization
2.2. Adsorption Properties of Composites
2.2.1. Adsorption Equilibrium
2.2.2. Adsorption Kinetics
3. Materials and Methods
3.1. Materials
3.2. Synthesis of Composites
3.2.1. Synthesis of SBA-15 Type Silica
3.2.2. Synthesis of MCM-41 Type Silica
3.2.3. Synthesis of Composites Based on Chitosan and Silica
3.3. Adsorbate Characteristics
3.4. Characterization Techniques and Calculations
3.4.1. X-ray Powder Diffraction (XRPD) and Small Angle X-ray Scattering (SAXS) Analysis
3.4.2. Imaging the Morphology
3.4.3. Nitrogen Adsorption/Desorption Measurement
3.4.4. Potentiometric Titration
3.4.5. Elemental Analysis
3.4.6. Adsorption Equilibrium and Kinetics
4. Conclusions
- In this work, chitosan–silica composites were obtained by solution impregnation. Silica in the form of SBA-15, MCM-41, amorphous diatomaceous earth, and crystalline diatomaceous earth were used as the main components, which served as a matrix for the covering biopolymer and enhanced the mechanical and thermal stability of the final products. Due to the polycationic nature of chitosan, the task of this component was to improve the adsorption effectiveness towards anionic dye.
- The main factor determining the effectiveness of the adsorption of acid red 88 is the amount of biopolymer component in the composite, which provides adsorption-active centers in the form of amine and amide groups. The values of the adsorption capacity, am, are as follows: 0.78 mmol/g; 0.71 mmol/g; 0.69 mmol/g for ChSBA, ChAD, and ChMCM composites (a nitrogen content between 1 and 1.3%); and 0.46 mmol/g for the ChCD composite (a nitrogen content 0.6%).
- The influence of other characteristics of the composites on the adsorption efficiency was also determined, i.e., porosity (a pronounced porosity of the material with a pore diameter that ensures free penetration by the adsorbate), the presence of inter-particle structures (interparticle spaces or voids can be filled by dye molecules), particle size and geometry (where a greater geometric heterogeneity of the material forms a looser structure by providing voids), and surface morphology—the nature of the silica covered with chitosan biofilm (a thin biofilm layer gives a larger contact area between adsorbate and adsorbent).
- The differences in the adsorption capacity of the ChSBA composite towards the dyes, acid red 88 (am = 0.78 mmol/g), acid orange (am = 0.57 mmol/g), and orange G (am = 0.27 mmol/g), were related to the physicochemical properties of the adsorbate, i.e., molecular form under experimental conditions, hydration capabilities, and the molecular volume with hydration shell.
- Kinetic studies showed that the adsorption of AR88 on the ChSBA, ChMCM, and ChAD composites was rapid, with values of the half-life parameter t0.5 of 0.35, 1.53, and 2.84 min, respectively. When using the ChCD composite, the process was slightly slower (t0.5 = 11 min). While the 100% efficiency of the AR88 adsorption process on the ChSBA composite was reached within approximately 6 min, the time required to reach half of the initial concentration was much longer in the case of AO8 and OG (25 and 146 min, respectively, and the efficiency at equilibrium was 80% and 62%, respectively).
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Islam, T.; Repon, M.R.; Sarwar, Z.; Rahman, M.M. Impact of textile dyes on health and ecosystem: A review of structure, causes, and potential solutions. Environ. Sci. Pollut. Res. 2023, 30, 9207–9242. [Google Scholar] [CrossRef] [PubMed]
- Lewis, D.M. Dyeing for a living—Current and future-status of the dye-making and dye-using industries. J. Soc. Dye. Colour. 1989, 105, 119–128. [Google Scholar] [CrossRef]
- Uddin, F. Environmental hazard in textile dyeing wastewater from local textile industry. Cellulose 2021, 28, 10715–10739. [Google Scholar] [CrossRef]
- Bae, J.S.; Freeman, H.S.; Kim, S.D. Influences of new azo dyes to the aquatic ecosystem. Fibers Polym. 2006, 7, 30–35. [Google Scholar] [CrossRef]
- Benbow, M.E.; Receveur, J.P.; Lamberti, G.A. Death and decomposition in aquatic ecosystems. Front. Ecol. Evol. 2020, 8. [Google Scholar] [CrossRef]
- Ceschin, S.; Abati, S.; Traversetti, L.; Spani, F.; Del Grosso, F.; Scalici, M. Effects of the invasive duckweed Lemna minuta on aquatic animals: Evidence from an indoor experiment. Plant Biosyst. 2019, 153, 749–755. [Google Scholar] [CrossRef]
