Research Progress in Pharmacological Effects and Mechanisms of Angelica sinensis against Cardiovascular and Cerebrovascular Diseases
Abstract
:1. Introduction
2. Pharmacological Effects and Mechanisms of A. sinensis on Cardiovascular Diseases
2.1. Influence of Myocardial Ischemic Injury
2.2. Protection of Myocardial Cells
2.3. Inhibition of Myocardial Infarction and Myocardial Fibrosis
3. Pharmacological Effects and Mechanisms of A. sinensis on Cerebrovascular Diseases
3.1. Influence of Cerebral Ischemic Injury
3.2. Improvement in Vascular Dementia
3.3. Protection of Brain Cells
4. Pharmacological Effects and Mechanisms of A. sinensis on Other Vascular Diseases
4.1. Regulation of Blood Pressure and Blood Lipids
4.2. Anti-Atherosclerosis
4.3. Protection of Vascular Endothelial Cells
5. Conclusions and Research Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Roland, G.; Laszlo, D.; Kalman, T.; Robert, H.; Tamas, H. The Effect of resveratrol on the cardiovascular system from molecular mechanisms to clinical results. Int. J. Mol. Sci. 2021, 22, 10152. [Google Scholar] [CrossRef] [PubMed]
- Badimon, L.; Chagas, P.; Chiva-Blanch, G. Diet and cardiovascular disease: Effects of foods and nutrients in classical and emerging cardiovascular risk factors. Curr. Med. Chem. 2019, 26, 3639–3651. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Y.; Zhang, Y.M.; Lv, T.Y.; Zhang, H.; Liu, Z.D.; Song, H.J. Pharmacological effects of curcumin and its research progress in prevention and treatment of cerebrovascular diseases and dementia. Chin. J. Geriatr. Heart Brain Vessel Dis. 2022, 24, 667–669. [Google Scholar] [CrossRef]
- Wei, L.L.; Gu, Y.Z.; Luo, Y.; Tan, T.; Liu, Y.; Liao, Z.G.; Yang, M. Research progress on traditional Chinese medicine on regulating intestinal flora intreatment of cardiovascular and cerebrovascular diseases. Chin. Tradit. Herb. Drugs 2022, 24, 667–669. [Google Scholar] [CrossRef]
- Di, R.N.; Fan, Q.Y.; Fang, H.L. Mechanism analysis of Chuanxiong in the treatment of cardiovascular and cerebrovascular diseases. Mod. Chin. Med. 2022, 42, 22–26. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Zhai, T.M.; Chai, P.P.; Huang, Y.X.; Wang, Q. Study on accounting and projection of curative expenditure on cardiovascular and cerebrovascular diseases in china. Chin. Health Econ. 2019, 38, 18–22. [Google Scholar] [CrossRef]
- Tan, M.; Zhu, Y.; Yu, X.X.B.; Chen, M.; Liu, J. Design and evaluation of information technology for prevention and treatment of cardiovascular and cerebrovascular diseases based on big data. Chin. J. Cardiovasc. Med. 2023, 37, 331–334. [Google Scholar] [CrossRef]
- Chen, L.L.; Sun, J.; Zhu, X.M.; Wang, F.Z.; Fan, B.; Wang, Y.R.; Huang, Y.L.; Zhang, F.; Li, M.Z.; Hu, S.H.; et al. Changes of chemical constituents of Angelica sinensis Diels during different processing. Food R&D 2023, 44, 209–216. [Google Scholar] [CrossRef]
- Liu, T.L.; Zhu, T.T.; Zhang, M.H.; Zhang, Q.; Xu, L.; Kang, S.Q.; Jin, L. Advances in biosynthesis and regulation of active ingredients of Angelica Sinensis Radix. Chin. Tradit. Herb. Drugs 2023, 54, 7545–7553. [Google Scholar] [CrossRef]
- Zhao, X.F.; Xiang, G.X.; Wang, J.F.; Teng, J.L. Herbal textual research on efficacy, indications and contraindications of Danggui (Angelica). Chin. J. Tradit. Chin. Med. Pharm. 2020, 35, 2479–2482. [Google Scholar]
- Huang, G.Q. Chemical constituents and pharmacological effects of Angelica sinensis. Front. Med. Sci. Res. 2019, 1, 2. [Google Scholar]
