Label-Free Surface-Enhanced Raman Scattering for Genomic DNA Cytosine Methylation Reading
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Nanoparticles Used for SERS Enhancement
2.2. Identification of Spectra Differences Between Cytosine and 5-Methylcytosine Bases
2.3. Quantification of DNA Methylation with AuNP Aggregation-Mediated SERS
2.4. Analysis of DNA Methylation in Colorectal Cancer Cell Genomic DNA
3. Materials and Methods
3.1. General Information
3.2. Spherical AuNPs Preparation
3.3. Characterization of Nanoparticles
3.4. Methylated and Unmethylated DNA Preparation
3.5. Preparation of Cell Line DNA for SERS Analysis
3.6. Protocol for Detecting Label-Free SERS
3.7. Setup for SERS Measurement
3.8. Denoising and Baseline Correction of Raman Spectra
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Portela, A.; Esteller, M. Epigenetic Modifications and Human Disease. Nat. Biotechnol. 2010, 28, 1057–1068. [Google Scholar] [CrossRef] [PubMed]
- Kelly, T.K.; De Carvalho, D.D.; Jones, P.A. Epigenetic Modifications as Therapeutic Targets. Nat. Biotechnol. 2010, 28, 1069–1078. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.S.; Shin, W.J.; Lee, J.E.; Do, J.T. CpG and Non-CpG Methylation in Epigenetic Gene Regulation and Brain Function. Genes 2017, 8, 148. [Google Scholar] [CrossRef] [PubMed]
- Jin, B.; Li, Y.; Robertson, K.D. DNA Methylation: Superior or Subordinate in the Epigenetic Hierarchy? Genes Cancer 2011, 2, 607–617. [Google Scholar] [CrossRef]
- Suzuki, M.M.; Bird, A. DNA Methylation Landscapes: Provocative Insights from Epigenomics. Nat. Rev. Genet. 2008, 9, 465–476. [Google Scholar] [CrossRef]
- Robertson, K.D. DNA Methylation and Human Disease. Nat. Rev. Genet. 2005, 6, 597–610. [Google Scholar] [CrossRef]
- Scott, C.M.; Joo, J.H.E.; O’Callaghan, N.; Buchanan, D.D.; Clendenning, M.; Giles, G.G.; Hopper, J.L.; Wong, E.M.; Southey, M.C. Methylation of Breast Cancer Predisposition Genes in Early-Onset Breast Cancer: Australian Breast Cancer Family Registry. PLoS ONE 2016, 11, e0165436. [Google Scholar] [CrossRef]
- Geissler, F.; Nesic, K.; Kondrashova, O.; Dobrovic, A.; Swisher, E.M.; Scott, C.L.; Wakefield, M.J. The Role of Aberrant DNA Methylation in Cancer Initiation and Clinical Impacts. Ther. Adv. Med. Oncol. 2024, 16, 1–23. [Google Scholar] [CrossRef]
- Robertson, K.D.; Jones, P.A. DNA Methylation: Past, Present and Future Directions. Carcinogenesis 2000, 21, 461–467. [Google Scholar] [CrossRef]
- Lim, W.J.; Kim, K.H.; Kim, J.Y.; Jeong, S.; Kim, N. Identification of DNA-Methylated CpG Islands Associated with Gene Silencing in the Adult Body Tissues of the Ogye Chicken Using RNA-Seq and Reduced Representation Bisulfite Sequencing. Front. Genet. 2019, 10, 442592. [Google Scholar] [CrossRef]
- Fan, S.; Huang, K.; Ai, R.; Wang, M.; Wang, W. Predicting CpG Methylation Levels by Integrating Infinium HumanMethyla-tion450 BeadChip Array Data. Genomics 2016, 107, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Stewart, K.R.; Veselovska, L.; Kelsey, G. Establishment and Functions of DNA Methylation in the Germline. Epigenomics 2016, 8, 1399–1413. [Google Scholar] [CrossRef] [PubMed]
- Dolinoy, D.C.; Huang, D.; Jirtle, R.L. Maternal Nutrient Supplementation Counteracts Bisphenol A-Induced DNA Hypometylation in Early Development. Proc. Natl. Acad. Sci. USA 2007, 104, 13056–13061. [Google Scholar] [CrossRef]
- Li, S.; Tollefsbol, T.O. DNA Methylation Methods: Global DNA Methylation and Methylomic Analyses. Methods 2021, 187, 28–43. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Redondo, I.; Planells, B.; Cánovas, S.; Ivanova, E.; Kelsey, G.; Gutiérrez-Adán, A. Genome-Wide DNA Methylation Dynamics during Epigenetic Reprogramming in the Porcine Germline. Clin. Epigenetics 2021, 13, 27. [Google Scholar] [CrossRef] [PubMed]
- Yang, A.S.; Estécio, M.R.H.; Doshi, K.; Kondo, Y.; Tajara, E.H.; Issa, J.P.J. A Simple Method for Estimating Global DNA Methylation Using Bisulfite PCR of Repetitive DNA Elements. Nucleic Acids Res. 2004, 32, e38. [Google Scholar] [CrossRef]
- Feng, S.; Rubbi, L.; Jacobsen, S.E.; Pellegrini, M. Determining DNA Methylation Profiles Using Sequencing. Methods Mol. Biol. 2011, 733, 223–238. [Google Scholar]
- Urich, M.A.; Nery, J.R.; Lister, R.; Schmitz, R.J.; Ecker, J.R. MethylC-Seq Library Preparation for Base-Resolution Whole-Genome Bisulfite Sequencing. Nat. Protoc. 2015, 10, 475–483. [Google Scholar] [CrossRef]
- Cokus, S.J.; Feng, S.; Zhang, X.; Chen, Z.; Merriman, B.; Haudenschild, C.D.; Pradhan, S.; Nelson, S.F.; Pellegrini, M.; Jacobsen, S.E. Shotgun Bisulphite Sequencing of the Arabidopsis Genome Reveals DNA Methylation Patterning. Nature 2008, 452, 215–219. [Google Scholar] [CrossRef]
- Kuramoto, J.; Arai, E.; Fujimoto, M.; Tian, Y.; Yamada, Y.; Yotani, T.; Makiuchi, S.; Tsuda, N.; Ojima, H.; Fukai, M.; et al. Quantification of DNA Methylation for Carcinogenic Risk Estimation in Patients with Non-Alcoholic Steatohepatitis. Clin. Epigenetics 2022, 14, 168. [Google Scholar] [CrossRef]
- Lu, D.; Chen, Y.; Ke, L.; Wu, W.; Yuan, L.; Feng, S.; Huang, Z.; Lu, Y.; Wang, J. Machine Learning-Assisted Global DNA Methylation Fingerprint Analysis for Differentiating Early-Stage Lung Cancer from Benign Lung Diseases. Biosens Bioelectron. 2023, 235, 115235. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.S.; Lin, Z.X.; Liu, Y.J.; Yang, S.M.; Zhang, Y.; Yu, X.Y. Ultra Performance Liquid Chromatography–Tandem Mass Spectrometry Assay for the Quantification of RNA and DNA Methylation. J. Pharm. Biomed. Anal. 2021, 197, 113969. [Google Scholar] [CrossRef] [PubMed]
- Németh, K.; Mészáros, K.; Szabó, B.; Butz, H.; Arányi, T.; Szabó, P.T. A Relative Quantitation Method for Measuring DNA Methylation and Hydroxymethylation Using Guanine as an Internal Standard. Anal. Methods 2021, 13, 4614–4622. [Google Scholar] [CrossRef] [PubMed]
- Kremer, D.; Metzger, S.; Kolb-Bachofen, V.; Kremer, D. Quantitative Measurement of Genome-Wide DNA Methylation by a Reliable and Cost-Efficient Enzyme-Linked Immunosorbent Assay Technique. Anal. Biochem. 2012, 422, 74–78. [Google Scholar] [CrossRef]
- Maruthai, K.; Kalaiarasan, E.; Joseph, N.M.; Parija, S.C.; Mahadevan, S. Assessment of Global DNA Methylation in Children with Tuberculosis Disease. Int. J. Mycobacteriol. 2018, 7, 338–342. [Google Scholar]
- Kneipp, J.; Kneipp, H.; Kneipp, K. SERS—A Single-Molecule and Nanoscale Tool for Bioanalytics. Chem. Soc. Rev. 2008, 37, 1052–1060. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhan, D.S.; Xu, X.Y.; Zhang, Z.; Hafez, M.E.; He, Y.; Li, Y.; Li, D.W. Label-Free Detection of DNA Methylation by Surface-Enhanced Raman Spectroscopy Using Zirconium-Modified Silver Nanoparticles. Talanta 2023, 253, 123941. [Google Scholar] [CrossRef]
- Ganesh, S.; Venkatakrishnan, K.; Tan, B. Quantum Scale Organic Semiconductors for SERS Detection of DNA Methylation and Gene Expression. Nat. Commun. 2020, 11, 1135. [Google Scholar] [CrossRef]
- Li, X.; Yang, T.; Li, C.S.; Song, Y.; Wang, D.; Jin, L.; Lou, H.; Li, W. Polymerase Chain Reaction—Surface-Enhanced Raman Spectroscopy (PCR-SERS) Method for Gene Methylation Level Detection in Plasma. Theranostics 2020, 10, 898–909. [Google Scholar] [CrossRef]
- Moisoiu, V.; Stefancu, A.; Iancu, S.D.; Moisoiu, T.; Loga, L.; Dican, L.; Alecsa, C.D.; Boros, I.; Jurj, A.; Dima, D.; et al. SERS Assessment of the Cancer-Specific Methylation Pattern of Genomic DNA: Towards the Detection of Acute Myeloid Leukemia in Patients Undergoing Hematopoietic Stem Cell Transplantation. Anal. Bioanal. Chem. 2019, 411, 7907–7913. [Google Scholar] [CrossRef]
- Campion, A.; Kambhampati, P. Surface-Enhanced Raman Scattering. Chem. Soc. Rev. 1998, 27, 241–250. [Google Scholar] [CrossRef]
- Zheng, X.S.; Jahn, I.J.; Weber, K.; Cialla-May, D.; Popp, J. Label-Free SERS in Biological and Biomedical Applications: Recent Progress, Current Challenges and Opportunities. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 197, 56–77. [Google Scholar] [CrossRef] [PubMed]
- Jain, P.K.; Lee, K.S.; El-Sayed, I.H.; El-Sayed, M.A. Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition: Applications in Biological Imaging and Biomedicine. J. Phys. Chem. B 2006, 110, 7238–7248. [Google Scholar] [CrossRef] [PubMed]
- Anik, M.I.; Mahmud, N.; Masud, A.A.; Hasan, M. Gold Nanoparticles (GNPs) in Biomedical and Clinical Applications: A Re-view. Nano Sel. 2022, 3, 792–828. [Google Scholar] [CrossRef]
- López-Lorente, Á.I. Recent Developments on Gold Nanostructures for Surface Enhanced Raman Spectroscopy: Particle Shape, Substrates and Analytical Applications. A Review. Anal. Chim. Acta 2021, 1168, 338474. [Google Scholar] [CrossRef]
- Hong, S.; Li, X. Optimal Size of Gold Nanoparticles for Surface-Enhanced Raman Spectroscopy under Different Conditions. J. Nanomater. 2013, 2013, 790323. [Google Scholar] [CrossRef]
- Cao, J.; Sun, T.; Grattan, K.T.V. Gold Nanorod-Based Localized Surface Plasmon Resonance Biosensors: A Review. Sens. Actuators B Chem. 2014, 195, 332–351. [Google Scholar] [CrossRef]
- Fuller, M.A.; Köper, I. Biomedical Applications of Polyelectrolyte Coated Spherical Gold Nanoparticles. Nano Converg. 2019, 6, 11. [Google Scholar] [CrossRef]
- Chithrani, B.D.; Chan, W.C.W. Elucidating the Mechanism of Cellular Uptake and Removal of Protein-Coated Gold Nanoparticles of Different Sizes and Shapes. Nano Lett. 2007, 7, 1542–1550. [Google Scholar] [CrossRef]
- Tavakkoli Yaraki, M.; Rubio, N.S.; Tukova, A.; Liu, J.; Gu, Y.; Kou, L.; Wang, Y. Spectroscopic Identification of Charge Transfer of Thiolated Molecules on Gold Nanoparticles via Gold Nanoclusters. J. Am. Chem. Soc. 2024, 146, 5916–5926. [Google Scholar] [CrossRef]
- Tukova, A.; Tavakkoli Yaraki, M.; Rodger, A.; Wang, Y. Shape-Induced Variations in Aromatic Thiols Adsorption on Gold Nanoparticle: A Novel Method for Accurate Evaluation of Adsorbed Molecules. Langmuir 2023, 39, 15828–15836. [Google Scholar] [CrossRef] [PubMed]
- Kimling, J.; Maier, M.; Okenve, B.; Kotaidis, V.; Ballot, H.; Plech, A. Turkevich Method for Gold Nanoparticle Synthesis Revis-ited. J. Phys. Chem. B 2006, 110, 15700–15707. [Google Scholar] [CrossRef] [PubMed]
- Camafeita, L.E.; Sánchez-Cortés, S.; García-Ramos, J.V. SERS of Cytosine and Its Methylated Derivatives on Gold Sols. J. Raman Spectrosc. 1995, 26, 149–154. [Google Scholar] [CrossRef]
- Nguyen, D.B.; Nguyen, T.D.; Kim, S.; Joo, S.W. Raman Spectroscopy and Quantum-Mechanical Analysis of Tautomeric Forms in Cytosine and 5-Methylcytosine on Gold Surfaces. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2017, 174, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Otto, C.; van den Tweel, T.J.J.; de Mul, F.F.M.; Greve, J. Surface-Enhanced Raman Spectroscopy of DNA Bases. J. Raman Spectrosc. 1986, 17, 289–298. [Google Scholar] [CrossRef]
- Li, L.; Lim, S.F.; Puretzky, A.; Riehn, R.; Hallen, H.D. DNA Methylation Detection Using Resonance and Nanobowtie-Antenna-Enhanced Raman Spectroscopy. Biophys. J. 2018, 114, 2498–2506. [Google Scholar] [CrossRef]
- Luo, X.; Xing, Y.; Galvan, D.D.; Zheng, E.; Wu, P.; Cai, C.; Yu, Q. Plasmonic Gold Nanohole Array for Surface-Enhanced Raman Scattering Detection of DNA Methylation. ACS Sens. 2019, 4, 1534–1542. [Google Scholar] [CrossRef]
- Daum, R.; Brauchle, E.M.; Berrio, D.A.C.; Jurkowski, T.P.; Schenke-Layland, K. Non-Invasive Detection of DNA Methylation States in Carcinoma and Pluripotent Stem Cells Using Raman Microspectroscopy and Imaging. Sci. Rep. 2019, 9, 7014. [Google Scholar] [CrossRef]
- Guerrini, L.; Krpetić, Ž.; Lierop, D.V.; Alvarez-Puebla, R.A.; Graham, D. Direct Surface-Enhanced Raman Scattering Analysis of DNA Duplexes. Angew. Chem. Int. Ed. 2015, 54, 1144–1148. [Google Scholar] [CrossRef]
- Rodger, A.; Parkinson, A.; Best, S. Molecular features of Co(III) tetra and pentammines affect their influence on DNA structure. Eur. J. Inorg. Chem. 2001, 9, 2311–2316. [Google Scholar]
- Meistermann, I.; Moreno, V.; Prieto, M.J.; Moldrheim, E.; Sletten, E.; Khalid, S.; Rodger, P.M.; Peberdy, J.C.; Isaac, C.J.; Rodger, A.; et al. Intramolecular DNA coiling mediated by metallo-supramolecular cylinders: Differential binding of P and M helical enantiomers. Proc. Natl. Acad. Sci. USA 2002, 99, 5069–5074. [Google Scholar] [CrossRef] [PubMed]
- Rodger, A.; Sanders, K.J.; Hannon, M.J.; Meistermann, I.; Parkinson, A.; Vidler, D.S.; Haworth, I.S. DNA structure control by polycationic species: Polyamines, cobalt ammines, and di-metallo transition metal chelates. Chirality 2000, 12, 221–236. [Google Scholar] [CrossRef]
- Hobro, A.J.; Abdali, S.; Blanch, E.W. SERS Study of Methylated and Nonmethylated Ribonucleosides and the Effect of Aggregating Agents. J. Raman Spectrosc. 2012, 43, 187–195. [Google Scholar] [CrossRef]
- Zangana, S.; Veres, M.; Bonyár, A. Surface-Enhanced Raman Spectroscopy (SERS)-Based Sensors for Deoxyribonucleic Acid (DNA) Detection. Molecules 2024, 29, 3338. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wee, E.J.H.; Trau, M. Accurate and sensitive total genomic DNA methylation analysis from sub-nanogram input with embedded SERS nanotags. