Strategies, Achievements, and Potential Challenges of Plant and Microbial Chassis in the Biosynthesis of Plant Secondary Metabolites
Abstract
:1. Introduction
2. Types and Biosynthesis of Plant Secondary Metabolites
3. Production of Plant Secondary Metabolites Using Natural Hosts
3.1. Comparison of Different In Vitro Plant Culture Systems
Compound | Product | Host | Strategy or Observations | Platform | Titer | Vessel | Ref. |
---|---|---|---|---|---|---|---|
Terpenoids | |||||||
Monoterpenes | Geraniol | Nicotiana tabacum | Stable transgene of Valeriana officinalis geraniol synthase; Culture condition optimization. | Suspension cells | 5.2 mg/L | Flask | [26] |
Nicotiana tabacum | Stable transgene of Valeriana officinalis geraniol synthase | Hairy roots | 0.11 mg/L | Wave-mixed bag bioreactor | [27] | ||
Limonene | Mentha piperita | Overexpression of limonene synthase and co-suppression of limonene-3-hydroxylase | Leaves | 3.87 mg/g FW (79% of total essential oil) | Flask | [28] | |
Nicotiana tabacum | Overexpression of plastid targeting amorpha-4,11-diene synthase and FPP synthase | Leaves | 0.5 μg/g FW | Flask | [29] | ||
Calotropis procera | Fe3O4 nanoparticles and salicylic acid reduced limonene contents | Hairy roots | 7.9% of total essential oil | Flask | [30] | ||
α-pinene | Levisticum officinale | Optimization of culture medium | Hairy roots | 1.3% of total essential oil | Flask | [31] | |
Linalool | Bursera linanoe | Screened 6-benzylaminopurine concentration for callus induction | Suspension cells | 3.02 mg/g DW | Stirred tank bioreactor | [32] | |
Sesquiterpenes | Patchoulol | Pogostemon cablin | Transient overexpression of a MYB transcription factor | Leaves | 2.8 mg/g FW | - | [33] |
Physcomitrella patens | Overexpression of patchoulol synthase and HMGR gene | Moss tissues | 1.34 mg/g DW | - | [34] | ||
β-eudesmol | Atractylodes lancea | Elicitation with extracts from endophytic fungi | Suspension cells | 63 μg/g FW | Flask | [35] | |
Atractylodes lancea | - | Hairy roots | 5 μg/g FW | Flask | [36] | ||
Artemisinin | Artemisia annua | Elicitation by oligosaccharide from Fusarium oxysporum mycelium combined with NO donor sodium nitroprusside | Hairy roots | 28.5 mg/L | Flask | [37] | |
Artemisia annua | Design of bioreactor | Shoot culture | 48.2 mg/L | Nutrient mist bioreactor | [38] | ||
Artemisia annua | Coronatine pretreatment and addition of 30 g/L sorbitol | Suspension cells | 9.33 mg/L | Flask | [39] | ||
Essential oil | Anethum graveolens | - | Hairy roots | 0.02% v/w FW | Flask | [40] | |
Achillea millefolium | Addition of Miglyol 812 | Suspension cells | 0.002%, w/w FW | Flask | [41] | ||
Achillea millefolium | - | Hairy roots | 0.05% v/w FW | Flask | [42] | ||
Levisticum officinale | Optimization of culture medium | Hairy roots | 0.018 v/w FW | Flask | [31] | ||
Diterpenes | Sclareol | Physcomitrella patens | Heterologous overexpression of two sclareol synthase genes | Moss tissues | 2.28 mg/L | - | [43] |
Aethiopinone | Salvia sclarea | Overexpression of CPPS | Hairy roots | 208.98 mg/L | Flask | [44] | |
Ferruginol | 230.4 mg/L | ||||||
Paclitaxel | Taxus chinensis | Elicitation and optimization of culture conditions | Suspension cells | 902 mg/L | Stirred tank bioreactor | [45] | |
Taxus Media | Elicitation by MeJA, sodium nitroprusside, and L-phenylalanine | Hairy roots | 3.18 mg/g DW | Flask | [46] | ||
Tanshinone | Salvia miltiorrhiza | Overexpression of SmGGPPS and SmDXSII | Hairy roots | 12.93 mg/g DW | Flask | [47] | |
Triterpenes | Ginsenosides | Panax ginseng | Overexpression of PgFPS | Hairy roots | 36.42 mg/g DW | Flask | [48] |
Panax ginseng | Elicitation by nitrogen-fixing bacteria | Adventitious roots | 105.58 mg/g DW | Flask | [49] | ||
Panax sikkimensis | Elicitation with culture filtrates from bacteria | Suspension cells | 222.2 mg/L | Flask | [50] | ||
Panax notoginseng | Addition of conditioned medium | Suspension cells | 3.12 g/L | Air-lift bioreactor | [51] | ||
α-spinasterol | Platycodon grandifolium | Overexpression of PgHMGR | Hairy roots | 1.78 mg/g DW | Flask | [52] | |
Oleanolic acid | Calendula officinalis | Elicitation by jasmonic acid | Hairy roots | 52.52 mg/g DW | Flask | [53] | |
Calendula officinalis | Elicitation by jasmonic acid | Suspension cells | 0.84 mg/g DW | Flask | [54] | ||
Celastrol | Tripterygium wilfordii | Overexpression of TwSQS2 | Hairy roots | 2.41 mg/g DW | Flask | [55] | |
Tetraterpenes | β-carotene | Morus indica | Overexpression of β-carotene hydroxylase 1 and treated with high light | Plants | 256 mg/g FW | Flask | [56] |
Daucus carota | Optimization of culture medium | Suspension cells | 2.19 mg/g DW | Flask | [57] | ||
Astaxanthin | Solanum lycopersicum | Co-expression of the algal β-carotene ketolase from Chlamydomonas reinhardtii and β-carotene hydroxylase from Haematococcus pluvialis | Plant fruits | 16.1 mg/g DW | [58] | ||
Phenols | |||||||
Anthocyanins | Anthocyanin | Perilla frutescens | Optimization of sugar supply and culture modes | Suspension cells | 5.8 g/L | Flask | [59] |
Nicotiana tabacum | Co-expression of the MYB and bHLH transcription factors from Antirrhinum majus | Suspension cells | 25 mg/g DW | Flask and small stirred tank | [60] | ||
Aralia cordata | Administration of CO2 | Suspension cells | 1.09 g/L | Jar fermentor | [61] | ||
Proanthocyanidin | Proanthocyanidin | Litchi chinensis | Overexpression of LcMYB1 | Hairy roots | 15 mg/g FW | Flask | [62] |
(-)-Epicatechin 3-O-gallate | Fagopyrum esculentum | - | Hairy roots | 10 mg/g DW | Flask | [63] | |
(+)-catechin | Taxus cuspidata | Elicitation with MeJA | Suspension cells | 34 mg/g DW | Flask | [64] | |
(-)-epicatechin | 52 mg/g DW | ||||||
Flavanols | Rutin | Fagopyrum tataricum | Overexpression of UGT73BE5 | Hairy roots | 80 mg/g DW | Flask | [65] |
Quercetin | Polygonum multiflorum | Elicitation by MeJA | Hairy roots | 17.58 mg/g DW | Flask | [66] | |
Polygonum multiflorum | Elicitation by jasmonic acid | Suspension cells | 0.16 mg/g DW | Flask | [67] | ||
Polygonum multiflorum | Optimization of culture parameters | Adventitious roots | 3.5 mg/g DW | Balloon-type bubble (air-lift) bioreactor | [68] | ||
Rutin | Ficus deltoidea | Medium optimization | Suspension cells | 39.13 mg/g DW | Flask | [69] | |
Quercetin | 3.92 mg/g DW | ||||||
Isoflavones | Genistein | Trifolium pratense | Optimization of light conditions | Hairy roots | 2.45 mg/g DW | Flask | [70] |
Psoralea corylifolia | Elicitation with spermidine | Suspension cells | 4.75 mg/g DW | Flask | [71] | ||
Stilbenoids | Resveratrol | Arachis hypogaea L. | Elicited with MeJA and cyclodextrin | Hairy roots | 5.3 mg/g DW | Flask | [72] |
Vitis vinifera | Elicitation by MeJA | Suspension cells | 209 mg/L | Stirred bioreactor | [73] | ||
Vitis vinifera | Treated with modified β-cyclodextrin | Suspension cells | 5 g/L | Flask | [74] | ||
Naphthoquinone | Shikonin | Lithospermum erythrorhizon | Optimization of culture parameters | Suspension cells | 4 g/L | Stirred tank bioreactor | [24] |
Hydroxycinnamic acids | Rosmarinic acid | Anchusa officinalis | High-density culture with optimized culture parameters | Suspension cells | 3.7 g/L | Stirred tank bioreactor | [75] |
Chicoric acid | Echinacea purpurea | Addition of 2 mg/L indole butyric acid | Adventitious roots | 22 mg/g DW | Air-lift bioreactor | [76] | |
Chlorogenic acid | 5 mg/g DW | ||||||
Alkaloids | |||||||
Tetrahydroisoquinoline alkaloids | Berberine | Thalictrum minus | Cells immobilized in calcium alginate beads | Suspension cells | 875 mg/L | Modified bioreactor | [77] |
Coptis japonica | Optimization of culture parameters | Suspension cells | 3.5 g/L | Stirred bioreactor | [23] | ||
Tropane alkaloids | Scopolamine | Duboisia myoporoides | Repeated selection of transformed root lines | Hairy roots | 32 mg/g DW | Flask | [78] |
Pyridine alkaloids | Nicotine | Nicotiana tabacum | Optimization of culture parameters | Hairy roots | 83.3 mg/L | Stirred bioreactor | [79] |
Nicotiana tabacum | Optimization of culture parameters | Suspension cells | 780 μg/g FW | Flask | [80] | ||
Quinoline alkaloids | Camptothecin | Ophiorrhiza pumila | In situ absorption by polystyrene resin | Hairy roots | 3.2 mg/L | Flask | [81] |
Ophiorrhiza pumila | Overexpression of OpG10H and OpSLS | Hairy roots | 3.5mg/g FW | Flask | [82] | ||
BenzylIsoquinoline alkaloids | Morphine | Papaver somniferum | Removal of hormones from the medium | Suspension cells | 2.5 mg/g DW | Flask | [83] |
Papaver somniferum | - | Hairy roots | 2.6 mg/g DW | Flask | [84] | ||
Papaver bracteatum | Elicitation by hormone indole-3-acetic acid | Suspension cells | 243.2 mg/g FW | Flask | [85] | ||
Papaver bracteatum | Overexpression of codeinone reductase | Hairy roots | 2.8 mg/g DW | Flask | [86] | ||
Papaver orientale | Elicitation with salicylic acid | Hairy roots | 2.9 mg/g DW | Flask | [87] | ||
Terpenoid indole alkaloid | Total terpenoid indole alkaloids Vincristine | Catharanthus roseus | Overexpression of ORCA3 with precursors feeding | Hairy roots | 5 mg/g DW | Flask | [88] |
Catharanthus roseus | Co-overexpression of ORCA3 and SGD induced with 3 μM dexamethasone | Hairy roots | 10 mg/g DW | Flask | [89] |
3.2. Enhancing the Yield of Plant in Vitro Culture Systems by Process Optimization
3.3. Plant Metabolic Engineering
3.4. Multigene Transformation of Plants
3.5. Elucidation of Biosynthetic Pathway
4. Production of Plant Secondary Metabolites Using Microbial Chassis
4.1. Engineering Enzymes and Cofactors
4.2. Pathway Establishment and Optimization
4.3. Fermentation Condition and Its Optimization
5. Comparison and Prospects of Plant and Microbial Chassis
- In instances wherein plant chassis have succeeded and microbial chassis have not, they include the production of the diterpene paclitaxel, polyphenols such as anthocyanin, shikonin, rosmarinic acid, and the isoquinoline alkaloid berberine.