- Wei, W.L.; Zeng, R.; Gu, C.M.; Qu, Y.; Huang, L.F. Angelica sinensis in China—A review of botanical profile, ethnopharmacology, phytochemistry and chemical analysis. J. Ethnopharmacol. 2016, 190, 116–141. [Google Scholar] [CrossRef]
- Li, W.X.; Ni, W.J.; Wang, X.Y.; Liu, X.L.; Li, K.; Zhang, S.Q.; Chen, X.F.; Tang, J.F. Chemical components and pharmacological action for Danggui (Radix Angelicae sinensis) and predictive analysis on its quality markers. Chin. Arch. Tradit. Chin. Med. 2022, 40, 40–47+274. [Google Scholar] [CrossRef]
- Ma, J.P.; Guo, Z.B.; Jin, L.; Li, Y.D. Phytochemical progress made in investigations of Angelica sinensis (Oliv.) Diels. Chin. J. Nat. Med. 2015, 13, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.S.; Liu, H.; Song, Y.; Lv, G.F.; Lin, H.; Lin, Z.; Li, Y.Q. Analysis of the Effects of Angelica sinensis ultrafine powder on the diversity of intestinal flora in mice based on 16S rRNA technology. Mod. Food Sci. Technol. 2021, 37, 25–32. [Google Scholar] [CrossRef]
- Chen, L.L.; Li, L.; Wang, F.Z.; Hu, S.H.; Ding, T.T.; Wang, Y.R.; Huang, Y.L.; Fan, B.; Sun, J. Targeted metabolomics study on the effect of vinegar processing on the chemical changes and antioxidant activity of Angelica sinensis. Antioxidants 2023, 12, 2053. [Google Scholar] [CrossRef]
- Ji, P.; Li, C.C.; Wei, Y.M.; Hua, Y.L.; Yao, W.L.; Wu, F.L.; Zhang, X.S.; Yuan, Z.W.; Zhao, N.S.; Zhang, Y.H.; et al. A new method for giving complementary explanation on the blood enriching function and mechanism of unprocessed Angelica sinensis and its 4 kinds of processed products with tissue integrated metabolomics and confirmatory analysis. BMC 2021, 36, e5252. [Google Scholar] [CrossRef]
- Long, Y.; Li, D.; Yu, S.; Shi, A.; Deng, J.; Wen, J.; Li, X.Q.; Ma, Y.; Zhang, Y.L.; Liu, S.Y.; et al. Medicine-food herb: Angelica sinensis, a potential therapeutic hope for Alzheimer’s disease and related complications. Food Funct. 2022, 13, 8783–8803. [Google Scholar] [CrossRef] [PubMed]
- Qu, C.H.; Dong, W.F. Polysaccharides extracted from Angelica sinensis (Oliv.) Diels relieve the malignant characteristics of glioma cells through regulating the MiR-373-3p-Mediated TGF-β/Smad4 signaling pathway. Evid.-Based Complement. Altern. Med. 2022, 2022, 7469774. [Google Scholar] [CrossRef]
- Park, C.H.; Park, H.W.; Yeo, H.J.; Jung, D.H.; Jeon, K.S.; Kim, T.J.; Kim, J.K.; Park, S.U. Combined transcriptome and metabolome analysis and evaluation of antioxidant and antibacterial activities in white, pink, and violet flowers of Angelica gigas. Ind. Crops Prod. 2022, 188, 115605. [Google Scholar] [CrossRef]
- Jiang, Y.Y.; Piao, J.P.; Liu, N.; Hou, J.C.; Liu, J.X.; Hu, W.C. Effect of ultrafine powderization and solid dispersion formation via Hot-Melt extrusion on antioxidant, anti-Inflammatory, and the human Kv1.3 channel inhibitory activities of Angelica gigas Nakai. Bioinorg. Chem. Appl. 2020, 2020, 7846176. [Google Scholar] [CrossRef]
- Quan, Y.H.; Shang, G.C.H.; Chen, C. Research progress on pharmacological effects of phenols in Gastrodia elata on cardio-cerebralvascular diseases. Chin. Tradit. Herb. Drugs 2022, 53, 4582–4592. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, H.; Xie, F.J.; Li, H.H. Protective Effect of pretreatment with glycyrrhizic acid on myocardial ischemia re-perfusion injury in rats and expressions of Bcl-2 and Bax. Chin. J. Exp. Tradit. Med. Form. 2018, 24, 126–132. [Google Scholar] [CrossRef]