- Chakravarty, P.; Bauddh, K.; Kumar, M. Remediation of dyes from aquatic ecosystems by biosorption method using algae. Algae Environ. Sustain. 2015, 7, 97–106. [Google Scholar] [CrossRef] [PubMed]
- de Sousa, M.L.; Bidoia, E.D. Impact of the textile dye acid blue 40 on the periphyton of a simulated microecosystem. Water Air Soil Pollut. 2014, 225, 2025. [Google Scholar] [CrossRef]
- Hernández-Zamora, M.; Martínez-Jerónimo, F.; Cristiani-Urbina, E.; Cañizares-Villanueva, R.O. Congo red dye affects survival and reproduction in the cladoceran Ceriodaphnia dubia. Effects of direct and dietary exposure. Ecotoxicology 2016, 25, 1832–1840. [Google Scholar] [CrossRef]
- Tkaczyk, A.; Mitrowska, K.; Posyniak, A. Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: A review. Sci. Total Environ. 2020, 717, 137222. [Google Scholar] [CrossRef]
- Belpaire, C.; Reyns, T.; Geeraerts, C.; Van Loco, J. Toxic textile dyes accumulate in wild European eel Anguilla anguilla. Chemosphere 2015, 138, 784–791. [Google Scholar] [CrossRef] [PubMed]
- Hossain, L.; Sarker, S.K.; Khan, M.S. Evaluation of present and future wastewater impacts of textile dyeing industries in Bangladesh. Environ. Dev. 2018, 26, 23–33. [Google Scholar] [CrossRef]
- Moorthy, A.K.; Rathi, B.G.; Shukla, S.P.; Kumar, K.; Bharti, V.S. Acute toxicity of textile dye methylene blue on growth and metabolism of selected freshwater microalgae. Environ. Toxicol. Pharmacol. 2021, 82, 103552. [Google Scholar] [CrossRef]
- Crini, G.; Lichtfouse, E. Advantages and disadvantages of techniques used for wastewater treatment. Environ. Chem. Lett. 2019, 17, 145–155. [Google Scholar] [CrossRef]
- Katheresan, V.; Kansedo, J.; Lau, S.Y. Efficiency of various recent wastewater dye removal methods: A review. J. Environ. Chem. Eng. 2018, 6, 4676–4697. [Google Scholar] [CrossRef]
- Robinson, T.; McMullan, G.; Marchant, R.; Nigam, P. Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative. Bioresour. Technol. 2001, 77, 247–255. [Google Scholar] [CrossRef]
- Dotto, J.; Fagundes-Klen, M.R.; Veit, M.T.; Palácio, S.M.; Bergamasco, R. Performance of different coagulants in the coagulation/flocculation process of textile wastewater. J. Clean. Prod. 2019, 208, 656–665. [Google Scholar] [CrossRef]
- Kim, T.H.; Park, C.; Yang, J.M.; Kim, S. Comparison of disperse and reactive dye removals by chemical coagulation and Fenton oxidation. J. Hazard. Mater. 2004, 112, 95–103. [Google Scholar] [CrossRef]
- Liang, C.Z.; Sun, S.P.; Li, F.Y.; Ong, Y.K.; Chung, T.S. Treatment of highly concentrated wastewater containing multiple synthetic dyes by a combined process of coagulation/flocculation and nanofiltration. J. Membr. Sci. 2014, 469, 306–315. [Google Scholar] [CrossRef]
- Mezohegyi, G.; van der Zee, F.P.; Font, J.; Fortuny, A.; Fabregat, A. Towards advanced aqueous dye removal processes: A short review on the versatile role of activated carbon. J. Environ. Manag. 2012, 102, 148–164. [Google Scholar] [CrossRef]
- Renault, F.; Sancey, B.; Badot, P.M.; Crini, G. Chitosan for coagulation/flocculation processes—An eco-friendly approach. Eur. Polym. J. 2009, 45, 1337–1348. [Google Scholar] [CrossRef]
- Riera-Torres, M.; Gutiérrez-Bouzán, C.; Crespi, M. Combination of coagulation-flocculation and nanofiltration techniques for dye removal and water reuse in textile effluents. Desalination 2010, 252, 53–59. [Google Scholar] [CrossRef]
- Selcuk, H. Decolorization and detoxification of textile wastewater by ozonation and coagulation processes. Dye. Pigment. 2005, 64, 217–222. [Google Scholar] [CrossRef]
- Kiso, Y.; Sugiura, Y.; Kitao, T.; Nishimura, K. Effects of hydrophobicity and molecular size on rejection of aromatic pesticides with nanofiltration membranes. J. Membr. Sci. 2001, 192, 1–10. [Google Scholar] [CrossRef]
- Li, J.; Gong, J.L.; Zeng, G.M.; Zhang, P.; Song, B.A.; Cao, W.C.; Liu, H.Y.; Huan, S.Y. Zirconium-based metal organic frameworks loaded on polyurethane foam membrane for simultaneous removal of dyes with different charges. J. Colloid Interface Sci. 2018, 527, 267–279. [Google Scholar] [CrossRef]
- Rashidi, H.R.; Sulaiman, N.M.N.; Hashim, N.A.; Hassan, C.R.C.; Ramli, M.R. Synthetic reactive dye wastewater treatment by using nano-membrane filtration. Desalination Water Treat. 2015, 55, 86–95. [Google Scholar] [CrossRef]
