Pleurotus sajor-caju (Fr.) Singer β-1,3-Glucanoligosaccharide (Ps-GOS) Suppresses RANKL-Induced Osteoclast Differentiation and Function in Pre-Osteoclastic RAW 264.7 Cells by Inhibiting the RANK/NFκB/cFOS/NFATc1 Signalling Pathway
Abstract
:1. Introduction
2. Results
2.1. Effect of Ps-GOS on Cell Viability of RAW 264.7 Cells
2.2. Effect of Ps-GOS on RANKL-induced Osteoclast Differentiation
2.3. Effect of Ps-GOS on Osteoclastic Bone Resorption In Vitro
2.4. Effect of Ps-GOS on Osteoclastogenic Transcription Factor Genes
2.5. Ps-GOS Suppressed the Expression of Osteoclastogenesis-Related Genes
2.6. Effect of Ps-GOS on RANKL-induced Osteoclastogenic Transcription Factor Proteins
2.7. Ps-GOS Suppresses RANK Expression
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Cell Culture and Mature Osteoclast Induction
4.3. Cell Viability Assay
4.4. Osteoclast Differentiation Assay
4.5. Pit formation Assay
4.6. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)
4.7. Western Blot Analysis
4.8. Immunofluorescence Staining
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Du, B.; Lin, C.; Bian, Z.; Xu, B. An insight into anti-inflammatory effects of fungal betaglucans. Trends Food Sci. Technol. 2015, 41, 49–59. [Google Scholar] [CrossRef]
- Zhu, F.; Du, B.; Bian, Z.; Xu, B. Beta-glucans from edible and medicinal mushrooms: Characteristics, physicochemical and biological activities. J. Food Compos. Anal. 2015, 41, 165–173. [Google Scholar] [CrossRef]
- Chan, G.C.; Chan, W.K.; Sze, D.M. The effects of beta-glucan on human immune and cancer cells. J. Hematol. Oncol. 2009, 2, 25. [Google Scholar] [CrossRef] [PubMed]
- Gangopadhyay, N.; Hossain, M.B.; Rai, D.K.; Brunton, N.P. A review of extraction and analysis of bioactives in oat and barley and scope for use of novel food processing technologies. Molecules 2015, 20, 10884–10909. [Google Scholar] [CrossRef]
- Krivak, P.; Ukic, S.; Jakobek, L. Polyphenols and β-glucan interactions through linear adsorption models. Croat. J. Food Sci. Technol. 2016, 8, 66–73. [Google Scholar] [CrossRef]
- Kim, H.-D.; Cho, H.-R.; Moon, S.-B.; Shin, H.-D.; Yang, K.-J.; Park, B.-R.; Jang, H.-J.; Kim, L.-S.; Lee, H.-S.; Ku, S.-K. Effects of ß-glucan from aureobasidium pullulans on acute inflammation in mice. Arch. Pharmacal. Res. 2007, 30, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Kimura, Y.; Sumiyoshi, M.; Suzuki, T.; Suzuki, T.; Sakanaka, M. Effects of water-soluble low-molecular-weight β-1, 3-d-glucan (branch β-1, 6) isolated from aureobasidium pullulans 1a1 strain black yeast on restraint stress in mice. J. Pharm. Pharmacol. 2007, 59, 1137–1144. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.W.; Cho, H.R.; Ku, S.K. Efficacy test of polycan, a beta-glucan originated from aureobasidium pullulans sm-2001, on anterior cruciate ligament transection and partial medial meniscectomy-induced-osteoarthritis rats. J. Microbiol. Biotechnol. 2012, 22, 274–282. [Google Scholar] [CrossRef]
- Ross, F.P. M-CSF, c-Fms, and signaling in osteoclasts and their precursors. Ann. N. Y. Acad. Sci. 2006, 1068, 110–116. [Google Scholar] [CrossRef]
- Takayanagi, H. Inflammatory bone destruction and osteoimmunology. J. Periodontal. Res. 2005, 40, 287–293. [Google Scholar] [CrossRef]
- Theill, L.E.; Boyle, W.J.; Penninger, J.M. Rank-l and rank: T cells, bone loss, and mammalian evolution. Annu. Rev. Immunol. 2002, 20, 795–823. [Google Scholar] [CrossRef]
- Mizukami, J.; Takaesu, G.; Akatsuka, H.; Sakurai, H.; Ninomiya-Tsuji, J.; Matsumoto, K.; Sakurai, N. Receptor activator of nf-κb ligand (rankl) activates tak1 mitogen-activated protein kinase kinase kinase through a signaling complex containing rank, tab2, and traf6. Mol. Cell. Biol. 2002, 22, 992–1000. [Google Scholar] [CrossRef] [PubMed]