- Sun, Y.; Chu, S.J.; Wang, R.; Xia, R.; Sun, M.; Gao, Z.X.; Xia, Z.Y.; Zhang, Y.; Dong, S.W.; Wang, T.T. Non-coding RNAs modulate pyroptosis in myocardial ischemia re-perfusion injury: A comprehensive review. Int. J. Biol. Macromol. 2023, 257, 128558. [Google Scholar] [CrossRef]
- Ye, J.H.; Shen, S.H.; Zhang, T.J.; Feng, P.P. Angelica sinensis polysaccharide ameliorates MIRI in rats in vitro and its mechanism. Shandong Med. J. 2023, 63, 45–50. [Google Scholar] [CrossRef]
- Tsai, Y.C.; Wang, S.L.; Wu, M.Y.; Liao, C.H.; Lin, C.H.; Chen, J.J.; Fu, S.L. Pilloin, a flavonoid isolated from Aquilaria sinensis, exhibits anti-inflammatory activity in vitro and in vivo. Molecules 2018, 23, 3177. [Google Scholar] [CrossRef]
- He, S.M.; Chen, Y.K.; Zeng, A.; Li, C.M.; Lu, Q. Research progress of ligustilide pharmacological action and mechanism. J. Guangdong Pharm. Univ. 2021, 37, 152–156. [Google Scholar] [CrossRef]
- Cui, Y.Y.; Yang, L.X.; Mi, D.H.; Wei, R.X. Effects of Angelica sinensis polysaccharide on the apoptosis of cardiomyocytes in diabetic KK–Ay mice. J. China Pharm. 2023, 34, 1211–1215. [Google Scholar] [CrossRef]
- Yang, P.; Dai, T.; Zhang, S.C. Angelica polysaccharide promotes the proliferation of rat cardiomyocyte line H9c2. Basic. Clin. Med. 2021, 41, 551–557. [Google Scholar]
- Niu, X.W.; Zhang, J.J.; Ling, C.; Bai, M.; Peng, Y.; Sun, S.B.; Li, Y.D.; Zhang, Z. Polysaccharide from Angelica sinensis protects H9c2 cells against oxidative injury and endoplasmic reticulum stress by activating the ATF6 pathway. J. Int. Med. Res. 2018, 46, 1717–1733. [Google Scholar] [CrossRef]
- Huang, C.Y.; Kuo, W.W.; Kuo, C.H.; Tsai, F.J.; Liu, P.Y.; Hsieh, D.J.Y. Protective effect of Danggui (Radix Angelicae sinensis) on angiotensin II-induced apoptosis in H9c2 cardiomyoblast cells. BMC Complement. Altern. Med. 2014, 14, 358. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.W.; Liu, K.; Sun, S.B.; Li, Y.D. Effects of Angelicanaphtha on CaN signal pathways and T-type calcium channel of angiotensin II-induced hypertrophy cardiomyocyte. Mod. J. Integr. Trad. Chin. West. Med. 2023, 32, 1634–1637. [Google Scholar] [CrossRef]
- Pu, Y.P.; Zhou, J.M. Study on Regulation Effects of volatile oil from Angelica sinensis on autophagy of myocardial cell H9C2 in rats with hypoxia/reoxygenation Injury. J. China Pharm. 2020, 31, 2492–2497. [Google Scholar] [CrossRef]
- Chen, L.; Song, M.; Zhang, L.S.; Li, C.X.; Fang, Z.R.; Coffie, J.W.; Zhang, L.Y.; Ma, L.L.; Fang, L.Y.; Wang, Q.Y.; et al. The protective effects of different compatibility proportions of the couplet medicines for Astragali Radix and Angelica sinensis Radix on myocardial infarction injury. Pharm. Biol. 2020, 58, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.F.; Xu, J.; Tang, J.Q.; Wang, H.; Shang, G.H.J.; Guan, H.S. Effect of Angelica on myocardial fibrosis post myocardial infarction in rats. Chin. J. Pathophysiol. 2006, 22, 1965–1969. [Google Scholar]
- Pan, H.; Zhu, L.L. Angelica sinensis polysaccharide protects rat cardiomyocytes H9c2 from hypoxia-induced injury by down-regulation of microRNA-22. Biomed. Pharmacother. 2018, 106, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Niu, X.W.; Zhang, J.J.; Ni, J.R.; Wang, R.Q.; Zhang, W.Q.; Sun, S.B.; Peng, Y.; Bai, M.; Zhang, Z. Network pharmacology-based identification of major component of Angelica sinensis and its action mechanism for the treatment of acute myocardial infarction. Biosci. Rep. 2018, 38, BSR20180519. [Google Scholar] [CrossRef] [PubMed]
- Song, X.L.; Kong, J.H.; Song, J.; Pan, R.Y.; Wang, L. Angelica sinensis polysaccharide alleviates myocardial fibrosis and oxidative stress in the heart of hypertensive rats. Comput. Math. Methods Med. 2021, 2021, 6710006. [Google Scholar] [CrossRef] [PubMed]
- Li, C.X.; Chen, L.; Song, M.; Fang, Z.R.; Zhang, L.S.; Coffie, J.W.; Zhang, L.Y.; Ma, L.L.; Wang, Q.Y.; Yang, W.J.; et al. Ferulic acid protects cardiomyocytes from TNF-α/cycloheximide induced apoptosis by regulating autophagy. Arch. Pharmacal Res. 2020, 43, 863–874. [Google Scholar] [CrossRef]
- Yan, A.; Xie, Y.L. Effect of Angelica sinensis Radix polysaccharide on oxidative stress level and inflammatory cytokine expression of brain tissues in rats with cerebral ischemia re-perfusion injury. Chin. J. Exp. Tradit. Med. Form. 2018, 24, 123–127. [Google Scholar] [CrossRef]
- Li, J.J.; Lei, T.; Lin, J.; Liao, W.J. Protective effects of Angelica polysaccharides on cerebral ischemia re-perfusion injury in rats. Chin. Arch. Tradit. Chin. Med. 2019, 37, 2272–2276+2317. [Google Scholar] [CrossRef]
- Hu, J.; Zeng, C.; Wei, J.; Duan, F.Q.; Liu, S.J.; Zhao, Y.H.; Tan, H.M. The combination of Panax ginseng and Angelica sinensis alleviates ischemia brain injury by suppressing NLRP3 inflammasome activation and microglial pyroptosis. Phytomedicine 2020, 76, 153251. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.T.; Zhang, M.J.; Li, Y.J.; He, W.L.; Lu, G.H.; Wang, Q.; Wang, Q.Z. Effects of levistilide a on hemorheology and endothelial cell injury in rats with blood stasis. Evid.-Based Complement. Altern. Med. 2021, 2021, 6595383. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Wang, G.Y.; Hou, Y.D.; Jiang, Y.Y.; Zhang, W.; Liu, B. Research progress on effect and mechanism of traditional Chinese medicine against cerebral ischemia reperfusion injury. Chin. Tradit. Herb. Drugs 2021, 52, 1471–1484. [Google Scholar] [CrossRef]
- Cui, J.B.; Yang, J.; Wang, P.F.; Zhang, L.M.; Han, B.L.; Du, J.C. Study on neuroprotective mechanism of Ligustilide mediated PI3K/AKT/MTOR signal pathway in rats with cerebral ischemia re-perfusion injury. J. North Sichuan Med. Coll. 2021, 36, 826–831. [Google Scholar] [CrossRef]
- Kuang, X.; Wang, L.F.; Yu, L.; Li, Y.J.; Wang, Y.N.; He, Q.; Chen, C.; Du, J.R. Ligustilide ameliorates neuroinflammation and brain injury in focal cerebral ischemia/reperfusion rats: Involvement of inhibition of TLR4/peroxiredoxin 6 signaling. Free Radic. Biol. Med. 2014, 71, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Chi, K.; Fu, R.H.; Huang, Y.C.; Chen, S.Y.; Lin, S.Z.; Huang, P.C.; Lin, P.C.; Chang, F.K.; Liu, S.P. Therapeutic effect of ligustilide stimulated adipose-derived stem cells in a mouse thromboembolic stroke model. Cell Transplant. 2016, 25, 899–912. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.W.; Huang, Q.Y.; Hu, Z.P.; Tang, X.Q. Potential Neuroprotective treatment of stroke: Targeting excitotoxicity, oxidative stress, and inflammation. Front. Neurosci. 2019, 13, 1036. [Google Scholar] [CrossRef]
- Fan, Y.Y.; Deng, C.L.; Zhang, L.S.; Luo, J.; Zhang, R.; Liu, N.; Diao, Y.M. Exploration of the mechanism of volatile oil of Angelicae sinensis Radix in improving vascular dementia based on network pharmacology, molecular docking and experimental validation. Tradit. Chin. Drug Res. Pharmacol. 2023, 34, 1117–1128. [Google Scholar] [CrossRef]
