Synthesis and Biological Evaluation of New cis-Restricted Triazole Analogues of Combretastatin A-4
Abstract
:1. Introduction
2. Results
2.1. Chemical Synthesis
2.2. Biological Evaluation
3. Discussion
4. Materials and Methods
4.1. Chemistry
- General procedure of the 1,3-dipolar Huisgen cycloaddition for the synthesis of triazoles. To the corresponding terminal alkyne 2 (0.5 mmol, 1 equiv.) in dry THF (1.10 M), EtMgCl 2 M in THF (1.25 equiv.) was added dropwise at room temperature under N2 atmosphere. Upon completion of the addition, the solution was heated to 50 °C for 15 min and cooled to room temperature. Then, a solution of the azide 1 in THF (0.45 M, 1 equiv.) was loaded dropwise. The reaction mixture was heated to 50 °C for 1.5 h. After quenching with saturated aqueous NH4Cl, the product was extracted 3 times with CH2Cl2. The organic phase was dried over anhydrous Na2SO4 and the mixture was concentrated to dryness and purified by flash column chromatography on silica gel using mixtures of n-hexane and ethyl acetate as eluents.
- 5-phenyl-1-(3,4,5-trimethoxyphenyl)-1H-1,2,3-triazole (3a): Starting from ethynylbenzene (51 mg, 0.5 mmol) and following the general procedure described before, compound 3a was purified by chromatography, eluting with n-hexane-EtOAc (2:1). White solid (0.11 g, 0.36 mmol), yield 72%. NMR spectra match with previously published [31].
- 5-(2-bromophenyl)-1-(3,4,5-trimethoxyphenyl)-1H-1,2,3-triazole (3b). Starting from 1-bromo-2-ethynylbenzene (90 mg, 0.5 mmol) and following the general procedure described before, compound 3b was purified by chromatography, eluting n-hexane-EtOAc (2:1). Brown solid (0.17 g, 0.43 mmol), yield 85%, mp 120–122 °C. 1H NMR (300 MHz, CDCl3) δ 7.85 (s, 1H), 7.67 (dd, J = 7.8, 1.5 Hz, 1H), 7.39–7.28 (m, 2H), 7.25–7.22 (m, 1H), 6.56 (s, 2H), 3.83 (s, 3H), 3.67 (s, 6H). 13C NMR (75 MHz, CDCl3) δ 153.4, 138.3, 136.3, 134.5, 133.4, 132.2, 132.1, 131.4, 129.3, 127.8, 124.6, 101.7, 61.1, 56.2. HRMS (ESI/Q-TOF): m/z [M+H]+ calcd. for C17H17BrN3O3+ [M+H]+: 390.0448, found: 390.0438.
- 5-(2-nitrophenyl)-1-(3,4,5-trimethoxyphenyl)-1H-1,2,3-triazole (3c): Starting from 1-ethynyl-2-nitrobenzene (74 mg, 0.5 mmol) and following the general procedure described before, compound 3c was purified by chromatography, eluting with n-hexane-EtOAc (1:1). Brown solid (0.11 g, 0.30 mmol), yield 59%, mp 122–124 °C. 1H NMR (300 MHz, CDCl3) δ 8.06 (dd, J = 8.1, 1.2 Hz, 1H), 7.82 (s, 1H), 7.74–7.60 (m, 2H), 7.44 (dd, J = 7.5, 1.6 Hz, 1H), 6.49 (s, 2H), 3.83 (s, 3H), 3.67 (s, 6H).13C NMR (75 MHz, CDCl3) δ 153.6, 148.6, 138.8, 133.8, 133.6, 132.9, 131.5, 131.1, 125.2, 122.9, 102.3, 61.1, 56.3. HRMS (ESI/Q-TOF): m/z [M+H]+ calcd. for C17H17N4O5+ [M+H]+: 357.1193, found: 357.1183.
- 5-(p-tolyl)-1-(3,4,5-trimethoxyphenyl)-1H-1,2,3-triazole (3d): Starting from 1-ethynyl-4-methylbenzene (58 mg, 0.5 mmol) and following general procedure D, compound 3d was purified by chromatography, eluting with n-hexane-EtOAc (1:1). Green solid (98 mg, 0.30 mmol), yield 60%, mp 127–129 °C. 1H NMR (300 MHz, CDCl3) δ 7.82 (s, 1H), 7.19–7.13 (m, 4H), 6.57 (s, 2H), 3.87 (s, 3H), 3.71 (s, 6H), 2.36 (s, 3H). 13C NMR (75 MHz, CDCl3) δ 153.6, 139.6, 138.6, 137.9, 133.2, 132.3, 129.7, 128.6, 124.0, 102.9, 61.2, 56.3, 21.4. HRMS (ESI/Q-TOF): m/z [M+H]+ calcd. for C18H20N3O3+ [M+H]+: 326.1499, found: 326.1502.