- Wu, J.N.; Eiteman, M.A.; Law, S.E. Evaluation of membrane filtration and ozonation processes for treatment of reactive-dye wastewater. J. Environ. Eng. 1998, 124, 272–277. [Google Scholar] [CrossRef]
- Xu, C.; Cui, A.J.; Xu, Y.L.; Fu, X.Z. Graphene oxide-TiO2 composite filtration membranes and their potential application for water purification. Carbon 2013, 62, 465–471. [Google Scholar] [CrossRef]
- Zheng, Y.P.; Yao, G.H.; Cheng, Q.B.; Yu, S.C.; Liu, M.H.; Gao, C.J. Positively charged thin-film composite hollow fiber nanofiltration membrane for the removal of cationic dyes through submerged filtration. Desalination 2013, 328, 42–50. [Google Scholar] [CrossRef]
- Aksu, Z. Application of biosorption for the removal of organic pollutants: A review. Process Biochem. 2005, 40, 997–1026. [Google Scholar] [CrossRef]
- Banat, I.M.; Nigam, P.; Singh, D.; Marchant, R. Microbial decolorization of textile-dye-containing effluents: A review. Bioresour. Technol. 1996, 58, 217–227. [Google Scholar] [CrossRef]
- Daneshvar, N.; Ayazloo, M.; Khataee, A.R.; Pourhassan, M. Biological decolorization of dye solution containing malachite green by microalgae Cosmarium sp. Bioresour. Technol. 2007, 98, 1176–1182. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, P.; Malik, A. Fungal dye decolourization: Recent advances and future potential. Environ. Int. 2009, 35, 127–141. [Google Scholar] [CrossRef] [PubMed]
- Khan, R.; Bhawana, P.; Fulekar, M.H. Microbial decolorization and degradation of synthetic dyes: A review. Rev. Environ. Sci. Bio-Technol. 2013, 12, 75–97. [Google Scholar] [CrossRef]
- Nicola, R.; Muntean, S.-G.; Nistor, M.-A.; Putz, A.-M.; Almásy, L.; Săcărescu, L. Highly efficient and fast removal of colored pollutants from single and binary systems, using magnetic mesoporous silica. Chemosphere 2020, 261, 127737. [Google Scholar] [CrossRef] [PubMed]
- Nicola, R.; Costişor, O.; Muntean, S.-G.; Nistor, M.-A.; Putz, A.-M.; Ianăşi, C.; Lazău, R.; Almásy, L.; Săcărescu, L. Mesoporous magnetic nanocomposites: A promising adsorbent for the removal of dyes from aqueous solutions. J. Porous Mater. 2020, 27, 413–428. [Google Scholar] [CrossRef]
- De Gisi, S.; Lofrano, G.; Grassi, M.; Notarnicola, M. Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review. Sustain. Mater. Technol. 2016, 9, 10–40. [Google Scholar] [CrossRef]
- Rafatullah, M.; Sulaiman, O.; Hashim, R.; Ahmad, A. Adsorption of methylene blue on low-cost adsorbents: A review. J. Hazard. Mater. 2010, 177, 70–80. [Google Scholar] [CrossRef] [PubMed]
- Salleh, M.A.M.; Mahmoud, D.K.; Karim, W.; Idris, A. Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review. Desalination 2011, 280, 1–13. [Google Scholar] [CrossRef]
- Zhou, Y.B.; Lu, J.; Zhou, Y.; Liu, Y.D. Recent advances for dyes removal using novel adsorbents: A review. Environ. Pollut. 2019, 252, 352–365. [Google Scholar] [CrossRef]
- Asadollahfardi, G.; Hessami, A.; Gholizade, A.; Rezaei, R. Removal of reactive blue 19 dye from synthetic waste water using UV/H2O2 and UV/Cl advanced oxidation processes. Remediat.-J. Environ. Cleanup Costs Technol. Tech. 2023, 33, 167–176. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Xu, Y.D.; Cai, X.J.; Wu, J.T. Adsorption and visible photocatalytic synergistic removal of a cationic dye with the composite material BiVO4/MgAl-LDHs. Materials 2023, 16, 6879. [Google Scholar] [CrossRef]
- de Lima, R.S.; Tonholo, J.; Rangabhashiyam, S.; Fernandes, D.P.; Georgin, J.; Zanta, C.; Meili, L. Enhancing methylene blue dye removal using pyrolyzed Mytella falcata shells: Characterization, kinetics, isotherm, and regeneration through photolysis and peroxidation. Environ. Manag. 2024, 73, 425–442. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.Z.; Xu, C.X.; Yang, L.; Wang, L.L.; Guo, L. Degradation of orange IV by UV photolysis in nitrite-containing wastewater: Influencing factors, mechanism, and response surface methodology. Process Saf. Environ. Prot. 2023, 169, 592–603. [Google Scholar] [CrossRef]
- Zhu, Y.P.; Cao, Y.X.; Shu, S.H.; Zhu, P.J.; Wang, D.F.; Xu, H.; Cai, D.Q. Comparison of medium-pressure UV/peracetic acid to remove three typical refractory contaminants of textile wastewater. Processes 2023, 11, 1183. [Google Scholar] [CrossRef]