- Microbial chassis have succeeded while plant chassis achieve lower yields for various monoterpenes, the sesquiterpene srtemisinic acid, the simple diterpene sclareol, and diterpene precursors like taxadiene and miltiradiene, the simple triterpene amyrin, linear tetraterpenes lycopene and β-carotene with little downstream tailoring enzyme modifications, polyphenolic upstream products like quercetin and (+)-catechin, and the isoquinoline alkaloid precursor (S)-reticuline.
- Triterpenes like ginsenosides and polyphenolic compounds such as resveratrol can be produced at high yields in both plant and microbial chassis.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kessler, A.; Kalske, A. Plant secondary metabolite diversity and species interactions. Annu. Rev. Ecol. Evol. Syst. 2018, 49, 115–138. [Google Scholar] [CrossRef]
- Hussain, M.S.; Fareed, S.; Ansari, S.; Rahman, M.A.; Ahmad, I.Z.; Saeed, M. Current approaches toward production of secondary plant metabolites. J. Pharm. Bioallied Sci. 2012, 4, 10. [Google Scholar] [CrossRef]
- Sreenivasulu, N.; Fernie, A.R. Diversity: Current and prospective secondary metabolites for nutrition and medicine. Curr. Opin. Biotechnol. 2022, 74, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Marchev, A.S.; Yordanova, Z.P.; Georgiev, M.I. Green (cell) factories for advanced production of plant secondary metabolites. Crit. Rev. Biotechnol. 2020, 40, 443–458. [Google Scholar] [CrossRef]
- Pyne, M.E.; Narcross, L.; Martin, V.J. Engineering plant secondary metabolism in microbial systems. Plant Physiol. 2019, 179, 844–861. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, P.; Zhao, Q.; Huang, A.C. Making small molecules in plants: A chassis for synthetic biology-based production of plant natural products. J. Integr. Plant Biol. 2023, 65, 417–443. [Google Scholar] [CrossRef]
- Liu, J.; Wang, X.; Dai, G.; Zhang, Y.; Bian, X. Microbial chassis engineering drives heterologous production of complex secondary metabolites. Biotechnol. Adv. 2022, 59, 107966. [Google Scholar] [CrossRef]
- Twaij, B.M.; Hasan, M.N. Bioactive secondary metabolites from plant sources: Types, synthesis, and their therapeutic uses. Int. J. Plant Biol. 2022, 13, 4–14. [Google Scholar] [CrossRef]
- Wang, Z.; Nelson, D.R.; Zhang, J.; Wan, X.; Peters, R.J. Plant (di) terpenoid evolution: From pigments to hormones and beyond. Nat. Prod. Rep. 2023, 40, 452–469. [Google Scholar] [CrossRef]
- Bergman, M.E.; Davis, B.; Phillips, M.A. Medically useful plant terpenoids: Biosynthesis, occurrence, and mechanism of action. Molecules 2019, 24, 3961. [Google Scholar] [CrossRef]
- Nagegowda, D.A.; Gupta, P. Advances in biosynthesis, regulation, and metabolic engineering of plant specialized terpenoids. Plant Sci. 2020, 294, 110457. [Google Scholar] [CrossRef] [PubMed]
- Karunanithi, P.S.; Zerbe, P. Terpene synthases as metabolic gatekeepers in the evolution of plant terpenoid chemical diversity. Front. Plant Sci. 2019, 10, 1166. [Google Scholar] [CrossRef] [PubMed]
- Boncan, D.A.T.; Tsang, S.S.; Li, C.; Lee, I.H.; Lam, H.-M.; Chan, T.-F.; Hui, J.H. Terpenes and terpenoids in plants: Interactions with environment and insects. Int. J. Mol. Sci. 2020, 21, 7382. [Google Scholar] [CrossRef] [PubMed]
- Bhambhani, S.; Kondhare, K.R.; Giri, A.P. Diversity in chemical structures and biological properties of plant alkaloids. Molecules 2021, 26, 3374. [Google Scholar] [CrossRef] [PubMed]
- Omar, F.; Tareq, A.M.; Alqahtani, A.M.; Dhama, K.; Sayeed, M.A.; Emran, T.B.; Simal-Gandara, J. Plant-based indole alkaloids: A comprehensive overview from a pharmacological perspective. Molecules 2021, 26, 2297. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Pathak, N.; Fatima, E.; Negi, A.S. Plant isoquinoline alkaloids: Advances in the chemistry and biology of berberine. Eur. J. Med. Chem. 2021, 226, 113839. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.-P.; Wang, Y.-J.; Tian, T.; Wang, L.; Yan, Y.; Huang, S.-X. Tropane alkaloid biosynthesis: A centennial review. Nat. Prod. Rep. 2021, 38, 1634–1658. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.G.; Cassani, L.; Garcia-Oliveira, P.; Otero, P.; Mansoor, S.; Echave, J.; Xiao, J.; Simal-Gándara, J.; Prieto, M. Plant Alkaloids: Production, Extraction, and Potential Therapeutic Properties. In Natural Secondary Metabolites: From Nature, through Science, to Industry; Springer: Berlin/Heidelberg, Germany, 2023; pp. 157–200. [Google Scholar]
- Hano, C.; Tungmunnithum, D. Plant polyphenols, more than just simple natural antioxidants: Oxidative stress, aging and age-related diseases. Medicines 2020, 7, 26. [Google Scholar] [CrossRef] [PubMed]
- Truzzi, F.; Tibaldi, C.; Zhang, Y.; Dinelli, G.; D′Amen, E. An overview on dietary polyphenols and their biopharmaceutical classification system (BCS). Int. J. Mol. Sci. 2021, 22, 5514. [Google Scholar] [CrossRef]
- Leri, M.; Scuto, M.; Ontario, M.L.; Calabrese, V.; Calabrese, E.J.; Bucciantini, M.; Stefani, M. Healthy Effects of Plant Polyphenols: Molecular Mechanisms. Int. J. Mol. Sci. 2020, 21, 1250. [Google Scholar] [CrossRef]
- Sato, F.; Yamada, Y. High berberine-producing cultures of Coptis japonica cells. Phytochemistry 1984, 23, 281–285. [Google Scholar] [CrossRef]
- Matsubara, K.; Kitani, S.; Yoshioka, T.; Morimoto, T.; Fujita, Y.; Yamada, Y. High density culture of Coptis japonica cells increases berberine production. J. Chem. Technol. Biotechnol. 1989, 46, 61–69. [Google Scholar] [CrossRef]
- Fujita, Y. Shikonin: Production by plant (Lithospermum erythrorhizon) cell cultures. In Medicinal and Aromatic Plants I; Springer: Berlin/Heidelberg, Germany, 1988; pp. 225–236. [Google Scholar]
- Expósito, O.; Bonfill, M.; Moyano, E.; Onrubia, M.; Mirjalili, M.; Cusido, R.; Palazon, J. Biotechnological production of taxol and related taxoids: Current state and prospects. Anti-Cancer Agents Med. Chem. (Former. Curr. Med. Chem.-Anti-Cancer Agents) 2009, 9, 109–121. [Google Scholar] [CrossRef] [PubMed]
- Vasilev, N.; Schmitz, C.; Grömping, U.; Fischer, R.; Schillberg, S. Assessment of cultivation factors that affect biomass and geraniol production in transgenic tobacco cell suspension cultures. PloS one 2014, 9, e104620. [Google Scholar] [CrossRef] [PubMed]
- Ritala, A.; Dong, L.; Imseng, N.; Seppänen-Laakso, T.; Vasilev, N.; van der Krol, S.; Rischer, H.; Maaheimo, H.; Virkki, A.; Brändli, J. Evaluation of tobacco (Nicotiana tabacum L. cv. Petit Havana SR1) hairy roots for the production of geraniol, the first committed step in terpenoid indole alkaloid pathway. J. Biotechnol. 2014, 176, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, S.S.; Williams, M.; Croteau, R. Cosuppression of limonene-3-hydroxylase in peppermint promotes accumulation of limonene in the essential oil. Phytochemistry 2004, 65, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Schalk, M.; Clark, A.; Miles, R.B.; Coates, R.; Chappell, J. Redirection of cytosolic or plastidic isoprenoid precursors elevates terpene production in plants. Nat. Biotechnol. 2006, 24, 1441–1447. [Google Scholar] [CrossRef] [PubMed]
- Adabavazeh, F.; Pourseyedi, S.; Nadernejad, N.; Razavizadeh, R.; Mozafari, H. Evaluation of synthesized magnetic nanoparticles and salicylic acid effects on improvement of antioxidant properties and essential oils of Calotropis procera hairy roots and seedlings. Plant Cell Tissue Organ Cult. 2022, 151, 133–148. [Google Scholar] [CrossRef]
- Santos, P.A.; Figueiredo, A.C.; Oliveira, M.M.; Barroso, J.G.; Pedro, L.G.; Deans, S.G.; Scheffer, J.J. Growth and essential oil composition of hairy root cultures of Levisticum officinale WDJ Koch (lovage). Plant Sci. 2005, 168, 1089–1096. [Google Scholar] [CrossRef]
- Pavón-Reyes, L.; Evangelista-Lozano, S.; Sepúlveda-Jiménez, G.; Ávila, V.C.; Rodríguez-Monroy, M. Cell culture of Bursera linanoe in a stirred tank bioreactor for production of linalool and linalyl acetate. Nat. Prod. Commun. 2017, 12, 1934578X1701200301. [Google Scholar]
- Chen, X.; Li, J.; Liu, Y.; Wu, D.; Huang, H.; Zhan, R.; Chen, W.; Chen, L. PatSWC4, a methyl jasmonate-responsive MYB (v-myb avian myeloblastosis viral oncogene homolog)-related transcription factor, positively regulates patchoulol biosynthesis in Pogostemon cablin. Ind. Crops Prod. 2020, 154, 112672. [Google Scholar] [CrossRef]
- Zhan, X.; Zhang, Y.-H.; Chen, D.-F.; Simonsen, H.T. Metabolic engineering of the moss Physcomitrella patens to produce the sesquiterpenoids patchoulol and α/β-santalene. Front. Plant Sci. 2014, 5, 636. [Google Scholar] [CrossRef] [PubMed]
- Fang, F.; Dai, C.; Wang, Y. Role of nitric oxide and hydrogen peroxide in the essential oil increasing of suspension cells from Atractylodes lancea induced by endophytic fungal Cunninghamella sp. AL4 elicitor. Sheng Wu Gong Cheng Xue Bao = Chin. J. Biotechnol. 2009, 25, 1490–1496. [Google Scholar]
- Zhang, C.; Guo, X.; Wang, H.; Dai, X.; Yan, B.; Wang, S.; Guo, L. Induction and metabolomic analysis of hairy roots of Atractylodes lancea. Appl. Microbiol. Biotechnol. 2023, 107, 6655–6670. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.P.; Guo, Y.T.; Wang, J.W.; Tan, R.X. Nitric oxide potentiates oligosaccharide-induced artemisinin production in Artemisia annua hairy roots. J. Integr. Plant Biol. 2008, 50, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.-Z.; Guo, C.; Wang, Y.-C.; Ouyang, F. Comparison of various bioreactors on growth and artemisinin biosynthesis of Artemisia annua L. shoot cultures. Process Biochem. 2003, 39, 45–49. [Google Scholar] [CrossRef]