- 5-(4-(trifluoromethyl)phenyl)-1-(3,4,5-trimethoxyphenyl)-1H-1,2,3-triazole (3e): Starting from 1-ethynyl-4-(trifluoromethyl)benzene (85 mg, 0.5 mmol) and following general procedure D, compound 3e was purified by chromatography, eluting with n-hexane-EtOAc (2:1). Orange solid (0.12 g, 0.31 mmol), yield 61%, mp 101–103 °C. 1H NMR (300 MHz, CDCl3) δ 7.84 (s, 1H), 7.58 (d, J = 8.1 Hz, 2H), 7.37 (d, J = 8.1 Hz, 2H), 6.47 (s, 2H), 3.79 (s, 3H), 3.63 (s, 6H). 13C NMR (75 MHz, CDCl3) δ 153.6, 138.8, 136.3, 133.6, 131.75, 131.6, 131.3, 130.9, 130.4 (q, J = 1.2 Hz), 128.9, 125.8 (q, J = 12.3 Hz), 123.6 (q, J = 272.2 Hz), 102.8, 60.9, 56.2. 19F NMR (282 MHz, CDCl3) δ -63.4. HRMS (ESI/Q-TOF): m/z [M+H]+ calcd. for C18H17F3N3O3+ [M+H]+: 380.1217, found 380.1224.
- 5-(4-fluorophenyl)-1-(3,4,5-trimethoxyphenyl)-1H-1,2,3-triazole (3f): Starting from 1-ethynyl-4-fluorobenzene (60 mg, 0.5 mmol) and following general procedure D, compound 3f was purified by chromatography, eluting with n-hexane-EtOAc (2:1). Yellow solid (84 mg, 0.26 mmol), yield 51%, mp 129–131 °C. 1H NMR (300 MHz, CDCl3) δ 7.82 (s, 1H), 7.47–7.43 (m, 2H), 7.29–7.23 (m, 2H), 6.74 (s, 2H), 4.05 (s, 3H), 3.90 (s, 6H). 13C NMR (75 MHz, CDCl3) δ 163.0 (d, J = 250.7 Hz), 153.6, 138.7, 136.8, 133.3, 131.9, 130.6 (d, J = 8.5 Hz), 123.0 (d, J = 3.5 Hz), 116.2 (d, J = 22.0 Hz), 102.8, 61.1, 56.3. 19F NMR (282 MHz, CDCl3) δ -111.2. HRMS (ESI/Q-TOF): m/z [M+H]+ calcd. for C17H17FN3O3+ [M+H]+: 330.1248, found: 330.1256.
- 5-(4-chlorophenyl)-1-(3,4,5-trimethoxyphenyl)-1H-1,2,3-triazole (3g): Starting from 1-chloro-4-ethynylbenzene (68 mg, 0.5 mmol) and following general procedure D, compound 3g was purified by chromatography, eluting with n-hexane-EtOAc (2:1). White solid (89 mg, 0.28 mmol), yield 51%, mp 146–148 °C. 1H NMR (300 MHz, CDCl3) δ 7.86 (s, 1H), 7.36 (d, J = 8.6 Hz, 2H), 7.21 (d, J = 8.6 Hz, 2H), 6.55 (s, 2H), 3.89 (s, 3H), 3.74 (s, 6H). 13C NMR (75 MHz, CDCl3) δ 153.7, 138.9, 136.7, 135.7, 133.5, 132.0, 129.9, 129.4, 125.4, 103.0, 61.2, 56.4. HRMS (ESI/Q-TOF): m/z [M+H]+ calcd. for C17H17ClN3O3+ [M+H]+: 346.0953, found: 346.0956.
- 5-(4-bromophenyl)-1-(3,4,5-trimethoxyphenyl)-1H-1,2,3-triazole (3h): Starting from 1-bromo-4-ethynylbenzene (91 mg, 0.5 mmol) and following general procedure D, compound 3h was purified by chromatography, eluting n-hexane-EtOAc (2:1). Green solid (0.13 mg, 0.33 mmol), yield 66%, mp 163–165 °C. 1H NMR (300 MHz, CDCl3) δ 7.86 (s, 1H), 7.52 (d, J = 8.6 Hz, 1H), 7.15 (d, J = 8.6 Hz, 2H), 6.55 (s, 2H), 3.89 (s, 3H), 3.74 (s, 6H). 13C NMR (75 MHz, CDCl3) δ 153.8, 138.9, 136.8, 133.5, 132.3, 131.9, 130.1, 125.9, 123.9, 103.0, 61.2, 56.4. HRMS (ESI/Q-TOF): m/z [M+H]+ calcd. for C17H17BrN3O3+ [MH]+: 390.0448, found: 390.0432.
- 5-(4-methoxyphenyl)-1-(3,4,5-trimethoxyphenyl)-1H-1,2,3-triazole (3i): Starting from 1-ethynyl-4-methoxybenzene (66 mg, 0.5 mmol) and following general procedure D, compound 3i was purified by chromatography, eluting with n-hexane-EtOAc (2:1). White solid (0.10 mg, 0.30 mmol), yield 60%. NMR spectra match with previously published [15].