- Aman, F.E.; Pradhan, S.K. Simultaneous wastewater treatment and H2 evolution using Mg-Cu galvanic coupling. Mater. Lett. 2024, 357, 135760. [Google Scholar] [CrossRef]
- da Silva, L.T.V.; Romero, F.B.; Amazonas, A.A.; Ribeiro, J.P.; Neto, E.F.A.; de Oliveira, A.G.; do Nascimento, R.F. Polishing of treated textile effluent using combined electrochemical oxidation and ozonation technique. Desalination Water Treat. 2023, 310, 50–58. [Google Scholar] [CrossRef]
- Dhandapani, P.; Srinivasan, V.; Parthipan, P.; Alsalhi, M.S.; Devanesan, S.; Narenkumar, J.; Rajamohan, R.; Ezhilselvi, V.; Rajasekar, A. Development of an environmentally sustainable technique to minimize the sludge production in the textile effluent sector through an electrokinetic (EK) coupled with electrooxidation (EO) approach. Environ. Geochem. Health 2024, 46, 38367190. [Google Scholar] [CrossRef] [PubMed]
- Tao, N.C.; Le Luu, T. Different behaviours of biologically textile wastewater treatment using persulfate catalyzed electrochemical oxidation process on Ti/BDD and Ti/SnO2-Nb2O5 anodes. Environ. Eng. Res. 2023, 28, 220555. [Google Scholar] [CrossRef]
- Baig, U.; Uddin, M.K.; Gondal, M.A. Removal of hazardous azo dye from water using synthetic nano adsorbent: Facile synthesis, characterization, adsorption, regeneration and design of experiments. Colloids Surf. A-Physicochem. Eng. Asp. 2020, 584, 124031. [Google Scholar] [CrossRef]
- Sadegh, H.; Ali, G.A.M.; Gupta, V.K.; Makhlouf, A.S.H.; Shahryari-Ghoshekandi, R.; Nadagouda, M.N.; Sillanpää, M.; Megiel, E. The role of nanomaterials as effective adsorbents and their applications in wastewater treatment. J. Nanostruct. Chem. 2017, 7, 1–14. [Google Scholar] [CrossRef]
- Yu, Z.C.; Hu, C.S.; Dichiara, A.B.; Jiang, W.H.; Gu, J. Cellulose nanofibril/carbon nanomaterial hybrid aerogels for adsorption removal of cationic and anionic organic dyes. Nanomaterials 2020, 10, 169. [Google Scholar] [CrossRef]
- Zhang, Y.R.; Shen, S.L.; Wang, S.Q.; Huang, J.; Su, P.; Wang, Q.R.; Zhao, B.X. A dual function magnetic nanomaterial modified with lysine for removal of organic dyes from water solution. Chem. Eng. J. 2014, 239, 250–256. [Google Scholar] [CrossRef]
- Cai, Z.Q.; Sun, Y.M.; Liu, W.; Pan, F.; Sun, P.Z.; Fu, J. An overview of nanomaterials applied for removing dyes from wastewater. Environ. Sci. Pollut. Res. 2017, 24, 15882–15904. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, A.; Ovejero, G.; Sotelo, J.L.; Mestanza, M.; García, J. Adsorption of dyes on carbon nanomaterials from aqueous solutions. J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng. 2010, 45, 1642–1653. [Google Scholar] [CrossRef]
- Sienkiewicz, A.; Rokicka-Konieczna, P.; Wanag, A.; Kusiak-Nejman, E.; Morawski, A.W. Optimization of APTES/TiO2 nanomaterials modification conditions for antibacterial properties and photocatalytic activity. Desalination Water Treat. 2022, 256, 35–50. [Google Scholar] [CrossRef]
- Sun, S.N.; Yu, Q.F.; Li, M.; Zhao, H.; Wang, Y.F.; Zhang, Y. Surface Modification of Porous Carbon Nanomaterials for Water Vapor Adsorption. ACS Appl. Nano Mater. 2023, 6, 2822–2834. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, Y.L.; Hu, X.T.; Liu, J.Q. Adsorption of CO2 by amine-modified novel nanomaterials. Phys. Chem. Earth 2022, 126, 103154. [Google Scholar] [CrossRef]
- Wei, J.; Zhou, D.D.; Sun, Z.K.; Deng, Y.H.; Xia, Y.Y.; Zhao, D.Y. A Controllable Synthesis of Rich Nitrogen-Doped Ordered Mesoporous Carbon for CO2 Capture and Supercapacitors. Adv. Funct. Mater. 2013, 23, 2322–2328. [Google Scholar] [CrossRef]
- Bandara, S.; Du, H.B.; Carson, L.; Bradford, D.; Kommalapati, R. Agricultural and Biomedical Applications of Chitosan-Based Nanomaterials. Nanomaterials 2020, 10, 1903. [Google Scholar] [CrossRef]
- Dutta, P.K.; Srivastava, R.; Dutta, J. Functionalized Nanoparticles and Chitosan-Based Functional Nanomaterials. In Multifaceted Development and Application of Biopolymers for Biology, Biomedicine and Nanotechnology; Dutta, P.K., Dutta, J., Eds.; Advances in Polymer Science; Springer: Berlin/Heidelberg, Germany, 2013; Volume 254, pp. 1–50. [Google Scholar]
- Li, J.H.; Cai, C.; Li, J.R.; Li, J.; Sun, T.T.; Wang, L.H.; Wu, H.T.; Yu, G.L. Chitosan-Based Nanomaterials for Drug Delivery. Molecules 2018, 23, 2661. [Google Scholar] [CrossRef] [PubMed]
- Piotrowska-Kirschling, A.; Brzeska, J. Review of chitosan nanomaterials for metal cation adsorption. Prog. Chem. Appl. Chitin Its Deriv. 2020, 25, 51–62. [Google Scholar] [CrossRef]
- Coenen, A.; Church, T.L.; Harris, A.T. Biological versus Synthetic Polymers as Templates for Calcium Oxide for CO2. Energy Fuels 2012, 26, 162–168. [Google Scholar] [CrossRef]
- Erk, K.A.; Henderson, K.J.; Shull, K.R. Strain Stiffening in Synthetic and Biopolymer Networks. Biomacromolecules 2010, 11, 1358–1363. [Google Scholar] [CrossRef]
- Gobi, R.; Ravichandiran, P.; Babu, R.S.; Yoo, D.J. Biopolymer and Synthetic Polymer-Based Nanocomposites in Wound Dressing Applications: A Review. Polymers 2021, 13, 1962. [Google Scholar] [CrossRef]
- Guo, D.M.; An, Q.D.; Xiao, Z.Y.; Zhai, S.R.; Yang, D.J. Efficient removal of Pb(II), Cr(VI) and organic dyes by polydopamine modified chitosan aerogels. Carbohydr. Polym. 2018, 202, 306–314. [Google Scholar] [CrossRef]
- Lei, Z.H.; Gao, W.H.; Zeng, J.S.; Wang, B.; Xu, J. The mechanism of Cu (II) adsorption onto 2,3-dialdehyde nano-fibrillated celluloses. Carbohydr. Polym. 2020, 230, 115631. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; An, Q.D.; Xiao, Z.Y.; Zhai, B.; Zhai, S.R.; Shi, Z. Preparation of PEI/CS aerogel beads with a high density of reactive sites for efficient Cr(VI) sorption: Batch and column studies. RSC Adv. 2017, 7, 40227–40236. [Google Scholar] [CrossRef]
- Zhang, W.B.; Deng, H.H.; Xia, L.J.; Shen, L.; Zhang, C.Q.; Lu, Q.M.; Sun, S.L. Semi-interpenetrating polymer networks prepared from castor oil-based waterborne polyurethanes and carboxymethyl chitosan. Carbohydr. Polym. 2021, 256, 117507. [Google Scholar] [CrossRef]
- Cortez, P.P.; Shirosaki, Y.; Botelho, C.M.; Simoes, M.J.; Gartner, F.; da Costa, R.M.G.; Tsuru, K.; Hayakawa, S.; Osaka, A.; Lopes, M.A.; et al. Hybrid chitosan membranes tested in sheep for guided tissue regeneration. In Proceedings of the 20th International Symposium on Ceramics in Medicine, Nantes, France, 24–26 October 2007; pp. 1265–1268. [Google Scholar]
- Nagahama, H.; Maeda, H.; Kashiki, T.; Jayakumar, R.; Furuike, T.; Tamura, H. Preparation and characterization of novel chitosan/gelatin membranes using chitosan hydrogel. Carbohydr. Polym. 2009, 76, 255–260. [Google Scholar] [CrossRef]
- Jabur, A.R. Antibacterial activity and heavy metal removal efficiency of electrospun medium molecular weight chitosan/nylon-6 nanofibre membranes. Biomed. Mater. 2018, 13, 015010. [Google Scholar] [CrossRef]
- Palekar-Shanbhag, P.; Dalal, A.; Navale, T.; Mishra, U. Electrospun Chitosan Nanofibres and its Application. Curr. Drug Ther. 2022, 17, 318–326. [Google Scholar] [CrossRef]
- Wang, X.H.; Yan, Y.N.; Zhang, R.J. A comparison of chitosan and collagen sponges as hemostatic dressings. J. Bioact. Compat. Polym. 2006, 21, 39–54. [Google Scholar] [CrossRef]
- Galzerano, B.; Cabello, C.I.; Muñoz, M.; Buonocore, G.G.; Aprea, P.; Liguori, B.; Verdolotti, L. Fabrication of Green Diatomite/Chitosan-Based Hybrid Foams with Dye Sorption Capacity. Materials 2020, 13, 3760. [Google Scholar] [CrossRef]
- Ma, L.L.; Xu, H.; Xie, Q.L.; Chen, N.C.; Yu, Q.F.; Li, C. Mechanism of As(V) adsorption from aqueous solution by chitosan-modified diatomite adsorbent. J. Dispers. Sci. Technol. 2022, 43, 1512–1524. [Google Scholar] [CrossRef]
- Zhang, G.S.; Xue, H.H.; Tang, X.J.; Peng, F.; Kang, C.L. Adsorption of Anionic Dyes onto Chitosan-modified Diatomite. Chem. Res. Chin. Univ. 2011, 27, 1035–1040. [Google Scholar]
- Aubry, T.; Largenton, B.; Moan, M. Rheological study of fumed silica suspensions in chitosan solutions. Langmuir 1999, 15, 2380–2383. [Google Scholar] [CrossRef]
- Kang, H.Y.; Chen, H.H. Preparation of Thermally Stable Microcapsules with a Chitosan-Silica Hybrid. J. Food Sci. 2014, 79, E1713–E1721. [Google Scholar] [CrossRef]
- Lai, S.M.; Yang, A.J.M.; Chen, W.C.; Hsiao, J.F. The properties and preparation of chitosan/silica hybrids using sol-gel process. Polym. -Plast. Technol. Eng. 2006, 45, 997–1003. [Google Scholar] [CrossRef]
- Chen, G.S.; Haase, H.; Mahltig, B. Chitosan-modified silica sol applications for the treatment of textile fabrics: A view on hydrophilic, antistatic and antimicrobial properties. J. Sol-Gel Sci. Technol. 2019, 91, 461–470. [Google Scholar] [CrossRef]
- Godigamuwa, K.; Nakashima, K.; Tsujitani, S.; Naota, R.; Maulidin, I.; Kawasaki, S. Interfacial biosilica coating of chitosan gel using fusion silicatein to fabricate robust hybrid material for biomolecular applications. J. Mater. Chem. B 2023, 11, 1654–1658. [Google Scholar] [CrossRef]
- Gulfam, M.; Chung, B.G. Development of pH-Responsive Chitosan-Coated Mesoporous Silica Nanoparticles. Macromol. Res. 2014, 22, 412–417. [Google Scholar] [CrossRef]
- Podust, T.V.; Kulik, T.V.; Palyanytsya, B.B.; Gun’ko, V.M.; Tóth, A.; Mikhalovska, L.; Menyhárd, A.; László, K. Chitosan-nanosilica hybrid materials: Preparation and properties. Appl. Surf. Sci. 2014, 320, 563–569. [Google Scholar] [CrossRef]
- Cai, L.F.; Chen, L.Y.; Wang, C.L.; Liang, Y.R.; Fu, R.W.; Wu, D.C. Liquid-phase methylene blue adsorption of a novel hierarchical porous carbon aerogel. New Carbon Mater. 2015, 30, 560–565. [Google Scholar] [CrossRef]
- Xie, D.H.; Jiang, Y.L.; Xu, R.J.; Zhang, Z.B.; Chen, G.H. Preparation of ethanol-gels as hand sanitizers formed from chitosan and silica nanoparticles. J. Mol. Liq. 2023, 384, 122276. [Google Scholar] [CrossRef]
- Olla, C.; Carbonaro, C.M. The void side of silica: Surveying optical properties and applications of mesoporous silica. J. Phys.-Condens. Matter 2024, 36, 253002. [Google Scholar] [CrossRef]
- Ren, T.Z.; Yuan, Z.Y.; Su, B.L. Encapsulation of direct blue dye into mesoporous silica-based materials. Colloids Surf. A-Physicochem. Eng. Asp. 2007, 300, 79–87. [Google Scholar] [CrossRef]
- Zhang, M.; Wu, Y.P.; Feng, X.Z.; He, X.W.; Chen, L.X.; Zhang, Y.K. Fabrication of mesoporous silica-coated CNTs and application in size-selective protein separation. J. Mater. Chem. 2010, 20, 5835–5842. [Google Scholar] [CrossRef]
- Alcantara, T.D.P.; Oliveira, J.M.; Evangelista-Barreto, N.S.; Marbac, P.A.S.; Cazetta, M.L. Aerobic Decolorization of Azo Dye Orange g by a New Yeast Isolate Candida cylindracea SJL6. Biosci. J. 2017, 33, 1340–1350. [Google Scholar] [CrossRef]
- Hezarkhani, M.; Ghadari, R. Exploration of the Binding Properties of the Azo Dye Pollutants with Nitrogen-Doped Graphene Oxide by Computational Modeling for Wastewater Treatment Improvement. Chemistryselect 2019, 4, 5968–5978. [Google Scholar] [CrossRef]
- Muthukumar, M.; Sargunamani, D.; Senthilkumar, M.; Selvakumar, N. Studies on decolouration, toxicity and the possibility for recycling of acid dye effluents using ozone treatment. Dye. Pigment. 2005, 64, 39–44. [Google Scholar] [CrossRef]
- Benkhaya, S.; M’Rabet, S.; El Harfi, A. Classifications, properties, recent synthesis and applications of azo dyes. Heliyon 2020, 6, e03271. [Google Scholar] [CrossRef]
- Chung, K.T. Azo dyes and human health: A review. J. Environ. Sci. Health Part C-Environ. Carcinog. Ecotoxicol. Rev. 2016, 34, 233–261. [Google Scholar] [CrossRef]
- Li, K.M.; Jiang, J.G.; Tian, S.C.; Chen, X.J.; Yan, F. Influence of Silica Types on Synthesis and Performance of Amine-Silica Hybrid Materials Used for CO2 Capture. J. Phys. Chem. C 2014, 118, 2454–2462. [Google Scholar] [CrossRef]
- Trejda, M.; Wojtaszek, A.; Ziolek, M.; Kujawa, J. Various hexagonally ordered mesoporous silicas as supports for chromium species-The effect of support on surface properties. Appl. Catal. A-Gen. 2009, 365, 135–140. [Google Scholar] [CrossRef]
- Dhas, N.A.; Zaban, A.; Gedanken, A. Surface synthesis of zinc sulfide nanoparticles on silica microspheres: Sonochemical preparation, characterization, and optical properties. Chem. Mater. 1999, 11, 806–813. [Google Scholar] [CrossRef]
- Liu, H.C.; Wang, H.; Shen, J.G.; Sun, Y.; Liu, Z.M. Preparation, characterization and activities of the nano-sized Ni/SBA-15 catalyst for producing COx-free hydrogen from ammonia. Appl. Catal. A-Gen. 2008, 337, 138–147. [Google Scholar] [CrossRef]
- Zhao, D.Y.; Huo, Q.S.; Feng, J.L.; Chmelka, B.F.; Stucky, G.D. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc. 1998, 120, 6024–6036. [Google Scholar] [CrossRef]
- Marczyk, J.; Setlak, K.; Hebdowska-Krupa, M.; Nykiel, M.; Łach, M. Research on diatomite from Polish deposits and the possibilities of its use. J. Achiev. Mater. Manuf. Eng. 2022, 115, 5–15. [Google Scholar] [CrossRef]
- Milonjić, S.K.; Čerović, L.S.; Čokeša, D.M.; Zec, S. The influence of cationic impurities in silica on its crystallization and point of zero charge. J. Colloid Interface Sci. 2007, 309, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Blachnio, M.; Zienkiewicz-Strzalka, M.; Derylo-Marczewska, A.; Nosach, L.V.; Voronin, E.F. Chitosan– silica composites for adsorption application in the treatment of water and wastewater from anionic dyes. Int. J. Mol. Sci. 2023, 24, 11818. [Google Scholar] [CrossRef] [PubMed]
- Jung, K.-W.; Jang, D.; Ahn, K.-H. A novel approach for improvement of purity and porosity in diatomite (diatomaceous earth) by applying an electric field. Int. J. Miner. Process. 2014, 131, 7–11. [Google Scholar] [CrossRef]
- Konicki, W.; Sibera, D.; Mijowska, E.; Lendzion-Bieluń, Z.; Narkiewicz, U. Equilibrium and kinetic studies on acid dye Acid Red 88 adsorption by magnetic ZnFe2O4 spinel ferrite nanoparticles. J. Colloid Interface Sci. 2013, 398, 152–160. [Google Scholar] [CrossRef]
- Konicki, W.; Pełech, I.; Mijowska, E.; Jasińska, I. Adsorption Kinetics of Acid Dye Acid Red 88 onto Magnetic Multi-Walled Carbon Nanotubes-Fe3C Nanocomposite. CLEAN–Soil Air Water 2014, 42, 284–294. [Google Scholar] [CrossRef]
- Konicki, W.; Sibera, D.; Narkiewicz, U. Adsorption of Acid Red 88 Anionic Dye from Aqueous Solution onto ZnO/ZnMn2O Nanocomposite: Equilibrium, Kinetics, and Thermodynamics. Pol. J. Environ. Stud. 2017, 26, 2585–2593. [Google Scholar] [CrossRef] [PubMed]
- Khatibi, A.; Yılmaz, M.; Mahvi, A.; Balarak, D.; Salehi, S. Evaluation of surfactant-modified bentonite for Acid Red 88 dye adsorption in batch mode: Kinetic, equilibrium, and thermodynamic studies. Desalination Water Treat. 2022, 271, 48–57. [Google Scholar] [CrossRef]
- Hidayat, E.; Harada, H.; Mitoma, Y.; Yonemura, S.; A Halem, H.I. Rapid Removal of Acid Red 88 by Zeolite/Chitosan Hydrogel in Aqueous Solution. Polymers 2022, 14, 893. [Google Scholar] [CrossRef]
- Blachnio, M.; Budnyak, T.M.; Derylo-Marczewska, A.; Marczewski, A.W.; Tertykh, V.A. Chitosan–Silica Hybrid Composites for Removal of Sulfonated Azo Dyes from Aqueous Solutions. Langmuir 2018, 34, 2258–2273. [Google Scholar] [CrossRef]
- Blachnio, M.; Zienkiewicz-Strzalka, M. Evaluation of the Dye Extraction Using Designed Hydrogels for Further Applications towards Water Treatment. Gels 2024, 10, 159. [Google Scholar] [CrossRef]
- ChemicalBook database. Available online: https://www.chemicalbook.com/ProductChemicalPropertiesCB4201023_EN.htm (accessed on 1 January 2024).
- Marvin 14.8.25.0 Suite Program; Copyright© 1998–2014; ChemAxon Ltd.: Budapest, Hungary, 2014.
- Pérez-Urquiza, M.; Ferrer, R.; Beltrán, J.L. Determination of sulfonated azo dyes in river water samples by capillary zone electrophoresis. J. Chromatogr. A 2000, 883, 277–283. [Google Scholar] [CrossRef]
- Sabnis, R.W. Handbook of Biological Dyes and Stains Synthesis and Industrial Applications; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010. [Google Scholar]
- Elizalde-González, M.P.; García-Díaz, L.E. Application of a Taguchi L16 orthogonal array for optimizing the removal of acid orange 8 using carbon with a low specific surface area. Chem. Eng. J. 2010, 163, 55–61. [Google Scholar] [CrossRef]
- Hamous, H.; Khenifi, A.; Bouberka, Z.; Derriche, Z. Electrochemical degradation of orange G in K2SO4 and KCl medium. Environ. Eng. Res. 2020, 25, 571–578. [Google Scholar] [CrossRef]
- Chrzanowska, A.; Nosach, L.V.; Voronin, E.F.; Derylo-Marczewska, A.; Wasilewska, M. Effect of geometric modification of fumed nanoscale silica for medical applications on adsorption of human serum albumin: Physicochemical and surface properties. Int. J. Biol. Macromol. 2022, 220, 1294–1308. [Google Scholar] [CrossRef]
- Marczewski, A.W.; Jaroniec, M. A new isotherm equation for single-solute adsorption from dilute solutions on energetically heterogeneous solids. Monatshefte Für Chem./Chem. Mon. 1983, 114, 711–715. [Google Scholar] [CrossRef]
- Galaburda, M.; Zienkiewicz-Strzalka, M.; Blachnio, M.; Bogatyrov, V.; Kutkowska, J.; Choma, A.; Derylo-Marczewska, A. Ag-Containing Carbon Nanocomposites: Physico-Chemical Properties and Antimicrobial Activity. Sustainability 2023, 15, 16817. [Google Scholar] [CrossRef]