- Franzoso, G.; Carlson, L.; Xing, L.; Poljak, L.; Shores, E.W.; Brown, K.D.; Leonardi, A.; Tran, T.; Boyce, B.F.; Siebenlist, U. Requirement for nf-κb in osteoclast and b-cell development. Genes Dev. 1997, 11, 3482–3496. [Google Scholar] [CrossRef] [PubMed]
- Iotsova, V.; Caamaño, J.; Loy, J.; Yang, Y.; Lewin, A.; Bravo, R. Osteopetrosis in mice lacking nf-κb1 and nf-κb2. Nat. Med. 1997, 3, 1285–1289. [Google Scholar] [CrossRef] [PubMed]
- Rifkin, B.R.; Vernillo, A.T.; Golub, L.M. Blocking periodontal disease progression by inhibiting tissue-destructive enzymes: A potential therapeutic role for tetracyclines and their chemically-modified analogs. J. Periodontol. 1993, 64, 819–827. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Ding, Z.; Wang, Y.; Zou, B.; Zheng, J.; Tan, Y.; Yang, Q.; Ke, M.; Chen, Y.; Wang, S. Dendrobine attenuates osteoclast differentiation through modulating ROS/NFATc1/MMP9 pathway and prevents inflammatory bone destruction. Phytomedicine 2022, 96, 153838. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, K.; Nakashima, T.; Shinohara, M.; Negishi-Koga, T.; Komatsu, N.; Terashima, A.; Sawa, S.; Nitta, T.; Takayanagi, H. Osteoimmunology: The conceptual framework unifying the immune and skeletal systems. Physiol. Rev. 2017, 97, 1295–1349. [Google Scholar] [CrossRef] [PubMed]
- Jung, M.Y.; Kim, J.W.; Kim, K.Y.; Choi, S.H.; Ku, S.K. Polycan, a β-glucan from aureobasidium pullulans sm-2001, mitigates ovariectomy-induced osteoporosis in rats. Exp. Ther. Med. 2016, 12, 1251–1262. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.H.; Lee, J.; Kim, J.H.; Lee, Y.H.; Ju, Y.C.; Lee, J.S. Isolation and identification of rankl-induced osteoclast differentiation inhibitor from pleurotus citrinopileatus. Mycoscience 2013, 54, 265–270. [Google Scholar] [CrossRef]
- Hara, S.; Nagai-Yoshioka, Y.; Yamasaki, R.; Adachi, Y.; Fujita, Y.; Watanabe, K.; Maki, K.; Nishihara, T.; Ariyoshi, W. Dectin-1–mediated suppression of rankl-induced osteoclastogenesis by glucan from baker’s yeast. J. Cell. Physiol. 2021, 236, 5098–5107. [Google Scholar] [CrossRef]
- Yuan, H.; Lan, P.; He, Y.; Li, C.; Ma, X. Effect of the modifications on the physicochemical and biological properties of β-glucan—A critical review. Molecules 2019, 25, 57. [Google Scholar] [CrossRef] [PubMed]
- Fiume, M.M.; Heldreth, B.; Bergfeld, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.C.; Marks, J.G., Jr.; Shank, R.C.; Slaga, T.J. Safety assessment of microbial polysaccharide gums as used in cosmetics. Int. J. Toxicol. 2016, 35, 5S–49S. [Google Scholar] [CrossRef] [PubMed]
- Roubroeks, J.; Andersson, R.; Mastromauro, D.; Christensen, B.; Åman, P. Molecular weight, structure and shape of oat (1→3),(1→4)-β-d-glucan fractions obtained by enzymatic degradation with (1→4)-β-d-glucan 4-glucanohydrolase from trichoderma reesei. Carbohydr. Polym. 2001, 46, 275–285. [Google Scholar] [CrossRef]
- Leathers, T.D.; Sutivisedsak, N.; Nunnally, M.S.; Price, N.P.; Stanley, A.M. Enzymatic modification of schizophyllan. Biotechnol. Lett. 2015, 37, 673–678. [Google Scholar] [CrossRef] [PubMed]
- Kéry, V.; Kogan, G.; Zajacová, K.; Slámová, K.; Masler, L.; Alföldi, J. Hydrolysis of yeast cell-wall glucan by extracellular (1→ 3)-β-glucanases from aspergillus niger. Enzym. Microb. Technol. 1991, 13, 87–90. [Google Scholar] [CrossRef]
- Yodthong, T.; Kedjarune-Leggat, U.; Smythe, C.; Sukprasirt, P.; Aroonkesorn, A.; Wititsuwannakul, R.; Pitakpornpreecha, T. Enhancing activity of pleurotus sajor-caju (fr.) sing β-1,3-glucanoligosaccharide (ps-gos) on proliferation, differentiation, and mineralization of mc3t3-e1 cells through the involvement of bmp-2/runx2/mapk/wnt/β-catenin signaling pathway. Biomolecules 2020, 10, 190. [Google Scholar] [CrossRef] [PubMed]
- McCleary, B.V. Enzymatic modification of plant polysaccharides. Int. J. Biol. Macromol. 1986, 8, 349–354. [Google Scholar] [CrossRef]
- Duan, H.; Xiong, S.; Liu, H. Study on solubility and properties of enzymolysates of yeast β-1, 3-glucan. Food Sci. 2008, 29, 185–190. [Google Scholar]
- Ljusberg, J.; Er-Rylander, B.; Andersson, G. Tartrate-resistant purple acid phosphatase is synthesized as a latent proenzyme and activated by cysteine proteinases. Biochem. J. 1999, 343, 63–69. [Google Scholar] [CrossRef]
- Jaffe, A.B.; Hall, A. Rho gtpases: Biochemistry and biology. Annu. Rev. Cell Dev. Biol. 2005, 21, 247–269. [Google Scholar] [CrossRef]
- Ariyoshi, W.; Hara, S.; Koga, A.; Nagai-Yoshioka, Y.; Yamasaki, R. Biological effects of β-glucans on osteoclastogenesis. Molecules 2021, 26, 1982. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, H.; Shima, N.; Nakagawa, N.; Mochizuki, S.-I.; Yano, K.; Fujise, N.; Sato, Y.; Goto, M.; Yamaguchi, K.; Kuriyama, M. Identity of osteoclastogenesis inhibitory factor (ocif) and osteoprotegerin (opg): A mechanism by which opg/ocif inhibits osteoclastogenesis in vitro. Endocrinology 1998, 139, 1329–1337. [Google Scholar] [CrossRef] [PubMed]
- Boyce, B.F.; Xiu, Y.; Li, J.; Xing, L.; Yao, Z. Nf-κb-mediated regulation of osteoclastogenesis. Endocrinol. Metab. 2015, 30, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Takayanagi, H.; Kim, S.; Koga, T.; Nishina, H.; Isshiki, M.; Yoshida, H.; Saiura, A.; Isobe, M.; Yokochi, T.; Inoue, J.-i. Induction and activation of the transcription factor nfatc1 (nfat2) integrate rankl signaling in terminal differentiation of osteoclasts. Dev. Cell 2002, 3, 889–901. [Google Scholar] [CrossRef] [PubMed]
- Winslow, M.M.; Pan, M.; Starbuck, M.; Gallo, E.M.; Deng, L.; Karsenty, G.; Crabtree, G.R. Calcineurin/nfat signaling in osteoblasts regulates bone mass. Dev. Cell 2006, 10, 771–782. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.S.; Spiegelman, B.M.; Papaioannou, V. Pleiotropic effects of a null mutation in the c-fos proto-oncogene. Cell 1992, 71, 577–586. [Google Scholar] [CrossRef] [PubMed]
- Asagiri, M.; Sato, K.; Usami, T.; Ochi, S.; Nishina, H.; Yoshida, H.; Morita, I.; Wagner, E.F.; Mak, T.W.; Serfling, E. Autoamplification of nfatc1 expression determines its essential role in bone homeostasis. J. Exp. Med. 2005, 202, 1261–1269. [Google Scholar] [CrossRef] [PubMed]
- Anderson, D.M.; Maraskovsky, E.; Billingsley, W.L.; Dougall, W.C.; Tometsko, M.E.; Roux, E.R.; Teepe, M.C.; DuBose, R.F.; Cosman, D.; Galibert, L. A homologue of the tnf receptor and its ligand enhance t-cell growth and dendritic-cell function. Nature 1997, 390, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, M.; Kogawa, M.; Wada, S.; Takayanagi, H.; Tsujimoto, M.; Katayama, S.; Hisatake, K.; Nogi, Y. Essential role of p38 mitogen-activated protein kinase in cathepsin k gene expression during osteoclastogenesis through association of nfatc1 and pu. 1. J. Biol. Chem. 2004, 279, 45969–45979. [Google Scholar] [CrossRef]
- Paiva, K.B.; Granjeiro, J.M. Matrix metalloproteinases in bone resorption, remodeling, and repair. Prog. Mol. Biol. Transl. Sci. 2017, 148, 203–303. [Google Scholar]
- Garber, K. Two pioneering osteoporosis drugs finally approach approval. Nat. Rev. Drug Discov. 2016, 15, 445–446. [Google Scholar] [CrossRef] [PubMed]
- Boyce, B.F.; Xing, L. Biology of rank, rankl, and osteoprotegerin. Arthritis Res. Ther. 2007, 9, S1. [Google Scholar] [CrossRef]
- Lacey, D.; Timms, E.; Tan, H.-L.; Kelley, M.; Dunstan, C.; Burgess, T.; Elliott, R.; Colombero, A.; Elliott, G.; Scully, S. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 1998, 93, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Suda, T.; Nakamura, I.; Jimi, E.; Takahashi, N. Regulation of osteoclast function. J. Bone Miner. Res. 1997, 12, 869–879. [Google Scholar] [CrossRef]
- Yamasaki, T.; Ariyoshi, W.; Okinaga, T.; Adachi, Y.; Hosokawa, R.; Mochizuki, S.; Sakurai, K.; Nishihara, T. The dectin 1 agonist curdlan regulates osteoclastogenesis by inhibiting nuclear factor of activated t cells cytoplasmic 1 (nfatc1) through syk kinase. J. Biol. Chem. 2014, 289, 19191–19203. [Google Scholar] [CrossRef] [PubMed]
- Aizawa, M.; Watanabe, K.; Tominari, T.; Matsumoto, C.; Hirata, M.; Grundler, F.M.; Inada, M.; Miyaura, C. Low molecular-weight curdlan, (1→3)-β-glucan suppresses tlr2-induced rankl-dependent bone resorption. Biol. Pharm. Bull. 2018, 41, 1282–1285. [Google Scholar] [CrossRef]
- Collin-Osdoby, P.; Osdoby, P. Rankl-mediated osteoclast formation from murine raw 264.7 cells. Bone Res. Protoc. 2012, 816, 187–202. [Google Scholar]
Gene | Sequence | GenBank Accession No. |
---|---|---|
NF-κB-P65 | F: TCACCGGCCTCATCCACAT | XM_006531694.4 |
R: TGGCTAATGGCTTGCTCCAG | ||
NFATc1 | F: CACACACCCCGCATGTCA | NM_001164110.1 |
R: CGGGCCGCAAAGTTTCTC | ||
TRAP | F: TGGATTCATGGGTGGTGCTG | XM_006509946.3 |
R: CGTCCTCAAAGGTCTCCTGG | ||
c-Fos | F: AGCTCCCACCAGTGTCTACC | NM_010234.3 |
R: TCACCGTGGGGATAAAGTTGG | ||
Cathepsin K | F: AGTAGCCACGCTTCCTATCC | NM_007802.4 |
R: GAGAGGCCTCCAGGTTATGG | ||
MMP-9 | F: CTCTGCTGCCCCTTACCAG | NM_013599.5 |
R: CACAGCGTGGTGTTCGAATG | ||
GAPDH | F: AGGTCGGTGTGAACGGATTTG | XM_036165840.1 |
R:TGTAGACCATGTAGTTGAGGTCA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rattajak, P.; Aroonkesorn, A.; Smythe, C.; Wititsuwannakul, R.; Pitakpornpreecha, T. Pleurotus sajor-caju (Fr.) Singer β-1,3-Glucanoligosaccharide (Ps-GOS) Suppresses RANKL-Induced Osteoclast Differentiation and Function in Pre-Osteoclastic RAW 264.7 Cells by Inhibiting the RANK/NFκB/cFOS/NFATc1 Signalling Pathway. Molecules 2024, 29, 2113. https://doi.org/10.3390/molecules29092113
Rattajak P, Aroonkesorn A, Smythe C, Wititsuwannakul R, Pitakpornpreecha T. Pleurotus sajor-caju (Fr.) Singer β-1,3-Glucanoligosaccharide (Ps-GOS) Suppresses RANKL-Induced Osteoclast Differentiation and Function in Pre-Osteoclastic RAW 264.7 Cells by Inhibiting the RANK/NFκB/cFOS/NFATc1 Signalling Pathway. Molecules. 2024; 29(9):2113. https://doi.org/10.3390/molecules29092113
Chicago/Turabian StyleRattajak, Purithat, Aratee Aroonkesorn, Carl Smythe, Rapepun Wititsuwannakul, and Thanawat Pitakpornpreecha. 2024. "Pleurotus sajor-caju (Fr.) Singer β-1,3-Glucanoligosaccharide (Ps-GOS) Suppresses RANKL-Induced Osteoclast Differentiation and Function in Pre-Osteoclastic RAW 264.7 Cells by Inhibiting the RANK/NFκB/cFOS/NFATc1 Signalling Pathway" Molecules 29, no. 9: 2113. https://doi.org/10.3390/molecules29092113
APA StyleRattajak, P., Aroonkesorn, A., Smythe, C., Wititsuwannakul, R., & Pitakpornpreecha, T. (2024). Pleurotus sajor-caju (Fr.) Singer β-1,3-Glucanoligosaccharide (Ps-GOS) Suppresses RANKL-Induced Osteoclast Differentiation and Function in Pre-Osteoclastic RAW 264.7 Cells by Inhibiting the RANK/NFκB/cFOS/NFATc1 Signalling Pathway. Molecules, 29(9), 2113. https://doi.org/10.3390/molecules29092113