- 5-(4-ethoxyphenyl)-1-(3,4,5-trimethoxyphenyl)-1H-1,2,3-triazole (3j): Starting from 2g (73 mg, 0.5 mmol) and following general procedure D, compound 3j was purified by chromatography, eluting with n-hexane-EtOAc (2:1). Orange solid (91 mg, 0.26 mmol), yield 51%, mp 102–104 °C 1H NMR (300 MHz, CDCl3) δ 7.78 (s, 1H), 7.17 (d, J = 9.0 Hz, 2H), 6.86 (d, J = 9.0 Hz, 2H), 6.57 (s, 2H), 4.02 (q, J = 7.0 Hz, 2H), 3.86 (s, 3H), 3.71 (s, 6H), 1.40 (t, J = 7.0 Hz, 3H). 13C NMR (75 MHz, CDCl3) δ 159.8, 153.6, 138.5, 137.7, 133.0, 132.4, 130.0, 118.8, 114.9, 102.9, 63.7, 61.1, 56.3, 14.8. HRMS (ESI/Q-TOF): m/z [M+H]+ calcd. for C19H21N3O4+ [M+H]+: 356.1605, found: 356.1597.
- 5-(2-bromo-4-methoxyphenyl)-1-(3,4,5-trimethoxyphenyl)-1H-1,2,3-triazole (3k): Starting from 2h (0.11 g, 0.5 mmol) and following general procedure D, compound 3k was purified by chromatography, eluting with n-hexane-EtOAc (1:1). Yellow solid (0.12 g, 0.28 mmol), yield 56%, mp 128–130 °C. 1H NMR (300 MHz, CDCl3) δ 7.80 (s, 1H), 7.19 (d, J = 2.6 Hz, 1H), 7.11 (d, J = 8.6 Hz, 1H), 6.87 (dd, J = 8.6, 2.6 Hz, 1H), 6.57 (s, 2H), 3.83 (s, 3H), 3.82 (s, 3H), 3.69 (s, 6H). 13C NMR (75 MHz, CDCl3) δ 161.2, 153.4, 138.3, 136.3, 135.0, 132.8, 132.2, 125.1, 120.9, 118.6, 113.9, 101.8, 61.3, 56.3, 55.9. HRMS (ESI/Q-TOF): m/z [M+H]+ calcd. for C187H19BrN3O4+ [M+H]+: 420.0553, found: 420.0542.
- 5-(2-bromo-5-methoxyphenyl)-1-(3,4,5-trimethoxyphenyl)-1H-1,2,3-triazole (3l): Starting from 2i (0.11 g, 0.5 mmol) and following general procedure D, compound 3l was purified by chromatography, eluting with n-hexane-EtOAc (2:1). White solid (76 mg, 0.19 mmol), yield 38%, mp 158–160 °C. 1H NMR (300 MHz, CDCl3) δ 7.83 (s, 1H), 7.52 (d, J = 8.9 Hz, 1H), 6.85 (dd, J = 8.9, 3.0 Hz, 1H), 6.75 (d, J = 3.0 Hz, 1H), 6.60 (s, 2H), 3.83 (s, 3H), 3.73 (s, 3H), 3.69 (s, 6H). 13C NMR (75 MHz, CDCl3): δ = 159.0, 153.5, 138.4, 134.0, 130.2, 117.9, 117.3, 115.0, 101.8, 61.1, 56.3, 55.8. HRMS (ESI/Q-TOF): m/z [M+H]+ calcd. for C18H19BrN3O4+ [M+H]+: 420.0553, found: 420.0534.
- 5-(3-bromo-4-ethoxyphenyl)-1-(3,4,5-trimethoxyphenyl)-1H-1,2,3-triazole (3m): Starting from 2d (0.11 g, 0.5 mmol) and following general procedure D, compound 3m was purified by chromatography, eluting with n-hexane-EtOAc (1:1). Green solid (0.11 g, 0.25 mmol), yield 51%, mp 130–132 °C. 1H NMR (400 MHz, CDCl3) δ 7.74 (s, 1H), 7.47 (d, J = 2.2 Hz, 1H), 7.04 (dd, J = 8.6, 2.2 Hz, 1H), 6.79 (d, J = 8.6 Hz, 1H), 6.53 (s, 2H), 4.04 (q, J = 7.0 Hz, 2H), 3.82 (s, 3H), 3.69 (s, 6H), 1.41 (t, J = 7.0 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 156.0, 153.5, 138.7, 136.2, 133.2, 132.9, 131.9, 128.8, 119.9, 112.8, 112.2, 102.9, 64.9, 61.0, 56.3, 14.5. HRMS (ESI/Q-TOF): m/z [M+H]+ calcd. for C19H21BrN3O4+ [M+H]+: 434.0710, found: 434.0692.