- Wu, T.G.; Wang, R.Q.; Du, L.D.; Chen, Z.H.; Ren, Y. Research progress on pharmaeological effects of Angelica volatile. J. GanSu Univ. Chin. Med. 2018, 35, 87–92. [Google Scholar] [CrossRef]
- Gong, W.X.; Zhou, Y.Z.; Li, X.; Gao, X.X.; Tian, J.S.; Qin, X.M.; Du, G.H. Neuroprotective and cytotoxic phthalides from Angelicae sinensis Radix. Molecules 2016, 21, e21050549. [Google Scholar] [CrossRef] [PubMed]
- Mao, Z.G.; Tian, L.Y.; Liu, J.; Wu, Q.; Wang, N.; Wang, G.Y.; Wang, Y.; Seto, S.W. Ligustilide ameliorates hippocampal neuronal injury after cerebral ischemia reperfusion through activating PINK1/Parkin-dependent mitophagy. Phytomedicine 2022, 101, 154111. [Google Scholar] [CrossRef] [PubMed]
- Che, M.; An, F.Y.; Wang, Y.; Liu, L. The effects of Angelica polysaccharide on hippocampal neuronal endoplasmic reticulum stress in model rats with Alzheimer disease. Clin. J. Chin. Med. 2021, 13, 7–11. [Google Scholar] [CrossRef]
- Zhu, H.; Liu, L.S.; Xiong, L.; Guo, L.; Liu, J.; Peng, C. Constituents of Angelica oil and their neuroprotective effects. Nat. Prod. Res. Dev. 2020, 32, 1477–1483. [Google Scholar] [CrossRef]
- Yan, S.J.; Hu, C.W. Study on the neuroprotective effect of Angelica lactone on ischemic vertigo in rats. J. GanSu Univ. Chin. Med. 2020, 37, 1456–1461. [Google Scholar] [CrossRef]
- Qu, Q.; Ji, L.F.; Yi, L. Effect of angelica naphtha on lipid metabolism related to Tnfaip8l2, Ahsg gene in spontaneously hypertensive rats. Chin. J. Gerontol. 2019, 39, 2709–2713. [Google Scholar] [CrossRef]
- Jiang, H.; Mao, Y.J.; Yang, Y.; Shen, J.Z.; He, Y.L.; Yi, L. Effect of Angelica essential oil on PI3K/Akt/eNOS signaling pathway in vascular endo-thelium of spontaneous hypertensive rats. Lishizhen Med. Mater. Med. Res. 2022, 33, 794–796. [Google Scholar] [CrossRef]
- Łuczak, A.; Madej, M.; Kasprzyk, A.; Doroszko, A. Role of the eNOS uncoupling and the nitric oxide metabolic pathway in the pathogenesis of autoimmune rheumatic diseases. Oxidative Med. Cell. Longev. 2020, 2020, 1417981. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.L.; Zhang, H.; Tao, Y.Y.; Li, Y.Y.; Chen, Y.B. Study on the anti-atherosclerosis mechanism of Angelica based on integrated pharmacology. Pract. Pharm. Clin. Remed 2021, 24, 122–127. [Google Scholar] [CrossRef]
- Wang, J.T.; JI, L.; Fan, G.H.; Huang, W.D.; You, Y.L. Mechanism and research advancements of the therapeutic activity of ferulic acid for atherosclerosis. Mod. Food Sci. Technol. 2023, 39, 342–353. [Google Scholar] [CrossRef]
- Li, X.Q.; Zhang, D.; Hu, Y.Q. Advances in the pharmacological mechanism of Danggui (Angelicae sinensis Radix) against atherosclerosis. J. Liaoning Univ. Chin. Med. 2023, 25, 43–48. [Google Scholar] [CrossRef]
- Ohkura, N.; Ohnishi, K.; Taniguchi, M.; Nakayama, A.; Usuba, Y.; Fujita, M.; Fujii, A.; Ishibashi, K.; Baba, K.; Atsumi, G. Anti-platelet effects of chalcones from Angelica keiskei Koidzumi (Ashitaba) in vivo. Die Pharm. 2016, 71, 651–654. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.F.; Li, C.Y.; Fu, Y.P.; JiZe, X.P.; Zhao, Y.Z.; Peng, X.; Wang, J.Y.; Yin, Z.Q.; Li, Y.P.; Song, X.; et al. Angelica sinensis aboveground part polysaccharide and its metabolite 5-MT ameliorate colitis via modulating gut microbiota and TLR4/MyD88/NF-κB pathway. Int. J. Biol. Macromol. 2023, 242, 124689. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, J.; Duan, H.X.Y.; Li, R.L.; Peng, W.; Wu, C.J. Activation of Nrf2/HO-1 signaling: An important molecular mechanism of herbal medicine in the treatment of atherosclerosis via the protection of vascular endothelial cells from oxidative stress. J. Adv. Res. 2021, 34, 43–63. [Google Scholar] [CrossRef] [PubMed]
- Li, X.F.; Zhou, J.; Dou, Y.H.; Shi, Y.B.; Wang, Y.; Hong, J.L.; Zhao, J.N.; Zhang, J.Y.; Yuan, Y.; Zhou, M.R.; et al. The protective effects of angelica organic acid against ox-LDL-induced autophagy dysfunction of HUVECs. BMC Complement. Med. Ther. 2020, 20, 164–176. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Chai, Z.Y.; Diao, Y.H.; Li, H.; Shen, W.Y. Protective effect of Angelica sinensis Polysaccharide on oxidized low density lipoprotein induced vascular endothelial cells injury. Chin. J. Clin. Pharmacol. 2020, 36, 818–821. [Google Scholar] [CrossRef]
- Chen, F.M.; Guan, X.J.; Wu, H.; Jiang, R. Effects of Angelica polysaccharides on bone marrow vascular endothelial growth factor in acute radiation injured mice. J. Chongqing Med. Pharm. Univ. 2014, 39, 612–616. [Google Scholar] [CrossRef]
- Wu, J.Y.; Fan, Q.M.; He, Q.; Zhong, Q.; Zhu, X.Q.; Cai, H.L.; He, X.L.; Xu, Y.; Huang, Y.X.; Di, X.W. Potential drug targets for myocardial infarction identified through Mendelian randomization analysis and Genetic colocalization. Medicine 2023, 102, e36284. [Google Scholar] [CrossRef]
- Dai, Z.; Zhu, Y.; Wang, Z.Y. Effect of Angelica polysaccharide on the expression of IL-1β, TNF-α and NF-κB in rats with cerebral ischemia re-perfusion injury. Chin. Tradit. Pat. Med. 2020, 42, 2176–2178. [Google Scholar] [CrossRef]
- Gaasch, M.; Schiefecker, A.J.; Kofler, M.; Beer, R.; Rass, V.; Pfausler, B.; Thomé, C.; Schmutzhard, E.; Helbok, R. Cerebral Autoregulation in the Prediction of Delayed Cerebral Ischemia and Clinical Outcome in Poor-Grade Aneurysmal Subarachnoid Hemorrhage Patients. Crit. Care Med. 2018, 46, 774–780. [Google Scholar] [CrossRef]
- Kalaria, R.N. The pathology and pathophysiology of vascular dementia. Neuropharmacology 2018, 134, 226–239. [Google Scholar] [CrossRef] [PubMed]
- Wolters, F.J.; Ikram, M.A. Epidemiology of vascular dementia. Arter. Thromb. Vasc. Biol. 2019, 39, 1542–1549. [Google Scholar] [CrossRef] [PubMed]
- Meeusen, J.W.; Donato, L.J.; Kopecky, S.L.; Vasile, V.C.; Jaffe, A.S.; Laaksonen, R. Ceramides improve atherosclerotic cardiovascular disease risk assessment beyond standard risk factors. Clin. Chim. Acta 2020, 511, 138–142. [Google Scholar] [CrossRef] [PubMed]
Diseases | Pharmacological Effects | Mechanism | References |
---|---|---|---|
Cardiovascular diseases | Influence of myocardial ischemic injury | decrease the secretion of inflammatory factors such as NO, IL-6, and TNF-α | [25,26,27] |
regulate the My D88/TLR4/NF-κB signaling pathway | |||
inhibit the increase of Bcl-2 expression | |||
promote the decrease of Bax expression | |||
Protection of myocardial cells | down-regulate the expression level of cleaved-caspase-3 and miR-22 | [28,29,30,31,32,33] | |
increase the expression level of Bcl-2 and miR-4701-3p | |||
inhibit the endoplasmic reticulum stress-IRE1/ASK1/JNK signaling pathway | |||
promote the proliferation of H9c2 cardiomyocytes | |||
inhibit the protein expression of calcineurin and T-type calcium channel subtypes | |||
reduce the level of autophagy, and the expression of autophagy-related proteins | |||
Inhibition of myocardial infarction and myocardial fibrosis | reduce the release of CK, LDH, MDA, endogenous H2O2 and ROS in cardiomyocytes, and the expression of Bax and TGF-β1 and caspase3 | [34,35,36,37,38,39] | |
enhance the expression of Bc1-2, GSH-Px and SOD | |||
inhibit macrophage infiltration | |||
reduce the expression level of pro-inflammatory factors | |||
regulate the expression of AMPK-PGC1α pathway | |||
Cerebrovascular diseases | Influence of cerebral ischemic injury | upregulate the expression levels of the Tnfaip8l2 and Ahsg genes | [40,41,42,43,44,45,46,47,48] |
regulate the expression levels of PI3K/Akt/eNOS proteins | |||
increase the activities of SOD and GSH-Px | |||
reduce levels of MDA, endogenous H2O2, and reactive ROS | |||
Improvement in vascular dementia | promote the expression of Bcl-2 protein | [49,50,51,52] | |
inhibit the expression of Bax protein | |||
regulate the PINK1/Parkin pathway | |||
Protection of brain cells | down-regulating the expression of GRP78, CHOP, and Caspase-12 | [53,54,55] | |
reduce the level of LDH in cells, and the apoptosis of PC12 cells | |||
Lower the levels of MDA, TNF-α, and IL-1β in brain tissues, and the Bax levels in the hippocampus | |||
increase the activity of SOD and the level of Bcl-2 | |||
Other vascular diseases | Regulation of blood pressure and blood lipids | up-regulate the expression levels of the Tnfaip8l2 and Ahsg genes | [39,56,57,58] |
regulate the expression levels of PI3K/Akt/eNOS proteins | |||
increase the activities of SOD and GSH-Px | |||
reduce levels of MDA, endogenous H2O2, and reactive ROS | |||
Anti-atherosclerosis | clear excess free radicals in the body | [59,60,61,62,63,64,65] | |
increase the activity of antioxidant enzymes, the level of NO | |||
reduce plasma endothelin levels, membrane lipid peroxidation | |||
regulate MAPKs, TLR4/NF-κB, Nrf2/HO-1, and PI3K/Akt/mTOR signaling pathway | |||
Protection of vascular endothelial cells | increase the activity of SOD and NO, endothelial nitric oxide synthase in cells | [66,67] | |
alleviate oxidative damage to vascular endothelial cells | |||
lower levels of LDH and MDA | |||
increase the expression of vascular endothelial growth factor, the proliferation ability of bone marrow-derived mesenchymal stem cells |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Fan, B.; Wang, F.; Song, Y.; Wang, X.; Meng, Y.; Chen, Y.; Xia, Q.; Sun, J. Research Progress in Pharmacological Effects and Mechanisms of Angelica sinensis against Cardiovascular and Cerebrovascular Diseases. Molecules 2024, 29, 2100. https://doi.org/10.3390/molecules29092100
Chen L, Fan B, Wang F, Song Y, Wang X, Meng Y, Chen Y, Xia Q, Sun J. Research Progress in Pharmacological Effects and Mechanisms of Angelica sinensis against Cardiovascular and Cerebrovascular Diseases. Molecules. 2024; 29(9):2100. https://doi.org/10.3390/molecules29092100
Chicago/Turabian StyleChen, Linlin, Bei Fan, Fengzhong Wang, Yang Song, Xizhi Wang, Ying Meng, Yumin Chen, Qing Xia, and Jing Sun. 2024. "Research Progress in Pharmacological Effects and Mechanisms of Angelica sinensis against Cardiovascular and Cerebrovascular Diseases" Molecules 29, no. 9: 2100. https://doi.org/10.3390/molecules29092100
APA StyleChen, L., Fan, B., Wang, F., Song, Y., Wang, X., Meng, Y., Chen, Y., Xia, Q., & Sun, J. (2024). Research Progress in Pharmacological Effects and Mechanisms of Angelica sinensis against Cardiovascular and Cerebrovascular Diseases. Molecules, 29(9), 2100. https://doi.org/10.3390/molecules29092100