- Zienkiewicz-Strzalka, M.; Blachnio, M. Nitrogenous Bases in Relation to the Colloidal Silver Phase: Adsorption Kinetic, and Morphology Investigation. Appl. Sci. 2023, 13, 3696. [Google Scholar] [CrossRef]
Composite | SBET a (m2/g) | Smic b (m2/g) | Vt c (cm3/g) | Vmic d (t-Plot) (cm3/g) | Dh e (nm) | DBJH ads f (nm) | DBJH des g (nm) |
---|---|---|---|---|---|---|---|
ChMCM | 330 | - | 0.26 | - | 3.2 | 3.6 | 3.3 |
ChSBA | 303 | 41 | 0.49 | 0.02 | 6.5 | 6.8 | 5.2 |
ChAD | 5.2 | 2.4 | 0.02 | 0.001 | 14.5 | - | - |
ChCD | 2.1 | 1.4 | 0.01 | 0.001 | 13.6 | - | - |
Composite | Element Contribution | ||
---|---|---|---|
C (%) | H (%) | N (%) | |
Chitosan | 40.7 | 7.3 | 7.3 |
ChMCM | 7.1 | 2.1 | 1.0 |
ChSBA | 8.5 | 2.6 | 1.3 |
ChAD | 8.3 | 2.2 | 1.3 |
ChCD | 3.3 | 0.8 | 0.6 |
System | am (mmol/g) | m | n | log K | R2 |
---|---|---|---|---|---|
AR88 (ChSBA) | 0.78 | 0.67 | 1 | 2.60 | 0.97 |
AO8 (ChSBA) | 0.57 | 0.27 | 1 | 0.69 | 0.91 |
OG (ChSBA) | 0.27 | 0.27 | 1 | −0.38 | 0.98 |
AR88 (ChAD) | 0.71 | 0.34 | 1 | 1.50 | 0.99 |
AR88 (ChMCM) | 0.69 | 0.16 | 1 | 0.76 | 0.97 |
AR88 (ChCD) | 0.46 | 0.18 | 1 | −0.22 | 0.96 |
Adsorbent | Adsorption Capacity, am [mmol/g] | Reference |
---|---|---|
Chitosan–nanosilica composite | 0.75 | [103] |
Magnetic ZnFe2O4 nanoparticles | 0.33 | [105] |
Magnetic MWCN-Fe3C composite | 0.14 | [106] |
ZnO/ZnMn2O4 nanocomposite | 0.19 | [107] |
Surfactant modified bentonite | 0.23 | [108] |
Zeolite–chitosan hydrogel | 1.02 | [109] |
Chitosan–silica gel composite | 0.48 | [110] |
Chitosan–nanosilica composite | 0.51 | [103] |
Chitosan-MCF hydrogel | 0.63 | [111] |
Chitosan-SBA-15 composite | 0.78 | this paper |
Chitosan–amorphous diatomite composite | 0.71 | this paper |
Chitosan-MCM-41 composite | 0.69 | this paper |
Kinetic System | i | fi | log ki | log kavg | t0.5,i [min] | t0.5 avg [min] | t75%/t90% [min] | ueq | SD (c/co) | 1−R2 |
---|---|---|---|---|---|---|---|---|---|---|
AR88 (ChSBA) | 1 | 0.74 | 0.48 | 0.30 | 0.23 | 0.35 | 1.09/5.8 | 0.99 | 0.74% | 1.0 × 10−3 |
2 | 0.26 | −0.74 | 3.8 | |||||||
AR88 (ChMCM) | 1 | 0.63 | 0 | −0.34 | 0.69 | 1.53 | 39/240 | 0.97 | 0.74% | 3.9 × 10−3 |
2 | 0.11 | −1.49 | 21 | |||||||
3 | 0.26 | −2.31 | 140 | |||||||
AR88 (ChAD) | 1 | 0.46 | 0.33 | −0.61 | 0.33 | 2.84 | 65/255 | 0.98 | 0.50% | 4.9 × 10−4 |
2 | 0.21 | −1.21 | 11 | |||||||
3 | 0.33 | −2.26 | 126 | |||||||
AR88 (ChCD) | 1 | 0.27 | 0 | −1.20 | 0.69 | 11 | 175/1257 | 0.91 | 0.99% | 3.1 × 10−3 |
2 | 0.43 | −1.18 | 10 | |||||||
3 | 0.30 | −2.55 | 244 | |||||||
AO8 (ChSBA) | 1 | 0.42 | 0.52 | −1.07 | 0.21 | 8 | 770/- | 0.80 | 0.59% | 1.4 × 10−3 |
2 | 0.28 | −1.47 | 20 | |||||||
3 | 0.30 | −2.72 | 362 | |||||||
OG (ChSBA) | 1 | 0.42 | 0.55 | −0.91 | 0.20 | 6 | -/- | 0.62 | 0.31% | 5.1 × 10−4 |
2 | 0.18 | −1.08 | 8 | |||||||
3 | 0.40 | −2.32 | 146 |
Dye Code | Chemical Formula | Dye Content [%] | Molecular Weight [g/mol] | Ionization Constant, pKa | Water Solubility [g/L] | Polar Surface Area [Å2] | Van Der Waals Volume [Å3] | Ref. |
---|---|---|---|---|---|---|---|---|
AR88 | C20H13N2NaO4S | 75 | 400.38 | 11.06 | 1.5 | 111 | 305 | [112,113,114,115] |
AO8 | C17H13N2NaO4S | 65 | 364.35 | −1; 13.5 | 1.0 | 111 | 281 | [112,113,115,116] |
OG | C16H10N2Na2O7S2 | 80 | 452.37 | 12.8 | 5.0,7.1 | 176 | 306 | [113,115,117] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blachnio, M.; Zienkiewicz-Strzalka, M.; Derylo-Marczewska, A. Synthesis of Composite Sorbents with Chitosan and Varied Silica Phases for the Adsorption of Anionic Dyes. Molecules 2024, 29, 2087. https://doi.org/10.3390/molecules29092087
Blachnio M, Zienkiewicz-Strzalka M, Derylo-Marczewska A. Synthesis of Composite Sorbents with Chitosan and Varied Silica Phases for the Adsorption of Anionic Dyes. Molecules. 2024; 29(9):2087. https://doi.org/10.3390/molecules29092087
Chicago/Turabian StyleBlachnio, Magdalena, Malgorzata Zienkiewicz-Strzalka, and Anna Derylo-Marczewska. 2024. "Synthesis of Composite Sorbents with Chitosan and Varied Silica Phases for the Adsorption of Anionic Dyes" Molecules 29, no. 9: 2087. https://doi.org/10.3390/molecules29092087
APA StyleBlachnio, M., Zienkiewicz-Strzalka, M., & Derylo-Marczewska, A. (2024). Synthesis of Composite Sorbents with Chitosan and Varied Silica Phases for the Adsorption of Anionic Dyes. Molecules, 29(9), 2087. https://doi.org/10.3390/molecules29092087