- 5-(3-chloro-4-methoxyphenyl)-1-(3,4,5-trimethoxyphenyl)-1H-1,2,3-triazole (3n): Starting from 2f (83 mg, 0.5 mmol) and following general procedure D, compound 3n was purified by chromatography, eluting with n-hexane-EtOAc (1:1). White solid (0.10 g, 0.27 mmol), yield 54%, mp 107–109 °C. 11H NMR (300 MHz, CDCl3) δ 7.83 (s, 1H), 7.36 (d, J = 2.2 Hz, 1H), 7.07 (dd, J = 8.6, 2.2 Hz, 1H), 6.89 (d, J = 8.6 Hz, 1H), 6.58 (s, 2H), 3.92 (s, 3H), 3.89 (s, 3H), 3.75 (s, 6H). 13C NMR (126 MHz, CDCl3) δ 155.9, 153.7, 138.9, 136.5, 133.0, 132.0, 130.4, 128.3, 123.2, 119.8, 112.2, 103.1, 61.2, 56.5, 56.4. HRMS (ESI/Q-TOF): m/z [M+H]+ calcd. for C18H18ClN3O4 [M+H]+: 376.1059, found: 376.1047.
- 5-(3,4-dimethoxyphenyl)-1-(3,4,5-trimethoxyphenyl)-1H-1,2,3-triazoletriazole (3o): Starting from 2a (81 mg, 0.5 mmol) and following general procedure D, compound 3o was purified by chromatography, eluting with n-hexane-EtOAc (2:1). White solid (0.11 g, 0.30 mmol), yield 59%, mp 119–121 °C. 1H NMR (400 MHz, CDCl3) δ 7.66 (s, 1H), 6.74 (s, 2H), 6.61 (s, 1H), 6.48 (s, 2H), 3.75 (s, 3H), 3.72 (s, 3H), 3.60 (s, 6H), 3.59 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 153.2, 149.6, 148.7, 138.2, 137.4, 132.4, 132.0, 121.3, 118.8, 111.3, 111.2, 111.1, 102.8, 60.7, 56.0, 55.7, 55.6, 55.6. HRMS (ESI/Q-TOF): m/z [M+H]+ calcd. for C19H22N3O5+ [M+H]+: 372.1554, found: 372.1539.
- General procedure for the deprotection of TBDMS ethers for the synthesis of triazoles 3p-r. Following the general procedure of the 1,3-dipolar Huisgen cycloaddition described before, under N2 atmosphere, tetra-n-butyl ammonium fluoride (TBAF, 1 M in THF, 1.5 equiv.) was added dropwise to a cooled (0 °C) solution of the corresponding TBDMS-ether in THF (0.05 M). The reaction mixture was stirred at the same temperature for 2 h and then treated with water. The mixture was extracted 3 times with ethyl acetate. The organic phase was dried over anhydrous Na2SO4, and the mixture was concentrated to dryness and purified by flash column chromatography on silica gel using mixtures of n-hexane and ethyl acetate as eluents.
- 2-bromo-4-(1-(3,4,5-trimethoxyphenyl)-1H-1,2,3-triazol-5-yl)phenol (3p): Starting from 2e (99 mg, 0.5 mmol) and following the general procedure described before, compound 3p was purified by chromatography, eluting with n-hexane-EtOAc (1:2). Orange solid (0.12 g, 0.29 mmol), yield 58%, mp >200 °C. 1H NMR (300 MHz, Acetone-d6) δ 8.01 (s, 1H), 7.92 (s, 1H), 7.55 (d, J = 2.1 Hz, 01H), 7.15 (dd, J = 8.4, 2.1 Hz, 1H), 7.02 (d, J = 8.4 Hz, 1H), 6.74 (s, 1H), 3.79 (s, 3H), 3.77 (s, 6H). 13C NMR (75 MHz, Acetone-d6) δ 156.3, 154.8, 137.7, 134.2, 133.4, 133.3, 130.1, 120.4, 117.5, 110.7, 104.7, 60.9, 56.8. HRMS (ESI/Q-TOF): m/z [M+H]+ calcd. for C17H17BrN3O4+ [M+H]+: 406.0397, found: 406.0379.
- 4-(1-(3,4,5-trimethoxyphenyl)-1H-1,2,3-triazol-5-yl)benzene-1,2-diol (3q): Starting from 2b (74 mg, 0.5 mmol) and following the general procedure described before, compound 3q was purified by chromatography, eluting with n-hexane-EtOAc (1:3). Yellow solid (0.13 g, 0.35 mmol), yield 71%, mp > 200 °C. 1H NMR (300 MHz, CD3OD) δ 7.85 (s, 1H), 6.80 (d, J = 7.8 Hz, 1H), 6.72–6.68 (m, 4 H), 3.82 (s, 3H), 3.75 (s, 6H). 13C NMR (75 MHz, CD3OD) δ 155.0, 148.1, 146.8, 140.1, 139.9, 133.6, 133.2, 121.9, 118.9, 116.7, 116.6, 104.4, 61.2, 56.8. HRMS (ESI/Q-TOF): m/z [M+K]+ calcd. for C17H18KN3O5+ [M+K]+: 382.0800, found: 382.0763.
- 2-methoxy-5-(1-(3,4,5-trimethoxyphenyl)-1H-1,2,3-triazol-5-yl)phenol (3r): Starting from 2c (0.18 g, 0.5 mmol) and following the general procedure described before, compound 3r was purified by chromatography, eluting with n-hexane-EtOAc (1:1). White solid (0.2 g, 0.35 mmol), yield 69%. NMR spectra match with previously published [15].
4.2. Biological Assays
- Cell culture. Cell culture media were purchased from Gibco (Grand Island, NY, USA). Fetal bovine serum (FBS) was a product of Harlan-Seralab (Belton, UK). Supplements and other chemicals not listed in this section were obtained from Sigma Chemical Co. (St. Louis, MO, USA). Plastics for cell culture were supplied by Thermo Scientific BioLite. All tested compounds were dissolved in DMSO at a concentration of 20 mM and stored at –20 °C until use. HT-29, A-549, and HEK-293 cell lines were maintained in a Dulbecco’s modified Eagle’s medium (DMEM) containing glucose (1 g/L), glutamine (2 mM), penicillin (50 μg/mL), streptomycin (50 μg/mL), and amphotericin B (1.25 μg/mL), supplemented with 10% FBS.
- Cytotoxicity assays. 5 × 103 cells per well were incubated in 96-well plates with serial dilutions of the tested compounds in a total volume of 100 μL of their growth media. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT; Sigma Chemical Co.) dye reduction assay in 96-well microplates was used. Then, 10 μL of MTT (5 mg/mL in phosphate-buffered saline, PBS) was added to each well after 2 days of incubation (37 °C, 5% CO2 in a humid atmosphere). The plate was incubated for a further 3 h (37 °C). After that, the supernatant was discarded and 100 μL of DMSO were added in order to dissolve formazan crystals. The absorbance was read at 550 nm by spectro-photometry. For all concentrations of compound, cell viability was expressed as the percentage of the ratio between the mean absorbance of treated cells and the mean absorbance of untreated cells. Three independent experiments were performed, and the IC50 values (i.e., concentration half inhibiting cell proliferation) were graphically determined using GraphPad Prism 9 software.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Global Cancer Observatory. Available online: https://gco.iarc.fr/en (accessed on 19 September 2024).
- Park, H.-J.; Jung, H.-J.; Lee, K.-T.; Choi, J. Biological characterization of the chemical structures of naturally occurring substances with cytotoxicity. Nat. Prod. Sci. 2006, 12, 175–192. [Google Scholar]
- Zitvogel, L.; Apetoh, L.; Ghiringhelli, F.; Kroemer, G. Immunological aspects of cancer chemotherapy. Nat. Rev. Immunol. 2008, 8, 59–73. [Google Scholar] [CrossRef] [PubMed]
- Portt, L.; Norman, G.; Clapp, C.; Greenwood, M.; Greenwood, M.T. Anti-apoptosis and cell survival: A review. Biochim. Biophys. Acta 2011, 1813, 238–259. [Google Scholar] [CrossRef] [PubMed]
- Torres-Andón, F.; Fadeel, B. Programmed cell death: Molecular mechanisms and implications for safety assessment of nanomaterials. Acc. Chem. Res. 2013, 46, 733–742. [Google Scholar] [CrossRef]
- Mollaei, M.; Hassan, Z.M.; Khorshidi, F.; Langroudi, L. Chemotherapeutic drugs: Cell death- and resistance-related signaling pathways. Are they really as smart as the tumor cells? Transl. Oncol. 2021, 14, 101056. [Google Scholar] [CrossRef]
- Jordan, M.; Wilson, L. Microtubules as a target for anticancer drugs. Nat. Rev. Cancer 2004, 4, 253–265. [Google Scholar] [CrossRef]
- Pettit, G.R.; Singh, S.B.; Boyd, M.R.; Hamel, E.; Pettit, R.K.; Schmidt, J.M.; Hogan, F. Antineoplastic Agents. 291. Isolation and Synthesis of Combretastatins A-4, A-5, and A-6. J. Med. Chem. 1995, 38, 1666–1672. [Google Scholar] [CrossRef]
- Singh, S.B. Discovery, synthesis, activities, structure–activity relationships, and clinical development of combretastatins and analogs as anticancer drugs. A comprehensive review. Nat. Prod. Rep. 2024, 41, 298–322. [Google Scholar] [CrossRef]
- Karatoprak, G.Ş.; Akkol, E.K.; Genç, Y.; Bardakcı, H.; Yücel, Ç.; Sobarzo-Sánchez, E. Combretastatins: An Overview of Structure, Probable Mechanisms of Action and Potential Applications. Molecules 2020, 25, 2560. [Google Scholar] [CrossRef]
- McLoughlin, E.C.; O’Boyle, N.M. Colchicine-Binding Site Inhibitors from Chemistry to Clinic: A Review. Pharmaceuticals 2020, 13, 8. [Google Scholar] [CrossRef]
- Pettit, G.R.; Rhodes, M.R.; Herald, D.L.; Hamel, E.; Schmidt, J.M.; Pettit, R.K. Antineoplastic Agents. 445. Synthesis and Evaluation of Structural Modifications of (Z)- and (E)-Combretastatin A-4. J. Med. Chem. 2005, 48, 4087–4099. [Google Scholar] [CrossRef] [PubMed]
- Bonandi, E.; Christodoulou, M.S.; Fumagalli, G.; Perdicchia, D.; Rastelli, G.; Passarella, D. The 1,2,3-triazole ring as a bioisostere in medicinal chemistry. Drug Discov. Today 2017, 22, 1572–1581. [Google Scholar] [CrossRef] [PubMed]
- Saroha, B.; Kumar, G.; Kumar, R.; Kumari, M.; Kumar, S. A minireview of 1,2,3-triazole hybrids with O-heterocycles as leads in medicinal chemistry. Chem. Biol. Drug Des. 2021, 2021, 843–869. [Google Scholar] [CrossRef] [PubMed]
- Odlo, K.; Hentzen, J.; Dit Chabert, J.F.; Ducki, S.; Gani, O.A.; Sylte, I.; Skrede, M.; Flørenes, V.A.; Hansen, T.V. 1,5-Disubstituted 1,2,3-triazoles as cis-restricted analogues of combretastatin A-4: Synthesis, molecular modeling and evaluation as cytotoxic agents and inhibitors of tubulin. Bioorg. Med. Chem. 2008, 16, 4829–4838. [Google Scholar] [CrossRef]
- Cafici, L.; Pirali, T.; Condorelli, F.; Del Grosso, E.; Massarotti, A.; Sorba, G.; Canonico, P.L.; Tron, G.C.; Genazzani, A.A. Solution-Phase Parallel Synthesis and Biological Evaluation of Combretatriazoles. J. Comb. Chem. 2008, 10, 732–740. [Google Scholar] [CrossRef]
- Akselsen, Ø.W.; Odlo, K.; Cheng, J.-J.; Maccari, G.; Botta, M.; Hansen, T.V. Synthesis, biological evaluation and molecular modeling of 1,2,3-triazole analogs of combretastatin A-1. Bioorganic Med. Chem. 2012, 20, 234–242. [Google Scholar] [CrossRef]
- Beale, T.M.; Bond, P.J.; Brenton, J.D.; Charnock-Jones, D.S.; Ley, S.V.; Myers, R.M. Increased endothelial cell selectivity of triazole-bridged dihalogenated A-ring analogues of combretastatin A–1. Bioorganic Med. Chem. 2012, 20, 1749–1759. [Google Scholar] [CrossRef]
- Evensen, L.; Odlo, K.; Micklem, D.R.; Littlewood-Evans, A.; Wood, J.; Kuzniewski, C.; Altmann, K.-H.; Hansen, T.V.; Lorens, J.B. Contextual Compound Screening for Improved Therapeutic Discovery. ChemBioChem 2013, 14, 2512–2518. [Google Scholar] [CrossRef]
- Demchuk, D.V.; Samet, A.V.; Chernysheva, N.B.; Ushkarov, V.I.; Stashina, G.A.; Konyushkin, L.D.; Raihstat, M.M.; Firgang, S.I.; Philchenkov, A.A.; Zavelevich, M.P.; et al. Synthesis and antiproliferative activity of conformationally restricted 1,2,3-triazole analogues of combretastatins in the sea urchin embryo model and against human cancer cell lines. Bioorganic Med. Chem. 2014, 22, 738–755. [Google Scholar] [CrossRef]
- Torijano-Gutiérrez, S.; Vilanova, C.; Díaz-Oltra, S.; Murga, J.; Falomir, E.; Carda, M.; Marco, J.A. Design and synthesis of pironetin analogue/combretastatin A-4 hybrids and evaluation of their cytotoxic activity. Eur. J. Org. Chem. 2014, 2014, 2284–2296. [Google Scholar] [CrossRef]
- Vilanova, C.; Torijano-Gutiérrez, S.; Díaz-Oltra, S.; Murga, J.; Falomir, E.; Carda, M.; Marco, J.A. Design and synthesis of pironetin analogue/combretastatin A-4 hybrids containing a 1,2,3-triazole ring and evaluation of their cytotoxic activity. Eur. J. Med. Chem. 2014, 87, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Vilanova, C.; Díaz-Oltra, S.; Murga, J.; Falomir, E.; Carda, M.; Redondo-Horcajo, M.; Díaz, J.F.; Barasoain, I.; Marco, J.A. Design and synthesis of pironetin analogue/colchicine hybrids and study of their cytotoxic activity and mechanisms of interaction with tubulin. J. Med. Chem. 2014, 57, 10391–10403. [Google Scholar] [CrossRef] [PubMed]
- Krasiński, A.; Fokin, V.V.; Sharpless, K.B. Direct Synthesis of 1,5-Disubstituted-4-magnesio-1,2,3-triazoles, Revisited. Org. Lett. 2004, 6, 1237–1240. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Li, J.; Yao, S.Q. In situ “click” Assembly of Small Molecule Matrix Metalloprotease Inhibitors Containing Zinc-Chelating Groups. Org. Lett. 2008, 10, 5529–5531. [Google Scholar] [CrossRef]
- Habrant, D.; Rauhala, V.; Koskinen, A.M. Conversion of carbonyl compounds to alkynes: General overview and recent developments. Chem. Soc. Rev. 2010, 39, 2007–2017. [Google Scholar] [CrossRef]
- Miwa, K.; Aoyama, T.; Shioiri, T. Extension of the Colvin Rearrangement Using Trimethylsilyldiazomethane. A New Synthesis of Alkynes. Synlett 1994, 1994, 107–108. [Google Scholar] [CrossRef]
- Colvin, E.W.; Hamill, B.J. One-step conversion of carbonyl compounds into acetylenes. J. Chem. Soc. Chem. Commun. 1973, 151–152. [Google Scholar] [CrossRef]
- Arden, N.; Betenbaugh, M.J. Life and death in mammalian cell culture: Strategies for apoptosis inhibition. Trends Biotechnol. 2004, 22, 174–180. [Google Scholar] [CrossRef]
- Agut, R.; Falomir, E.; Murga, J.; Martín-Beltrán, C.; Gil-Edo, R.; Pla, A.; Carda, M.; Marco, J.A. Synthesis of Combretastatin A-4 and 3′-Aminocombretastatin A-4 derivatives with Aminoacid Containing Pendants and Study of their Interaction with Tubulin and as Downregulators of the VEGF, hTERT and c-Myc Gene Expression. Molecules 2020, 25, 660. [Google Scholar] [CrossRef]
- Zhang, X.; Cui, X.; Wang, W.; Zeng, T.; Wang, Y.; Tan, Y.; Liu, D.; Wang, X.; Li, Y. Base-Promoted Regiospecific Synthesis of Fully Substituted 1,2,3-Triazoles and 1,5-Disubstituted 1,2,3-Triazoles. Asian J. Org. Chem. 2020, 9, 2176–2183. [Google Scholar] [CrossRef]
- Sun, N.; Zhang, X.; Jin, L.; Hu, B.; Shen, Z.; Hu, X. Recyclable copper-catalyzed ambient aerobic oxidation of primary alcohols to aldehydes in water using water-soluble PEG-functionalized pyridine triazole as ligand. Cat. Commun. 2017, 101, 5–9. [Google Scholar] [CrossRef]
- Kim, G.-R.; Kim, S.; Kim, Y.-O.; Han, X.; Nagel, J.; Kim, J.; Song, D.I.; Müller, C.E.; Jin, M.S.; Kim, Y.-C. Discovery of Triazolopyrimidine Derivatives as Selective P2X3 Receptor Antagonists Binding to an Unprecedented Allosteric Site as Evidenced by Cryo-Electron Microscopy. J. Med. Chem. 2024, 67, 14443–14465. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Tavares, M.T.; Teixeira, S.F.; Azevedo, R.A.; Pietro, D.C.; Fernandes, T.B.; Ferreira, A.K.; Trossini, G.H.G.; Barbuto, J.A.M.; Parise-Filho, R. Toward chelerythrine optimization: Analogues designed by molecular simplification exhibit selective growth inhibition in non-small-cell lung cancer cells. Bioorganic Med. Chem. 2016, 24, 4600–4610. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Huang, X.; Huang, R.; Gou, S.; Wang, Z.; Wang, H. Pt(IV) prodrugs containing microtubule inhibitors displayed potent antitumor activity and ability to overcome cisplatin resistance. Eur. J. Med. Chem. 2018, 156, 666–679. [Google Scholar] [CrossRef]
- Tello-Aburto, R.; Harned, A.M. Palladium-Catalyzed Reactions of Cyclohexadienones: Regioselective Cyclizations Triggered by Alkyne Acetoxylation. Org. Lett. 2009, 11, 3998–4000. [Google Scholar] [CrossRef]
- Rosiak, A.; Frey, W.; Christoffers, J. Synthesis of Tetrahydropyran-4-ones and Thiopyran-4-ones from Donor-Substituted α-Bromostyrene Derivatives. Eur. J. Org. Chem. 2006, 4044–4054. [Google Scholar] [CrossRef]
- Uchiyama, M.; Ozawa, H.; Takuma, K.; Matsumoto, Y.; Yonehara, M.; Hiroya, K.; Sakamoto, T. Regiocontrolled Intramolecular Cyclizations of Carboxylic Acids to Carbon−Carbon Triple Bonds Promoted by Acid or Base Catalyst. Org. Lett. 2006, 8, 5517–5520. [Google Scholar] [CrossRef]
- Odlo, K.; Fournier-Dit-Chabert, J.; Ducki, S.; Gani, O.A.; Sylte, I.; Hansen, T.V. 1,2,3-triazole analogs of combretastatin A-4 as potential microtubule-binding agents. Bioorganic Med. Chem. 2010, 18, 6874–6885. [Google Scholar] [CrossRef]