- Salehi, M.; Karimzadeh, G.; Naghavi, M.R. Synergistic effect of coronatine and sorbitol on artemisinin production in cell suspension culture of Artemisia annua L. cv. Anamed. Plant Cell Tissue Organ Cult. 2019, 137, 587–597. [Google Scholar] [CrossRef]
- Santos, P.A.G.; Figueiredo, A.C.; Lourenço, P.M.L.; Barroso, J.G.; Pedro, L.G.; Oliveira, M.M.; Schripsema, J.; Deans, S.G.; Scheffer, J.J.C. Hairy root cultures of Anethum graveolens (dill): Establishment, growth, time-course study of their essential oil and its comparison with parent plant oils. Biotechnol. Lett. 2002, 24, 1031–1036. [Google Scholar] [CrossRef]
- Figueiredo, A.C.; Salomé, M.; Pais, S.; Scheffer, J.J.C. Composition of the essential oil from cell suspension cultures of Achillea millefolium ssp. millefolium. Plant Cell Tissue Organ Cult. 1995, 40, 113–118. [Google Scholar] [CrossRef]
- Lourenço, P.M.L.; Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G.; Oliveira, M.M.; Deans, S.G.; Scheffer, J.J.C. Essential oils from hairy root cultures and from plant roots of Achillea millefolium. Phytochemistry 1999, 51, 637–642. [Google Scholar] [CrossRef]
- Pan, X.-W.; Han, L.; Zhang, Y.-H.; Chen, D.-F.; Simonsen, H.T. Sclareol production in the moss Physcomitrella patens and observations on growth and terpenoid biosynthesis. Plant Biotechnol. Rep. 2015, 9, 149–159. [Google Scholar] [CrossRef]
- Vaccaro, M.C.; Alfieri, M.; De Tommasi, N.; Moses, T.; Goossens, A.; Leone, A. Boosting the synthesis of pharmaceutically active abietane diterpenes in S. sclarea hairy roots by engineering the GGPPS and CPPS genes. Front. Plant Sci. 2020, 11, 924. [Google Scholar] [CrossRef] [PubMed]
- Bringi, V.; Kadkade, P.; Prince, C.; Roach, B. Enhanced production of paclitaxel and taxanes by cell cultures of Taxus species. U.S. Patent 8,338,143, 25 December 2012. [Google Scholar]
- Sykłowska-Baranek, K.; Sygitowicz, G.; Maciejak-Jastrzębska, A.; Pietrosiuk, A.; Szakiel, A. Application of Priming Strategy for Enhanced Paclitaxel Biosynthesis in Taxus× Media Hairy Root Cultures. Cells 2022, 11, 2062. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; Luo, X.; Ju, G.; Li, L.; Huang, S.; Zhang, T.; Wang, H.; Kai, G. Enhanced diterpene tanshinone accumulation and bioactivity of transgenic Salvia miltiorrhiza hairy roots by pathway engineering. J. Agric. Food Chem. 2016, 64, 2523–2530. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-K.; Kim, Y.B.; Uddin, M.R.; Lee, S.; Kim, S.-U.; Park, S.U. Enhanced triterpene accumulation in Panax ginseng hairy roots overexpressing mevalonate-5-pyrophosphate decarboxylase and farnesyl pyrophosphate synthase. ACS Synth. Biol. 2014, 3, 773–779. [Google Scholar] [CrossRef] [PubMed]
- Le, K.-C.; Im, W.-T.; Paek, K.-Y.; Park, S.-Y. Biotic elicitation of ginsenoside metabolism of mutant adventitious root culture in Panax ginseng. Appl. Microbiol. Biotechnol. 2018, 102, 1687–1697. [Google Scholar] [CrossRef] [PubMed]
- Biswas, T.; Pandey, S.S.; Maji, D.; Gupta, V.; Kalra, A.; Singh, M.; Mathur, A.; Mathur, A. Enhanced expression of ginsenoside biosynthetic genes and in vitro ginsenoside production in elicited Panax sikkimensis (Ban) cell suspensions. Protoplasma 2018, 255, 1147–1160. [Google Scholar] [CrossRef] [PubMed]
- Woragidbumrung, K.-o.; Sae-Tang, P.; Yao, H.; Han, J.; Chauvatcharin, S.; Zhong, J.-J. Impact of conditioned medium on cell cultures of Panax notoginseng in an airlift bioreactor. Process Biochem. 2001, 37, 209–213. [Google Scholar] [CrossRef]
- Kim, Y.-K.; Kim, J.K.; Kim, Y.B.; Lee, S.; Kim, S.-U.; Park, S.U. Enhanced Accumulation of Phytosterol and Triterpene in Hairy Root Cultures of Platycodon grandiflorum by Overexpression of Panax ginseng 3-Hydroxy-3-methylglutaryl-coenzyme A Reductase. J. Agric. Food Chem. 2013, 61, 1928–1934. [Google Scholar] [CrossRef]
- Alsoufi, A.S.M.; Pączkowski, C.; Szakiel, A.; Długosz, M. Effect of jasmonic acid and chitosan on triterpenoid production in Calendula officinalis hairy root cultures. Phytochem. Lett. 2019, 31, 5–11. [Google Scholar] [CrossRef]
- Wiktorowska, E.; Długosz, M.; Janiszowska, W. Significant enhancement of oleanolic acid accumulation by biotic elicitors in cell suspension cultures of Calendula officinalis L. Enzym. Microb. Technol. 2010, 46, 14–20. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, L.; Huo, Y.; Feng, J.; Ma, Z.; Zhang, X.; Zhu, C. Enhanced production of celastrol in Tripterygium wilfordii hairy root cultures by overexpression of TwSQS2. Biochem. Eng. J. 2020, 161, 107681. [Google Scholar] [CrossRef]
- Saeed, B.; Das, M.; Khurana, P. Overexpression of β-carotene hydroxylase1 (BCH1) in Indian mulberry, Morus indica cv. K2, confers tolerance against UV, high temperature and high irradiance stress induced oxidative damage. Plant Cell Tissue Organ Cult. 2015, 120, 1003–1014. [Google Scholar] [CrossRef]
- Oleszkiewicz, T.; Kruczek, M.; Baranski, R. Repression of carotenoid accumulation by nitrogen and NH4+ supply in carrot callus cells in vitro. Plants 2021, 10, 1813. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.-C.; Zhong, Y.-J.; Liu, J.; Sandmann, G.; Chen, F. Metabolic engineering of tomato for high-yield production of astaxanthin. Metab. Eng. 2013, 17, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.-J.; Yoshida, T. High-density cultivation of Perilla frutescens cell suspensions for anthocyanin production: Effects of sucrose concentration and inoculum size. Enzym. Microb. Technol. 1995, 17, 1073–1079. [Google Scholar] [CrossRef]
- Appelhagen, I.; Wulff-Vester, A.K.; Wendell, M.; Hvoslef-Eide, A.-K.; Russell, J.; Oertel, A.; Martens, S.; Mock, H.-P.; Martin, C.; Matros, A. Colour bio-factories: Towards scale-up production of anthocyanins in plant cell cultures. Metab. Eng. 2018, 48, 218–232. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Akita, M.; Sakamoto, K.; Liu, H.; Shigeoka, T.; Koyano, T.; Kawamura, M.; Furuya, T. Large-scale production of anthocyanin by Aralia cordata cell suspension cultures. Appl. Microbiol. Biotechnol. 1993, 40, 215–218. [Google Scholar] [CrossRef]
- Qin, Y.; Wang, D.; Fu, J.; Zhang, Z.; Qin, Y.; Hu, G.; Zhao, J. Agrobacterium rhizogenes-mediated hairy root transformation as an efficient system for gene function analysis in Litchi chinensis. Plant Methods 2021, 17, 103. [Google Scholar] [CrossRef]
- Trotin, F.; Moumou, Y.; Vasseur, J. Flavanol production by Fagopyrum esculentum hairy and normal root cultures. Phytochemistry 1993, 32, 929–931. [Google Scholar] [CrossRef]
- Bulgakov, V.P.; Tchernoded, G.; Veselova, M.; Fedoreyev, S.; Muzarok, T.; Zhuravlev, Y. Catechin production in cultured cells of Taxus cuspidata and Taxus baccata. Biotechnol. Lett. 2011, 33, 1879–1883. [Google Scholar] [CrossRef]
- Yin, Q.; Han, X.; Han, Z.; Chen, Q.; Shi, Y.; Gao, H.; Zhang, T.; Dong, G.; Xiong, C.; Song, C. Genome-wide analyses reveals a glucosyltransferase involved in rutin and emodin glucoside biosynthesis in tartary buckwheat. Food Chem. 2020, 318, 126478. [Google Scholar] [CrossRef] [PubMed]
- Ho, T.-T.; Lee, J.-D.; Ahn, M.-S.; Kim, S.-W.; Park, S.-Y. Enhanced production of phenolic compounds in hairy root cultures of Polygonum multiflorum and its metabolite discrimination using HPLC and FT-IR methods. Appl. Microbiol. Biotechnol. 2018, 102, 9563–9575. [Google Scholar] [CrossRef] [PubMed]
- Thiruvengadam, M.; Rekha, K.; Rajakumar, G.; Lee, T.-J.; Kim, S.-H.; Chung, I.-M. Enhanced production of anthraquinones and phenolic compounds and biological activities in the cell suspension cultures of Polygonum multiflorum. Int. J. Mol. Sci. 2016, 17, 1912. [Google Scholar] [CrossRef] [PubMed]
- Ho, T.-T.; Lee, K.-J.; Lee, J.-D.; Bhushan, S.; Paek, K.-Y.; Park, S.-Y. Adventitious root culture of Polygonum multiflorum for phenolic compounds and its pilot-scale production in 500 L-tank. Plant Cell Tissue Organ Cult. 2017, 130, 167–181. [Google Scholar] [CrossRef]
- Ong, S.; Ling, A.; Poospooragi, R.; Moosa, S. Production of Flavonoid compounds in cell cultures of Ficus deltoidea as influenced by medium composition. Int. J. Med. Aromat. Plants 2011, 1, 62–74. [Google Scholar]
- Anil Kumar, M.; Sravanthi Pammi, S.; Sukanya, M.; Giri, A. Enhanced production of pharmaceutically important isoflavones from hairy root rhizoclones of Trifolium pratense L. Vitr. Cell. Dev.-Pl. 2018, 54, 94–103. [Google Scholar] [CrossRef]
- Shinde, A.N.; Malpathak, N.; Fulzele, D.P. Optimized production of isoflavones in cell cultures of Psoralea corylifolia L. using elicitation and precursor feeding. Biotechnol. Bioprocess Eng. 2009, 14, 612–618. [Google Scholar] [CrossRef]
- Yang, T.; Fang, L.; Nopo-Olazabal, C.; Condori, J.; Nopo-Olazabal, L.; Balmaceda, C.; Medina-Bolivar, F. Enhanced production of resveratrol, piceatannol, arachidin-1, and arachidin-3 in hairy root cultures of peanut co-treated with methyl jasmonate and cyclodextrin. J. Agric. Food Chem. 2015, 63, 3942–3950. [Google Scholar] [CrossRef]
- Donnez, D.; Kim, K.-H.; Antoine, S.; Conreux, A.; De Luca, V.; Jeandet, P.; Clément, C.; Courot, E. Bioproduction of resveratrol and viniferins by an elicited grapevine cell culture in a 2 L stirred bioreactor. Process Biochem. 2011, 46, 1056–1062. [Google Scholar] [CrossRef]
- Garcia, B.M.P. Method for the production of resveratrol in cell cultures. U.S. Patent 7309591B2, 18 December 2007. [Google Scholar]
- Su, W.; Lei, F.; Kao, N. High density cultivation of Anchusa officinalis in a stirred-tank bioreactor with in situ filtration. Appl. Microbiol. Biotechnol. 1995, 44, 293–299. [Google Scholar] [CrossRef]
- Wu, C.-H.; Murthy, H.N.; Hahn, E.-J.; Paek, K.-Y. Large-scale cultivation of adventitious roots of Echinacea purpurea in airlift bioreactors for the production of chichoric acid, chlorogenic acid and caftaric acid. Biotechnol. Lett. 2007, 29, 1179–1182. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, Y.; Fukui, H.; Tabata, M. Berberine production by batch and semi-continuous cultures of immobilized Thalictrum cells in an improved bioreactor. Plant Cell Rep. 1988, 7, 249–252. [Google Scholar] [CrossRef] [PubMed]
- Yukimune, Y.; Hara, Y.; Yamada, Y. Tropane alkaloid production in root cultures of Duboisia myoporoides obtained by repeated selection. Biosci. Biotechnol. Biochem. 1994, 58, 1443–1446. [Google Scholar] [CrossRef]
- Zhao, B.; Agblevor, F.A.; KC, R.; Jelesko, J.G. Enhanced production of the alkaloid nicotine in hairy root cultures of Nicotiana tabacum L. Plant Cell Tissue Organ Cult. 2013, 113, 121–129. [Google Scholar] [CrossRef]
- Mantell, S.; Pearson, D.; Hazell, L.; Smith, H. The effect of initial phosphate and sucrose levels on nicotine accumulation in batch suspension cultures of Nicotiana tabacum L. Plant Cell Rep. 1983, 2, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Saito, K.; Sudo, H.; Yamazaki, M.; Koseki-Nakamura, M.; Kitajima, M.; Takayama, H.; Aimi, N. Feasible production of camptothecin by hairy root culture of Ophiorrhiza pumila. Plant Cell Rep. 2001, 20, 267–271. [Google Scholar] [CrossRef]
- Shi, M.; Gong, H.; Cui, L.; Wang, Q.; Wang, C.; Wang, Y.; Kai, G. Targeted metabolic engineering of committed steps improves anti-cancer drug camptothecin production in Ophiorrhiza pumila hairy roots. Ind. Crops Prod. 2020, 148, 112277. [Google Scholar] [CrossRef]
- Siah, C.L.; Doran, P.M. Enhanced codeine and morphine production in suspended Papaver somniferum cultures after removal of exogenous hormones. Plant Cell Rep. 1991, 10, 349–353. [Google Scholar] [CrossRef]
- Le Flem-Bonhomme, V.; Laurain-Mattar, D.; Fliniaux, M. Hairy root induction of Papaver somniferum var. album, a difficult-to-transform plant, by A. rhizogenes LBA 9402. Planta 2004, 218, 890–893. [Google Scholar] [CrossRef]
- Behzadirad, M.; Naghavi, M.; Shahnejat Bushehri, A. Importance of hormonal elicitors in inducing morphine biosynthesis in the cell culture of Papaver bracteatum Lindl. J. Agric. Sci. Technol. 2020, 22, 261–270. [Google Scholar]
- Sharafi, A.; Sohi, H.H.; Mousavi, A.; Azadi, P.; Khalifani, B.H.; Razavi, K. Metabolic engineering of morphinan alkaloids by over-expression of codeinone reductase in transgenic hairy roots of Papaver bracteatum, the Iranian poppy. Biotechnol. Lett. 2013, 35, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, S.M.; Naghavi, M.R. Production and gene expression of morphinan alkaloids in hairy root culture of Papaver orientale L. using abiotic elicitors. Plant Cell Tissue Organ Cult. 2016, 125, 31–41. [Google Scholar] [CrossRef]
- Peebles, C.A.; Hughes, E.H.; Shanks, J.V.; San, K.-Y. Transcriptional response of the terpenoid indole alkaloid pathway to the overexpression of ORCA3 along with jasmonic acid elicitation of Catharanthus roseus hairy roots over time. Metab. Eng. 2009, 11, 76–86. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Peebles, C.A.M. Engineering overexpression of ORCA3 and strictosidine glucosidase in Catharanthus roseus hairy roots increases alkaloid production. Protoplasma 2016, 253, 1255–1264. [Google Scholar] [CrossRef] [PubMed]
- Malik, S.; Cusidó, R.M.; Mirjalili, M.H.; Moyano, E.; Palazón, J.; Bonfill, M. Production of the anticancer drug taxol in Taxus baccata suspension cultures: A review. Process Biochem. 2011, 46, 23–34. [Google Scholar] [CrossRef]
- Sanchez-Muñoz, R.; Moyano, E.; Khojasteh, A.; Bonfill, M.; Cusido, R.M.; Palazon, J. Genomic methylation in plant cell cultures: A barrier to the development of commercial long-term biofactories. Eng. Life Sci. 2019, 19, 872–879. [Google Scholar] [CrossRef] [PubMed]
- Deus-Neumann, B.; Zenk, M. Instability of indole alkaloid production in Catharanthus roseus cell suspension cultures. Planta Medica 1984, 50, 427–431. [Google Scholar] [CrossRef]
- Lee, E.-K.; Jin, Y.-W.; Park, J.H.; Yoo, Y.M.; Hong, S.M.; Amir, R.; Yan, Z.; Kwon, E.; Elfick, A.; Tomlinson, S.; et al. Cultured cambial meristematic cells as a source of plant natural products. Nat. Biotechnol. 2010, 28, 1213–1217. [Google Scholar] [CrossRef]
- Gantait, S.; Mukherjee, E. Hairy root culture technology: Applications, constraints and prospect. Appl. Microbiol. Biotechnol. 2021, 105, 35–53. [Google Scholar] [CrossRef]
- Paek, K.Y.; Murthy, H.N.; Hahn, E.J.; Zhong, J.J. Large scale culture of ginseng adventitious roots for production of ginsenosides. Adv. Biochem. Eng./Biotechnol. 2009, 113, 151–176. [Google Scholar] [PubMed]
- Muranaka, T.; Kitamura, Y.; Ikenaga, T. Genetic transformation of Duboisia species. Transgenic Medicinal Plants 1999, 117–132. [Google Scholar]
- Wang, J.W.; Wu, J.Y. Tanshinone biosynthesis in Salvia miltiorrhiza and production in plant tissue cultures. Appl. Microbiol. Biotechnol. 2010, 88, 437–449. [Google Scholar] [CrossRef] [PubMed]
- Park, S.U.; Facchini, P.J. Agrobacterium rhizogenes-mediated transformation of opium poppy, Papaver somniferum L. and California poppy, Eschscholzia californica Cham. root cultures. J. Exp. Bot. 2000, 51, 1005–1016. [Google Scholar] [CrossRef]
- Miao, G.P.; Zhu, C.S.; Yang, Y.Q.; Feng, M.X.; Ma, Z.Q.; Feng, J.T.; Zhang, X. Elicitation and in situ adsorption enhanced secondary metabolites production of Tripterygium wilfordii Hook. f. adventitious root fragment liquid cultures in shake flask and a modified bubble column bioreactor. Bioprocess Biosyst. Eng. 2014, 37, 641–650. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Miao, G.; Guo, J.; Huo, Y.; Zhang, X.; Xie, J.; Feng, J. Establishment of Tripterygium wilfordii Hook. f. Hairy root culture and optimization of its culture conditions for the production of triptolide and wilforine. J. Microbiol. Biotechnol. 2014, 24, 823–834. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-May, E.; Galaz-Avalos, R.M.; Loyola-Vargas, V.M. Differential secretion and accumulation of terpene indole alkaloids in hairy roots of Catharanthus roseus treated with methyl jasmonate. Mol. Biotechnol. 2009, 41, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Mano, Y.; Ohkawa, H.; Yamada, Y. Production of tropane alkaloids by hairy root cultures of Duboisia leichhardtii transformed by Agrobacterium rhizogenes. Plant Sci. 1989, 59, 191–201. [Google Scholar] [CrossRef]
- Miao, G.P.; Han, J.; Zhang, J.F.; Zhu, C.S.; Zhang, X. A MDR transporter contributes to the different extracellular production of sesquiterpene pyridine alkaloids between adventitious root and hairy root liquid cultures of Tripterygium wilfordii Hook. f. Plant Mol. Biol. 2017, 95, 51–62. [Google Scholar] [CrossRef]
- Zhi, B.H.; Alfermann, A. Diterpenoid production in hairy root cultures of Salvia miltiorrhiza. Phytochemistry 1993, 32, 699–703. [Google Scholar] [CrossRef]
- Taya, M.; Mine, K.; Kino-Oka, M.; Tone, S.; Ichi, T. Production and release of pigments by culture of transformed hairy root of red beet. J. Ferment. Bioeng. 1992, 73, 31–36. [Google Scholar] [CrossRef]
- Selwal, N.; Rahayu, F.; Herwati, A.; Latifah, E.; Supriyono; Suhara, C.; Kade Suastika, I.B.; Mahayu, W.M.; Wani, A.K. Enhancing secondary metabolite production in plants: Exploring traditional and modern strategies. J. Agric. Food Res. 2023, 14, 100702. [Google Scholar] [CrossRef]
- Halder, M.; Sarkar, S.; Jha, S. Elicitation: A biotechnological tool for enhanced production of secondary metabolites in hairy root cultures. Eng. Life Sci. 2019, 19, 880–895. [Google Scholar] [CrossRef] [PubMed]
- Thakur, M.; Bhattacharya, S.; Khosla, P.K.; Puri, S. Improving production of plant secondary metabolites through biotic and abiotic elicitation. J. Appl. Res. Med. Aromat. Plants 2019, 12, 1–12. [Google Scholar] [CrossRef]
- Sohn, S.-I.; Pandian, S.; Rakkammal, K.; Largia, M.J.V.; Thamilarasan, S.K.; Balaji, S.; Zoclanclounon, Y.A.B.; Shilpha, J.; Ramesh, M. Jasmonates in plant growth and development and elicitation of secondary metabolites: An updated overview. Front. Plant Sci. 2022, 13, 942789. [Google Scholar] [CrossRef] [PubMed]
- Murthy, H.N.; Lee, E.J.; Paek, K.Y. Production of secondary metabolites from cell and organ cultures: Strategies and approaches for biomass improvement and metabolite accumulation. Plant Cell Tissue Org. 2014, 118, 1–16. [Google Scholar] [CrossRef]
- Scarpa, G.M.; Prota, V.; Schianchi, N.; Manunta, F. In vitro cultures for the production of secondary metabolites. In Secondary Metabolites-Trends and Reviews; IntechOpen: London, UK, 2022. [Google Scholar]
- Weathers, P.J.; Towler, M.J.; Xu, J. Bench to batch: Advances in plant cell culture for producing useful products. Appl. Microbiol. Biotechnol. 2010, 85, 1339–1351. [Google Scholar] [CrossRef]
- Su, W.W. Bioreactor engineering for recombinant protein production using plant cell suspension culture. Plant Tissue Cult. Eng. 2008, 6, 135–159. [Google Scholar]
- Huang, T.-K.; McDonald, K.A. Bioreactor engineering for recombinant protein production in plant cell suspension cultures. Biochem. Eng. J. 2009, 45, 168–184. [Google Scholar] [CrossRef]
- Weathers, P.; Liu, C.; Towler, M.; Wyslouzil, B. Mist reactors: Principles, comparison of various systems, and case studies. Electron J. Integr. Biosci. 2008, 3, 29–37. [Google Scholar]
- Choi, S.M.; Ho Son, S.; Rho Yun, S.; Woung Kwon, O.; Hoon Seon, J.; Yoeup Paek, K. Pilot-scale culture of adventitious roots of ginseng in a bioreactor system. Plant Cell Tissue Organ Cult. 2000, 62, 187–193. [Google Scholar] [CrossRef]
- Choi, Y.-E.; Kim, Y.-S.; Paek, K.-Y. Types and designs of bioreactors for hairy root culture. Plant Tissue Cult. Eng. 2008, 161–172. [Google Scholar]
- Verma, P.; Khan, S.A.; Alhandhali, A.J.A.; Parasharami, V.A. Bioreactor upscaling of different tissue of medicinal herbs for extraction of active phytomolecules: A step towards industrialization and enhanced production of phytochemicals. In Plant Growth Regulators: Signalling under Stress Conditions; Springer: Berlin/Heidelberg, Germany, 2021; pp. 455–481. [Google Scholar] [CrossRef]
- Murthy, H.N.; Joseph, K.S.; Paek, K.Y.; Park, S.Y. Bioreactor systems for micropropagation of plants: Present scenario and future prospects. Front. Plant Sci. 2023, 14, 1159588. [Google Scholar] [CrossRef] [PubMed]
- Farré, G.; Blancquaert, D.; Capell, T.; Van Der Straeten, D.; Christou, P.; Zhu, C. Engineering complex metabolic pathways in plants. Annu. Rev. Plant Biol. 2014, 65, 187–223. [Google Scholar] [CrossRef]
- Sun, J.; Zhao, L.; Shao, Z.; Shanks, J.; Peebles, C.A.M. Expression of tabersonine 16-hydroxylase and 16-hydroxytabersonine-O-methyltransferase in Catharanthus roseus hairy roots. Biotechnol. Bioeng. 2018, 115, 673–683. [Google Scholar] [CrossRef] [PubMed]
- Allen, R.S.; Millgate, A.G.; Chitty, J.A.; Thisleton, J.; Miller, J.A.; Fist, A.J.; Gerlach, W.L.; Larkin, P.J. RNAi-mediated replacement of morphine with the nonnarcotic alkaloid reticuline in opium poppy. Nat. Biotechnol. 2004, 22, 1559–1566. [Google Scholar] [CrossRef] [PubMed]
- Deng, C.; Wu, Y.; Lv, X.; Li, J.; Liu, Y.; Du, G.; Chen, J.; Liu, L. Refactoring transcription factors for metabolic engineering. Biotechnol. Adv. 2022, 57, 107935. [Google Scholar] [CrossRef] [PubMed]
- Mora-Vásquez, S.; Wells-Abascal, G.G.; Espinosa-Leal, C.; Cardineau, G.A.; García-Lara, S. Application of metabolic engineering to enhance the content of alkaloids in medicinal plants. Metab. Eng. Commun. 2022, 14, e00194. [Google Scholar] [CrossRef] [PubMed]
- van der Hoek, S.A.; Borodina, I. Transporter engineering in microbial cell factories: The ins, the outs, and the in-betweens. Curr. Opin. Biotechnol. 2020, 66, 186–194. [Google Scholar] [CrossRef]
- Yue, W.; Ming, Q.-l.; Lin, B.; Rahman, K.; Zheng, C.-J.; Han, T.; Qin, L.-p. Medicinal plant cell suspension cultures: Pharmaceutical applications and high-yielding strategies for the desired secondary metabolites. Crit. Rev. Biotechnol. 2016, 36, 215–232. [Google Scholar] [CrossRef]
- Wu, X.; Liu, J.; Liu, Z.; Gong, G.; Zha, J. Microbial cell surface engineering for high-level synthesis of bio-products. Biotechnol. Adv. 2022, 55, 107912. [Google Scholar] [CrossRef]
- Ahmed, M.S.; Lauersen, K.J.; Ikram, S.; Li, C. Efflux transporters’ engineering and their application in microbial production of heterologous metabolites. ACS Synth. Biol. 2021, 10, 646–669. [Google Scholar] [CrossRef] [PubMed]
- Nogia, P.; Pati, P.K. Plant secondary metabolite transporters: Diversity, functionality, and their modulation. Front. Plant Sci. 2021, 12, 758202. [Google Scholar] [CrossRef] [PubMed]
- Lefèvre, F.; Boutry, M. Towards identification of the substrates of ATP-binding cassette transporters. Plant Physiol. 2018, 178, 18–39. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, N.; Kar, D.; Deepak Mahajan, B.; Nanda, S.; Rahiman, R.; Panchakshari, N.; Bhagavatula, L.; Datta, S. The multitasking abilities of MATE transporters in plants. J. Exp. Bot. 2019, 70, 4643–4656. [Google Scholar] [CrossRef] [PubMed]
- Shoji, T. ATP-binding cassette and multidrug and toxic compound extrusion transporters in plants: A common theme among diverse detoxification mechanisms. Int. Rev. Cell Mol. Biol. 2014, 309, 303–346. [Google Scholar] [PubMed]
- Gani, U.; Vishwakarma, R.A.; Misra, P. Membrane transporters: The key drivers of transport of secondary metabolites in plants. Plant Cell Rep. 2021, 40, 1–18. [Google Scholar] [CrossRef]
- Dahuja, A.; Kumar, R.R.; Sakhare, A.; Watts, A.; Singh, B.; Goswami, S.; Sachdev, A.; Praveen, S. Role of ATP-binding cassette transporters in maintaining plant homeostasis under abiotic and biotic stresses. Physiol Plant. 2021, 171, 785–801. [Google Scholar] [CrossRef]
- Pomahačová, B.; Dušek, J.; Dušková, J.; Yazaki, K.; Roytrakul, S.; Verpoorte, R. Improved accumulation of ajmalicine and tetrahydroalstonine in Catharanthus cells expressing an ABC transporter. J. Plant Physiol. 2009, 166, 1405–1412. [Google Scholar] [CrossRef]
- Miao, G.; Han, J.; Huo, Y.B.; Wang, C.R.; Wang, S.C. Identification and functional characterization of a PDR transporter in Tripterygium wilfordii Hook. f. that mediates the efflux of triptolide. Plant Mol. Biol. 2021, 106, 145–156. [Google Scholar] [CrossRef]
- Aryal, B.; Laurent, C.; Geisler, M. Learning from each other: ABC transporter regulation by protein phosphorylation in plant and mammalian systems. Biochem. Soc. Trans. 2015, 43, 966–974. [Google Scholar] [CrossRef]
- Han, J.; Liu, C.-X.; Liu, J.; Wang, C.-R.; Wang, S.-C.; Miao, G. AGC kinases OXI1 and AGC2-2 regulate camalexin secretion and disease resistance by phosphorylating transporter PDR6. Plant Physiol. 2024, kiae186. [Google Scholar] [CrossRef]
- Zeevi, V.; Liang, Z.; Arieli, U.; Tzfira, T. Zinc finger nuclease and homing endonuclease-mediated assembly of multigene plant transformation vectors. Plant Physiol. 2012, 158, 132–144. [Google Scholar] [CrossRef]
- Kok, S.D.; Stanton, L.H.; Slaby, T.; Durot, M.; Holmes, V.F.; Patel, K.G.; Platt, D.; Shapland, E.B.; Serber, Z.; Dean, J.; et al. Rapid and reliable dna assembly via ligase cycling reaction. ACS Synth. Biol. 2014, 3, 97–106. [Google Scholar] [CrossRef]
- Engler, C.; Kandzia, R.; Marillonnet, S. A one pot, one step, precision cloning method with high throughput capability. PloS ONE 2008, 3, e3647. [Google Scholar] [CrossRef]
- Lin, L.; Liu, Y.-G.; Xu, X.; Li, B. Efficient linking and transfer of multiple genes by a multigene assembly and transformation vector system. Proc. Natl. Acad. Sci. USA 2003, 100, 5962–5967. [Google Scholar] [CrossRef] [PubMed]
- Buntru, M.; Gärtner, S.; Staib, L.; Kreuzaler, F.; Schlaich, N. Delivery of multiple transgenes to plant cells by an improved version of MultiRound Gateway technology. Transgenic Res. 2013, 22, 153–167. [Google Scholar] [CrossRef] [PubMed]
- Gibson, D.G.; Young, L.; Chuang, R.-Y.; Venter, J.C.; Hutchison III, C.A.; Smith, H.O. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 2009, 6, 343–345. [Google Scholar] [CrossRef]
- Gibson, D.G.; Benders, G.A.; Axelrod, K.C.; Zaveri, J.; Algire, M.A.; Moodie, M.; Montague, M.G.; Venter, J.C.; Smith, H.O.; Hutchison, C.A. One-step assembly in yeast of 25 overlapping DNA fragments to form a complete synthetic Mycoplasma genitalium genome. Proc. Natl. Acad. Sci. USA 2008, 105, 20404–20409. [Google Scholar] [CrossRef] [PubMed]
- Zorrilla López, U.; Masip Vilà, G.; Arjó Pont, G.; Bai, C.; Banakar, R.; Bassie Rene, L.; Berman Quintana, J.; Farré Martinez, G.; Miralpeix i Anglada, B.; Pérez Massot, E. Engineering metabolic pathways in plants by multigene transformation. Int. J. Dev. Biol. 2013, 57, 565–576. [Google Scholar] [CrossRef]
- Zhu, Q.; Wang, B.; Tan, J.; Liu, T.; Li, L.; Liu, Y.-G. Plant Synthetic Metabolic Engineering for Enhancing Crop Nutritional Quality. Plant Commun. 2020, 1, 100017. [Google Scholar] [CrossRef]
- Rizzo, P.; Chavez, B.G.; Leite Dias, S.; D’Auria, J.C. Plant synthetic biology: From inspiration to augmentation. Curr. Opin. Biotechnol. 2023, 79, 102857. [Google Scholar] [CrossRef] [PubMed]
- Azizi-Dargahlou, S.; Pouresmaeil, M. Agrobacterium tumefaciens-mediated plant transformation: A Review. Mol. Biotechnol. 2023, 1–18. [Google Scholar] [CrossRef]
- Gomide, M.d.S.; Leitão, M.d.C.; Coelho, C.M. Biocircuits in plants and eukaryotic algae. Front. Plant Sci. 2022, 13, 982959. [Google Scholar] [CrossRef]
- Matzke, A.J.; Matzke, M.A. Position effects and epigenetic silencing of plant transgenes. Curr. Opin. Plant Biol. 1998, 1, 142–148. [Google Scholar] [CrossRef]
- Birchler, J.A.; Swyers, N.C. Engineered minichromosomes in plants. Exp. Cell Res. 2020, 388, 111852. [Google Scholar] [CrossRef] [PubMed]
- Kan, M.; Huang, T.; Zhao, P. Artificial chromosome technology and its potential application in plants. Front. Plant Sci. 2022, 13, 970943. [Google Scholar] [CrossRef]
- Kwan, B.D.; Seligmann, B.; Nguyen, T.D.; Franke, J.; Dang, T.T. Leveraging synthetic biology and metabolic engineering to overcome obstacles in plant pathway elucidation. Curr. Opin. Plant Biol. 2023, 71, 102330. [Google Scholar] [CrossRef] [PubMed]
- Dugé de Bernonville, T.; Papon, N.; Clastre, M.; O’Connor, S.E.; Courdavault, V. Identifying missing biosynthesis enzymes of plant natural products. Trends Pharmacol. Sci. 2020, 41, 142–146. [Google Scholar] [CrossRef]
- Caputi, L.; Franke, J.; Farrow, S.C.; Chung, K.; Payne, R.M.E.; Nguyen, T.-D.; Dang, T.-T.T.; Soares Teto Carqueijeiro, I.; Koudounas, K.; Dugé de Bernonville, T.; et al. Missing enzymes in the biosynthesis of the anticancer drug vinblastine in Madagascar periwinkle. Science 2018, 360, 1235–1239. [Google Scholar] [CrossRef]
- De La Peña, R.; Sattely, E.S. Rerouting plant terpene biosynthesis enables momilactone pathway elucidation. Nat. Chem. Biol. 2021, 17, 205–212. [Google Scholar] [CrossRef]
- Liu, W.; Xu, X.; Zhang, R.; Cheng, T.; Cao, Y.; Li, X.; Guo, J.; Liu, H.; Xian, M. Engineering Escherichia coli for high-yield geraniol production with biotransformation of geranyl acetate to geraniol under fed-batch culture. Biotechnol. Biofuels 2016, 9, 58. [Google Scholar]
- Jiang, G.-Z.; Yao, M.-D.; Wang, Y.; Zhou, L.; Song, T.-Q.; Liu, H.; Xiao, W.-H.; Yuan, Y.-J. Manipulation of GES and ERG20 for geraniol overproduction in Saccharomyces cerevisiae. Metab. Eng. 2017, 41, 57–66. [Google Scholar] [CrossRef]
- Zhao, J.; Li, C.; Zhang, Y.; Shen, Y.; Hou, J.; Bao, X. Dynamic control of ERG20 expression combined with minimized endogenous downstream metabolism contributes to the improvement of geraniol production in Saccharomyces cerevisiae. Microb. Cell Factories 2017, 16, 17. [Google Scholar] [CrossRef]
- Willrodt, C.; David, C.; Cornelissen, S.; Bühler, B.; Julsing, M.K.; Schmid, A. Engineering the productivity of recombinantEscherichia colifor limonene formation from glycerol in minimal media. Biotechnol. J. 2014, 9, 1000–1012. [Google Scholar] [CrossRef]
- Cheng, S.; Liu, X.; Jiang, G.; Wu, J.; Zhang, J.-l.; Lei, D.; Yuan, Y.-J.; Qiao, J.; Zhao, G.-R. Orthogonal engineering of biosynthetic pathway for efficient production of limonene in Saccharomyces cerevisiae. ACS Synth. Biol. 2019, 8, 968–975. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Nie, Q.; Ren, M.; Feng, H.; Jiang, X.; Zheng, Y.; Liu, M.; Zhang, H.; Xian, M. Metabolic engineering of Escherichia coli for the biosynthesis of alpha-pinene. Biotechnol. Biofuels 2013, 6, 60. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Du, Y.; Xu, N.; Yue, C.; Ye, L. Improved linalool production in Saccharomyces cerevisiae by combining directed evolution of linalool synthase and overexpression of the complete mevalonate pathway. Biochem. Eng. J. 2020, 161, 107655. [Google Scholar] [CrossRef]
- Ma, B.; Liu, M.; Li, Z.-H.; Tao, X.; Wei, D.-Z.; Wang, F.-Q. Significantly enhanced production of patchoulol in metabolically engineered Saccharomyces cerevisiae. J. Agric. Food Chem. 2019, 67, 8590–8598. [Google Scholar] [CrossRef] [PubMed]
- Mitsui, R.; Nishikawa, R.; Yamada, R.; Matsumoto, T.; Ogino, H. Construction of yeast producing patchoulol by global metabolic engineering strategy. Biotechnol. Bioeng. 2020, 117, 1348–1356. [Google Scholar] [CrossRef]
- Paddon, C.J.; Westfall, P.J.; Pitera, D.J.; Benjamin, K.; Fisher, K.; McPhee, D.; Leavell, M.D.; Tai, A.; Main, A.; Eng, D.; et al. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 2013, 496, 528–532. [Google Scholar] [CrossRef]
- Lenihan, J.R.; Tsuruta, H.; Diola, D.; Renninger, N.S.; Regentin, R. Developing an industrial artemisinic acid fermentation process to support the cost-effective production of antimalarial artemisinin-based combination therapies. Biotechnol. Prog. 2008, 24, 1026–1032. [Google Scholar] [CrossRef]
- Cao, X.; Yu, W.; Chen, Y.; Yang, S.; Zhao, Z.K.; Nielsen, J.; Luan, H.; Zhou, Y.J. Engineering yeast for high-level production of diterpenoid sclareol. Metab. Eng. 2023, 75, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Schalk, M.; Pastore, L.; Mirata, M.A.; Khim, S.; Schouwey, M.; Deguerry, F.; Pineda, V.; Rocci, L.; Daviet, L. Toward a biosynthetic route to sclareol and amber odorants. J. Am. Chem. Soc. 2012, 134, 18900–18903. [Google Scholar] [CrossRef] [PubMed]
- Ajikumar, P.K.; Xiao, W.-H.; Tyo, K.E.J.; Wang, Y.; Simeon, F.; Leonard, E.; Mucha, O.; Phon, T.H.; Pfeifer, B.; Stephanopoulos, G. Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli. Science 2010, 330, 70–74. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Chen, W.; Dong, T.; Wang, Y.; Yao, M.; Xiao, W.; Li, B. Elimination of enzymes catalysis compartmentalization enhancing taxadiene production in Saccharomyces cerevisiae. Front. Bioeng. Biotechnol. 2023, 11, 1141272. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Zhou, J.; Tong, Y.; Su, P.; Li, X.; Liu, Y.; Liu, N.; Wu, X.; Zhang, Y.; Wang, J.; et al. Engineering chimeric diterpene synthases and isoprenoid biosynthetic pathways enables high-level production of miltiradiene in yeast. Metab. Eng. 2020, 60, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Zhou, Y.J.; Hillwig, M.L.; Shen, Y.; Yang, L.; Wang, Y.; Zhang, X.; Liu, W.; Peters, R.J.; Chen, X. CYP76AH1 catalyzes turnover of miltiradiene in tanshinones biosynthesis and enables heterologous production of ferruginol in yeasts. Proc. Natl. Acad. Sci. USA 2013, 110, 12108–12113. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Y.; Yang, G.-Y.; Chen, X.; Liu, Q.; Zhang, X.; Deng, Z.; Feng, Y. Biosynthesis of plant-derived ginsenoside Rh2 in yeast via repurposing a key promiscuous microbial enzyme. Metab. Eng. 2017, 42, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Wei, W.; Ye, W.; Li, X.; Zhao, W.; Yang, C.; Li, C.; Yan, X.; Zhou, Z. Synthesizing ginsenoside Rh2 in Saccharomyces cerevisiae cell factory at high-efficiency. Cell Discov. 2019, 5, 5. [Google Scholar] [CrossRef]
- Zhu, M.; Wang, C.; Sun, W.; Zhou, A.; Wang, Y.; Zhang, G.; Zhou, X.; Huo, Y.; Li, C. Boosting 11-oxo-β-amyrin and glycyrrhetinic acid synthesis in Saccharomyces cerevisiae via pairing novel oxidation and reduction system from legume plants. Metab. Eng. 2018, 45, 43–50. [Google Scholar] [CrossRef]
- Yu, Y.; Rasool, A.; Liu, H.; Lv, B.; Chang, P.; Song, H.; Wang, Y.; Li, C. Engineering Saccharomyces cerevisiae for high yield production of α-amyrin via synergistic remodeling of α-amyrin synthase and expanding the storage pool. Metab. Eng. 2020, 62, 72–83. [Google Scholar] [CrossRef]
- Zhao, Y.; Fan, J.; Wang, C.; Feng, X.; Li, C. Enhancing oleanolic acid production in engineered Saccharomyces cerevisiae. Bioresour. Technol. 2018, 257, 339–343. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Hansen, N.L.; Duan, Y.-T.; Prasad, M.; Motawia, M.S.; Møller, B.L.; Pateraki, I.; Staerk, D.; Bak, S.; Miettinen, K.; et al. Biosynthesis and biotechnological production of the anti-obesity agent celastrol. Nat. Chem. 2023, 15, 1236–1246. [Google Scholar] [CrossRef] [PubMed]
- Shi, B.; Ma, T.; Ye, Z.; Li, X.; Huang, Y.; Zhou, Z.; Ding, Y.; Deng, Z.; Liu, T. Systematic metabolic engineering of Saccharomyces cerevisiae for lycopene overproduction. J. Agric. Food Chem. 2019, 67, 11148–11157. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Miao, L.; Li, Q.; Dai, G.; Lu, F.; Liu, T.; Zhang, X.; Ma, Y. Production of lycopene by metabolically-engineered Escherichia coli. Biotechnol. Lett. 2014, 36, 1515–1522. [Google Scholar] [CrossRef] [PubMed]
- Yan, G.-l.; Wen, K.-r.; Duan, C.-q. Enhancement of β-carotene production by over-expression of hmg-coa reductase coupled with addition of ergosterol biosynthesis inhibitors in recombinant Saccharomyces cerevisiae. Curr. Microbiol. 2011, 64, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.; Liu, M.; Lv, X.; Lu, W.; Gu, J.; Yu, H. Construction of a controllable β-carotene biosynthetic pathway by decentralized assembly strategy in Saccharomyces cerevisiae. Biotechnol. Bioeng. 2014, 111, 125–133. [Google Scholar] [CrossRef]
- Zhou, P.; Xie, W.; Yao, Z.; Zhu, Y.; Ye, L.; Yu, H. Development of a temperature-responsive yeast cell factory using engineered Gal4 as a protein switch. Biotechnol. Bioeng. 2018, 115, 1321–1330. [Google Scholar] [CrossRef] [PubMed]
- Jiang, G.; Yang, Z.; Wang, Y.; Yao, M.; Chen, Y.; Xiao, W.; Yuan, Y. Enhanced astaxanthin production in yeast via combined mutagenesis and evolution. Biochem. Eng. J. 2020, 156, 107519. [Google Scholar] [CrossRef]
- Kim, B.-G. Biological synthesis of genistein in Escherichia coli. J. Microbiol. Biotechnol. 2020, 30, 770–776. [Google Scholar] [CrossRef]
- Meng, Y.; Liu, X.; Zhang, L.; Zhao, G.-R. Modular Engineering of Saccharomyces cerevisiae for de novo biosynthesis of genistein. Microorganisms 2022, 10, 1402. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, Y.; Li, G.; Savolainen, O.; Chen, Y.; Nielsen, J. De novo biosynthesis of bioactive isoflavonoids by engineered yeast cell factories. Nat. Commun. 2021, 12, 6085. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wu, B.-H.; Liu, Z.-N.; Qiao, J.; Zhao, G.-R. Combinatorial optimization of resveratrol production in engineered E. coli. J. Agric. Food Chem. 2018, 66, 13444–13453. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Diao, M.; Wang, Q.; Peng, L.; Li, J.; Xie, N. Efficient biosynthesis of resveratrol via combining phenylalanine and tyrosine pathways in Saccharomyces cerevisiae. Microb. Cell Factories 2023, 22, 46. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Yang, B.; Yi, Z.; Hu, L.; Li, M. Engineering Saccharomyces cerevisiae coculture platform for the production of flavonoids. J. Agric. Food Chem. 2020, 68, 2146–2154. [Google Scholar] [CrossRef] [PubMed]
- Tartik, M.; Liu, J.; Mohedano, M.T.; Mao, J.; Chen, Y. Optimizing yeast for high-level production of kaempferol and quercetin. Microb. Cell Factories 2023, 22, 74. [Google Scholar] [CrossRef] [PubMed]
- Eichenberger, M.; Hansson, A.; Fischer, D.; Dürr, L.; Naesby, M. De novo biosynthesis of anthocyanins in Saccharomyces cerevisiae. FEMS Yeast Res. 2018, 18, foy046. [Google Scholar] [CrossRef]
- Lim, C.G.; Wong, L.; Bhan, N.; Dvora, H.; Xu, P.; Venkiteswaran, S.; Koffas, M.A.G.; Kelly, R.M. Development of a recombinant Escherichia coli strain for overproduction of the plant pigment anthocyanin. Appl. Environ. Microbiol. 2015, 81, 6276–6284. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Jones, J.A.; Lachance, D.M.; Bhan, N.; Khalidi, O.; Venkataraman, S.; Wang, Z.; Koffas, M.A.G. Improvement of catechin production in Escherichia coli through combinatorial metabolic engineering. Metab. Eng. 2015, 28, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, R.; Liu, T.; Zhan, Z.; Kang, L.; Wang, Y.; Lv, C.; Werck-Reichhart, D.; Guo, L.; Huang, L. Production of 3-geranyl-4-hydroxybenzoate acid in yeast, an important intermediate of shikonin biosynthesis pathway. FEMS Yeast Res. 2017, 17, fox065. [Google Scholar] [CrossRef]
- Rodriguez, A.; Kildegaard, K.R.; Li, M.; Borodina, I.; Nielsen, J. Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis. Metab. Eng. 2015, 31, 181–188. [Google Scholar] [CrossRef]
- Li, Z.; Wang, X.; Zhang, H. Balancing the non-linear rosmarinic acid biosynthetic pathway by modular co-culture engineering. Metab. Eng. 2019, 54, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, P.; Smolke, C.D. Engineering cellular metabolite transport for biosynthesis of computationally predicted tropane alkaloid derivatives in yeast. Proc. Natl. Acad. Sci. USA 2021, 118, e2104460118. [Google Scholar] [CrossRef]
- Urui, M.; Yamada, Y.; Ikeda, Y.; Nakagawa, A.; Sato, F.; Minami, H.; Shitan, N. Establishment of a co-culture system using Escherichia coli and Pichia pastoris (Komagataella phaffii) for valuable alkaloid production. Microb. Cell Factories 2021, 20, 200. [Google Scholar] [CrossRef] [PubMed]
- Guo, D.; Kong, S.; Sun, Y.; Li, X.; Pan, H. Development of an artificial biosynthetic pathway for biosynthesis of (S)-reticuline based on HpaBC in engineered Escherichia coli. Biotechnol. Bioeng. 2021, 118, 4635–4642. [Google Scholar] [CrossRef] [PubMed]
- Pyne, M.E.; Kevvai, K.; Grewal, P.S.; Narcross, L.; Choi, B.; Bourgeois, L.; Dueber, J.E.; Martin, V.J.J. A yeast platform for high-level synthesis of tetrahydroisoquinoline alkaloids. Nat. Commun. 2020, 11, 3337. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Li, S. De novo biosynthesis of berberine and halogenated benzylisoquinoline alkaloids in Saccharomyces cerevisiae. Commun. Chem. 2023, 6, 27. [Google Scholar] [CrossRef]
- Zhang, J.; Hansen, L.G.; Gudich, O.; Viehrig, K.; Lassen, L.M.M.; Schrübbers, L.; Adhikari, K.B.; Rubaszka, P.; Carrasquer-Alvarez, E.; Chen, L.; et al. A microbial supply chain for production of the anti-cancer drug vinblastine. Nature 2022, 609, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Zuo, Y.; Xiao, F.; Wang, Y.; Li, D.; Xu, J.; Ye, C.; Feng, L.; Jiang, L.; Liu, T.; et al. Biosynthesis of catharanthine in engineered Pichia pastoris. Nat. Synth. 2023, 2, 231–242. [Google Scholar] [CrossRef]
- Liu, T.; Gou, Y.; Zhang, B.; Gao, R.; Dong, C.; Qi, M.; Jiang, L.; Ding, X.; Li, C.; Lian, J. Construction of ajmalicine and sanguinarine de novo biosynthetic pathways using stable integration sites in yeast. Biotechnol. Bioeng. 2022, 119, 1314–1326. [Google Scholar] [CrossRef]
- Guazzaroni, M.-E.; Silva-Rocha, R.; Ward, R.J. Synthetic biology approaches to improve biocatalyst identification in metagenomic library screening. Microb. Biotechnol. 2015, 8, 52–64. [Google Scholar] [CrossRef]
- Clomburg, J.M.; Qian, S.; Tan, Z.; Cheong, S.; Gonzalez, R. The isoprenoid alcohol pathway, a synthetic route for isoprenoid biosynthesis. Proc. Natl. Acad. Sci. USA 2019, 116, 12810–12815. [Google Scholar] [CrossRef] [PubMed]
- Ziemert, N.; Alanjary, M.; Weber, T. The evolution of genome mining in microbes—A review. Nat. Prod. Rep. 2016, 33, 988–1005. [Google Scholar] [CrossRef] [PubMed]
- Hirschi, S.; Ward, T.R.; Meier, W.P.; Müller, D.J.; Fotiadis, D. Synthetic biology: Bottom-up assembly of molecular systems. Chem. Rev. 2022, 122, 16294–16328. [Google Scholar] [CrossRef] [PubMed]
- Ignea, C.; Pontini, M.; Maffei, M.E.; Makris, A.M.; Kampranis, S.C. Engineering monoterpene production in yeast using a synthetic dominant negative geranyl diphosphate synthase. ACS Synth. Biol. 2014, 3, 298–306. [Google Scholar] [CrossRef] [PubMed]
- Ignea, C.; Trikka, F.A.; Nikolaidis, A.K.; Georgantea, P.; Ioannou, E.; Loupassaki, S.; Kefalas, P.; Kanellis, A.K.; Roussis, V.; Makris, A.M. Efficient diterpene production in yeast by engineering Erg20p into a geranylgeranyl diphosphate synthase. Metab. Eng. 2015, 27, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Renault, H.; Bassard, J.-E.; Hamberger, B.; Werck-Reichhart, D. Cytochrome P450-mediated metabolic engineering: Current progress and future challenges. Curr. Opin. Plant Biol. 2014, 19, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, H.; Zhao, G.; Caiyin, Q.; Qiao, J. Redox cofactor engineering in industrial microorganisms: Strategies, recent applications and future directions. J. Ind. Microbiol. Biotechnol. 2018, 45, 313–327. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Zhou, Y.J.; Huang, M.; Liu, Q.; Pereira, R.; David, F.; Nielsen, J. Reprogramming yeast metabolism from alcoholic fermentation to lipogenesis. Cell 2018, 174, 1549–1558. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, J.R.; Weusthuis, R.A.; Huang, W.E. Growth-coupled enzyme engineering through manipulation of redox cofactor regeneration. Biotechnol Adv. 2023, 63, 108102. [Google Scholar] [CrossRef]
- Michener, J.K.; Nielsen, J.; Smolke, C.D. Identification and treatment of heme depletion attributed to overexpression of a lineage of evolved P450 monooxygenases. Proc. Natl. Acad. Sci. USA 2012, 109, 19504–19509. [Google Scholar] [CrossRef]
- Madhavan, A.; Arun, K.B.; Sindhu, R.; Binod, P.; Kim, S.H.; Pandey, A. Tailoring of microbes for the production of high value plant-derived compounds: From pathway engineering to fermentative production. Biochim. Biophys. Acta (BBA)-Proteins Proteom. 2019, 1867, 140262. [Google Scholar] [CrossRef] [PubMed]
- Malcı, K.; Walls, L.E.; Rios-Solis, L. Multiplex genome engineering methods for yeast cell factory development. Front. Bioeng. Biotechnol. 2020, 8, 1264. [Google Scholar] [CrossRef] [PubMed]
- Auxillos, J.Y.; Garcia-Ruiz, E.; Jones, S.; Li, T.; Jiang, S.; Dai, J.; Cai, Y. Multiplex Genome engineering for optimizing bioproduction in Saccharomyces cerevisiae. Biochemistry 2019, 58, 1492–1500. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.; Ye, L.; Lv, X.; Xu, H.; Yu, H. Sequential control of biosynthetic pathways for balanced utilization of metabolic intermediates in Saccharomyces cerevisiae. Metab. Eng. 2015, 28, 8–18. [Google Scholar] [CrossRef]
- Peng, B.; Wood, R.J.; Nielsen, L.K.; Vickers, C.E. An Expanded Heterologous GAL Promoter collection for diauxie-inducible expression in Saccharomyces cerevisiae. ACS Synth. Biol. 2018, 7, 748–751. [Google Scholar] [CrossRef] [PubMed]
- Horinouchi, S. Combinatorial biosynthesis of plant medicinal polyketides by microorganisms. Curr. Opin. Chem. Biol. 2009, 13, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Belew, Z.M.; Poborsky, M.; Nour-Eldin, H.H.; Halkier, B.A. Transport engineering in microbial cell factories producing plant-specialized metabolites. Curr. Opin. Green Sustain. Chemistry 2022, 33, 100576. [Google Scholar] [CrossRef]
- Yamada, Y.; Urui, M.; Oki, H.; Inoue, K.; Matsui, H.; Ikeda, Y.; Nakagawa, A.; Sato, F.; Minami, H.; Shitan, N. Transport engineering for improving the production and secretion of valuable alkaloids in Escherichia coli. Metab. Eng. Commun. 2021, 13, e00184. [Google Scholar] [CrossRef] [PubMed]
- Dastmalchi, M.; Chang, L.; Chen, R.; Yu, L.; Chen, X.; Hagel, J.M.; Facchini, P.J. Purine permease-type benzylisoquinoline alkaloid transporters in opium poppy. Plant Physiol. 2019, 181, 916–933. [Google Scholar] [CrossRef]
- Fossati, E.; Narcross, L.; Ekins, A.; Falgueyret, J.-P.; Martin, V.J.J. Synthesis of morphinan alkaloids in Saccharomyces cerevisiae. PLoS ONE 2015, 10, e0124459. [Google Scholar] [CrossRef]
- Srinivasan, P.; Smolke, C.D. Biosynthesis of medicinal tropane alkaloids in yeast. Nature 2020, 585, 614–619. [Google Scholar] [CrossRef] [PubMed]
- Khanijou, J.K.; Kulyk, H.; Bergès, C.; Khoo, L.W.; Ng, P.; Yeo, H.C.; Helmy, M.; Bellvert, F.; Chew, W.; Selvarajoo, K. Metabolomics and modelling approaches for systems metabolic engineering. Metab. Eng. Commun. 2022, 15, e00209. [Google Scholar] [CrossRef] [PubMed]
- Lawson, C.E.; Martí, J.M.; Radivojevic, T.; Jonnalagadda, S.V.R.; Gentz, R.; Hillson, N.J.; Peisert, S.; Kim, J.; Simmons, B.A.; Petzold, C.J.; et al. Machine learning for metabolic engineering: A review. Metab. Eng. 2021, 63, 34–60. [Google Scholar] [CrossRef]
- Helmy, M.; Smith, D.; Selvarajoo, K. Systems biology approaches integrated with artificial intelligence for optimized metabolic engineering. Metab. Eng. Commun. 2020, 11, e00149. [Google Scholar] [CrossRef] [PubMed]
Compound | Product | Host | Engineering Strategy | Titer (mg/L) | Vessel | Ref. |
---|---|---|---|---|---|---|
Terpenoids | ||||||
Monoterpenes | Geraniol | E. coli | Overexpression of heterotic geraniol synthase, GPP synthase, and mevalonate (MVA) pathway | 2000 | Fermentor | [158] |
Two-phase culture | ||||||
Hydrolyzing geranyl acetate to geraniol by overexpression of acetylesterase | ||||||
S. cerevisiae | Overexpression of isopentenyl diphosphate isomerase1 (IDI1) and truncated HMGR | 1680 | Fermentor | [159] | ||
Co-expression of the reverse fusion of truncated GES-Erg20WW variant and another copy of Erg20WW variant | ||||||
Carbon restriction | ||||||
S. cerevisiae | Deletion of OYE2 to reduce the endogenous metabolism of geraniol | 1690 | Fermentor | [160] | ||
Dynamic control of ERG20 expression | ||||||
Overexpression of IDI1 and truncated HMGR | ||||||
Limonene | E. coli | The two-liquid phase fed-batch setup | 2700 | Fermentor | [161] | |
Limonene synthase from Mentha spicata and GPP synthase 2 from Abies grandis | ||||||
S. cerevisiae | An orthogonal engineering by introducing truncated neryl diphosphate synthase from Solanum lycopersicum and limonene synthase from Citrus lemon | 917.7 | Flask | [162] | ||
Expression of ERG20 regulated by the glucose-sensing promoter HXT1 | ||||||
α-pinene | E. coli | Co-expressed IspA from E. coli and Pt30 from Pinus taeda | 970 | Fermentor | [163] | |
Heterologous MVA pathway and GPP synthase | ||||||
Linalool | S. cerevisiae | Directed evolution of linalool synthase | 53.14 | Flask | [164] | |
Overexpression of the complete MVA pathway | ||||||
Sesquiterpenes | Patchoulol | S. cerevisiae | Fusion expression of FPP and patchoulol synthase | 466.8 | Flask | [165] |
Enhanced expression of the limiting genes of the MVA | ||||||
Expression of squalene synthase driven by HXT1 promoter | ||||||
Farnesol biosynthesis was inhibited | ||||||
S. cerevisiae | Global metabolic engineering strategy | 42.1 | Flask | [166] | ||
Modulated expression of nine genes involved | ||||||
Artemisinic acid | S. cerevisiae | Down-regulation of ERG9 under CTR3 promoter in response to copper and reductase CRP1 | 25,000 | Flask | [167] | |
Additional introduction of CYB5, ADH1, and ALDH1 | ||||||
S. cerevisiae | ERG9 controlled with promoter Pmet3 | 2500 | Fermentor | [168] | ||
Addition of methionine | ||||||
Diterpenes | Sclareol | S. cerevisiae | Rewiring central metabolism for supplication of acetyl-CoA and NADPH | 11,400 | Fermentor | [169] |
Optimization of MVA pathway | ||||||
Fusion of two diterpene synthase and maltose-binding protein | ||||||
Knock-out regulatory factors | ||||||
E. coli | Reconstruction of sclareol biosynthetic pathway | 1500 | Flask | [170] | ||
High-cell-density fermentation | ||||||
Taxadiene | E. coli | Optimally balanced expressions of up and downstream pathway modules | 1020 | Fermentor | [171] | |
Two-phase cultivation | ||||||
S. cerevisiae | Fusion of GGPPS and taxadiene synthase | 184.2 | Fermentor | [172] | ||
Miltiradiene | S. cerevisiae | Overexpression of MVA pathway genes | 3500 | Fermentor | [173] | |
Downregulation of transcription factor ROS1 and competing enzyme ERG9 | ||||||
Fusion of two Class I and Class II terpene synthases | ||||||
Ferruginol | S. cerevisiae | Fusion of GGPP synthase and FPS; fusion of copalyl diphosphate synthase and kaurene synthase-like | 10.5 | Flask | [174] | |
Co-expression with plant CPR | ||||||
Triterpenes | Ginsenosides | S. cerevisiae | Semi-rational design of UGT51 | 300 | Fermentor | [175] |
Preventing Rh2 degradation and increasing UDP-glucose precursor supply | ||||||
S. cerevisiae | Modular engineering of the MVA and optimization of P450 expression levels | 2250 | Fermentor | [176] | ||
Increasing the copy number and expression level of UGTPg45 and direct evolution by random mutation | ||||||
Amyrin | S. cerevisiae | Introducing efficient cytochrome P450s and pairing their reduction systems | 108.1 | Fermentor | [177] | |
By increasing the copy number of Uni25647 and pairing CPRs | ||||||
S. cerevisiae | Enzyme engineering of amyrin synthase | 1108 | Fermentor | [178] | ||
Overexpression of MVA pathway and diacylglycerol acyltransferase | ||||||
Oleanolic acid | S. cerevisiae | Screening for better CPR | 606.9 | Fermentor | [179] | |
Knock-out galactokinase (GAL1) and negative transcriptional regulator (GAL80) | ||||||
Precursors of celastrol | S. cerevisiae | Increase endogenous cytosolic MVA pathway | 15.3 | Flask | [180] | |
Tetraterpenes | Lycopene | S. cerevisiae | Adjusting the copy number of three key genes, knocking-out endogenous bypass genes | 3280 | Flask | [181] |
Increasing the supply of the precursor acetyl-CoA, balancing NADPH utilization | ||||||
Using GAL-inducible system | ||||||
E. coli | Modulating three genes to increase ATP and NADPH supply | 3520 | Fermentor | [182] | ||
Modulating pathway gene expressions by screening RBS library | ||||||
β-carotene | S. cerevisiae | Over-expression of HMGR | 6.29 mg/g DW | Flask | [183] | |
Addition of ergosterol biosynthesis inhibitors | ||||||
S. cerevisiae | Reconstructing controllable multi-gene pathways by employing the GAL regulatory system | 20.79 mg/g DW | Flask | [184] | ||
Optimized by repeatedly using GAL10-GAL1 bidirectional promoters with high efficiency | ||||||
Astaxanthin | S. cerevisiae | Introducing the GAL regulation system | 235 | Fermentor | [185] | |
Adopting temperature as an input signal | ||||||
S. cerevisiae | Physical mutagenesis by ARTP and adaptive evolution driven by H2O2 | 404.78 | Fermentor | [186] | ||
Phenols | ||||||
Isoflavones | Genistein | E. coli | Screening for better enzymes | 35 | Flask | [187] |
Translational fusion of RcIFS and OsCPR | ||||||
S. cerevisiae | Screening for CHS | 31.02 | Flask | [188] | ||
Enhancement of precursor pathway and expression of feedback-resistant enzyme genes | ||||||
Optimization of enzyme subcellular localizations | ||||||
Daidzin | S. cerevisiae | Screening for pathway genes | 73.2 | Flask | [189] | |
Screening and overexpression of CPR partners | ||||||
Increase co-factors supply | ||||||
Dynamic control of p-coumaric acid supply | ||||||
Enzyme fusion | ||||||
Stilbenoids | Resveratrol | E. coli | Screening for pathway genes | 238.71 | Flask | [190] |
Antisense inhibition of competing pathway to increase malonyl-CoA supply | ||||||
Transport engineering for resveratrol secretion | ||||||
Expression of chaperones to aid enzyme folding | ||||||
S. cerevisiae | Enhance precursor pathway and expression of feedback-resistant enzyme genes | 4100 | Fermentor | [191] | ||
Flavanols | Quercetin | S. cerevisiae | Engineered a delphinidin-overproducing S.cerevisiae-S. cerevisiae co-culture | 154.2 | Fermentor | [192] |
Quercetin | S. cerevisiae | Combinational screening for downstream enzyme genes | 930 | Fermentor | [193] | |
Kaempferol | 956 | |||||
Increase gene copy numbers in genome | ||||||
Enhance precursor pathway and expression of feedback-resistant enzyme genes | ||||||
Anthocyanins | Anthocyanin | S. cerevisiae | Screening pathway enzymes from different plants | 5.4 (total anthocyanins) | Flask | [194] |
cyanidin 3-O-glucoside | E. coli | Enhancing substrate and precursor availability | 350 (from (+)-catechin) | [195] | ||
Balancing gene expression | ||||||
Manipulate transportation by tolC knockout and yadH overexpression | ||||||
Proanthocyanidin | (+)-catechin | E. coli | Combinatorial screening pathway genes | 911 (from eriodictyol) | Flask | [196] |
Improving the availability of NADPH | ||||||
Naphthoquinone | 3-geranyl-4-hydroxybenzoate acid | S. cerevisiae | Increase GPP supply by increasing HMG1 and Erg20(K197G) | 179.29 (from hydroxybenzoate acid) | Flask | [197] |
p-Coumaric acid | S. cerevisiae | Screening for p-hydroxybenzoate:geranyltransferase | 1890 | Fermentor | [198] | |
Overexpression of feedback inhibition-resistant DAHP synthase and chorismate mutase | ||||||
Knockout aromatic product pathway genes ARO10 (phenylpyruvate decarboxylase) and PDC5 (pyruvate decarboxylase) | ||||||
Hydroxycinnamic acids | Rosmarinic acid | E. coli | Establishment of partial pathway in different strains and individual optimization and combination of strains | 172 | Flask | [199] |
Alkaloids | ||||||
Tropane alkaloids | Scopolamine | S. cerevisiae | Transporter engineering by disrupting TPO5 and overexpression vacuolar tropine importers and two exporters | 0.172 | Flask | [200] |
Overexpression NADPH regeneration-related genes | ||||||
Tryptophan prototrophy | ||||||
Isoquinoline alkaloids | Stylopine | E. coli and P. pastoris | Stylopine and reticuline module synthesized in P. pastoris and E. coli, respectively | 1.615 | Flask | [201] |
Inoculation ratio and medium were optimized | ||||||
(S)-reticuline | E. coli | Introducing two feedback-resistant enzymes | 307 | Flask | [202] | |
Establishment of an additional heterologous pathway | ||||||
S. cerevisiae | Knock-out of competing oxidoreductases consuming 4-hydroxyphenylacetaldehyde | 4600 | Fermentor | [203] | ||
Increase 4-hydroxyphenylpyruvate and dopamine supply | ||||||
Screening and engineering norcoclaurine synthase | ||||||
Berberine | S. cerevisiae | Knockout competing oxidoreductases consuming 4-hydroxyphenylacetaldehyde | 1.08 | Fermentor | [204] | |
Enhancement of the supply of tyrosine | ||||||
Terpenoid indole alkaloid | Vinblastine | S. cerevisiae | Screening for better enzymes | 0.4 | Flask | [205] |
Downregulation of competing enzyme genes | ||||||
Co-expression with CPRs | ||||||
Catharanthine | Pichia pastoris | Three modules integrated in stable genome integration sites | 2.57 | Fermentor | [206] | |
Optimize copy number of pathway genes | ||||||
Increase in cofactor, S-adenosyl-l-methionine supply, and co-expression with CPR genes | ||||||
Induction medium optimization | ||||||
Ajmalicine | S. cerevisiae | Stable integration in the genome | 61.4 | Flask | [207] | |
Increase precursor supply by increasing gene copies and knocking-out competing pathway genes | ||||||
Co-expression with CPRs |
Host | Advantages | Disadvantages |
---|---|---|
Plant |
|
|
Microbes |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, T.; Miao, G. Strategies, Achievements, and Potential Challenges of Plant and Microbial Chassis in the Biosynthesis of Plant Secondary Metabolites. Molecules 2024, 29, 2106. https://doi.org/10.3390/molecules29092106
Han T, Miao G. Strategies, Achievements, and Potential Challenges of Plant and Microbial Chassis in the Biosynthesis of Plant Secondary Metabolites. Molecules. 2024; 29(9):2106. https://doi.org/10.3390/molecules29092106
Chicago/Turabian StyleHan, Taotao, and Guopeng Miao. 2024. "Strategies, Achievements, and Potential Challenges of Plant and Microbial Chassis in the Biosynthesis of Plant Secondary Metabolites" Molecules 29, no. 9: 2106. https://doi.org/10.3390/molecules29092106
APA StyleHan, T., & Miao, G. (2024). Strategies, Achievements, and Potential Challenges of Plant and Microbial Chassis in the Biosynthesis of Plant Secondary Metabolites. Molecules, 29(9), 2106. https://doi.org/10.3390/molecules29092106