- Yao, W.; Li, R.; Jiang, H.; Han, D. An Additive-Free, Base-Catalyzed Protodesilylation of Organosilanes. J. Org. Chem. 2018, 83, 2250–2255. [Google Scholar] [CrossRef]
- Jin, H.; Liu, D.; Zhou, B.; Liu, Y. One-Pot Copper-Catalyzed Three-Component Reaction of Sulfonyl Azides, Alkynes, and Allylamines To Access 2,3-Dihydro-1H-imidazo [1,2-a]indoles. Synthesis 2020, 52, 1417–1424. [Google Scholar] [CrossRef]
- Madden, K.S.; Laroche, B.; David, S.; Batsanov, A.S.; Thompson, D.; Knowles, J.P.; Whiting, A. Approaches to Styrenyl Building Blocks for the Synthesis of Polyene Xanthomonadin and its Analogues. Eur. J. Org. Chem. 2018, 5312–5322. [Google Scholar] [CrossRef]
Entry | 4 | R1 | R2 | R3 | R4 | 2 (Yield %) b |
---|---|---|---|---|---|---|
1 | 4a | H | OMe | OMe | H | 2a (50) |
2 | 4b | H | OTBS | OTBS | H | 2b (44) |
3 | 4c | H | OTBS | OMe | H | 2c (60) |
4 | 4d | H | Br | OEt | H | 2d (58) |
5 | 4e | H | Br | OTBS | H | 2e (36) |
6 | 4f | H | Cl | OMe | H | 2f (68) |
7 | 4g | H | H | OEt | H | 2g (52) |
8 | 4h | Br | H | OMe | H | 2h (60) |
9 | 4i | Br | H | H | OMe | 2i (42) |
Entry | 3 | R1 | R2 | R3 | R4 | Yield (%) b |
---|---|---|---|---|---|---|
1 | 3a | H | H | H | H | 72 |
2 | 3b | Br | H | H | H | 85 |
3 | 3c | NO2 | H | H | H | 59 |
4 | 3d | H | H | Me | H | 60 |
5 | 3e | H | H | CF3 | H | 61 |
6 | 3f | H | H | F | H | 51 |
7 | 3g | H | H | Cl | H | 51 |
8 | 3h | H | H | Br | H | 66 |
9 | 3i | H | H | OMe | H | 60 |
10 | 3j | H | H | OEt | H | 51 |
11 | 3k | Br | H | OMe | H | 56 |
12 | 3l | Br | H | H | OMe | 38 |
13 | 3m | H | Br | OEt | H | 51 |
14 | 3n | H | Cl | OMe | H | 54 |
15 | 3o | H | OMe | OMe | H | 59 |
16 | 3p | H | Br | OH | H | 58 c |
17 | 3q | H | OH | OH | H | 71 c |
18 | 3r | H | OH | OMe | H | 69 c |
Comp. | Structure | HT-29 | A-549 | HEK-293 |
---|---|---|---|---|
CA-4 b | 4.2 ± 0.5 | 0.428 ± 0.004 | 25 ± 3 | |
3a | >100 | >200 | >200 | |
3b | >100 | >100 | >200 | |
3c | >100 | >200 | >200 | |
3d | >100 | >200 | >200 | |
3e | 54 ± 3 | >100 | >200 | |
3f | >200 | >200 | >200 | |
3g | >100 | >100 | >200 | |
3h | >100 | >100 | >200 | |
3i | 0.020 ± 0.009 | 0.022 ± 0.007 | 35 ± 9 | |
3j | 0.0021 ± 0.0009 | 5.8 ± 0.8 | 19 ± 4 | |
3k | 56 ± 4 | 33 ± 2 | >100 | |
3l | >100 | >200 | >200 | |
3m | 20 ± 5 | 59 ± 1 | >200 | |
3n | 0.021 ± 0.006 | 0.0032 ± 0.0009 | 0.025 ± 0.008 | |
3o | >100 | >200 | >200 | |
3p | >200 | >200 | >200 | |
3q | >200 | >200 | >200 | |
3r | 0.055 ± 0.007 | 0.0094 ± 0.0010 | 42 ± 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prieto, L.; Gaviña, D.; Escolano, M.; Cánovas-Belchí, M.; Sánchez-Roselló, M.; del Pozo, C.; Falomir, E.; Díaz-Oltra, S. Synthesis and Biological Evaluation of New cis-Restricted Triazole Analogues of Combretastatin A-4. Molecules 2025, 30, 317. https://doi.org/10.3390/molecules30020317
Prieto L, Gaviña D, Escolano M, Cánovas-Belchí M, Sánchez-Roselló M, del Pozo C, Falomir E, Díaz-Oltra S. Synthesis and Biological Evaluation of New cis-Restricted Triazole Analogues of Combretastatin A-4. Molecules. 2025; 30(2):317. https://doi.org/10.3390/molecules30020317
Chicago/Turabian StylePrieto, Lidia, Daniel Gaviña, Marcos Escolano, María Cánovas-Belchí, María Sánchez-Roselló, Carlos del Pozo, Eva Falomir, and Santiago Díaz-Oltra. 2025. "Synthesis and Biological Evaluation of New cis-Restricted Triazole Analogues of Combretastatin A-4" Molecules 30, no. 2: 317. https://doi.org/10.3390/molecules30020317
APA StylePrieto, L., Gaviña, D., Escolano, M., Cánovas-Belchí, M., Sánchez-Roselló, M., del Pozo, C., Falomir, E., & Díaz-Oltra, S. (2025). Synthesis and Biological Evaluation of New cis-Restricted Triazole Analogues of Combretastatin A-4. Molecules, 30(2), 317. https://doi.org/10.3390/molecules30020317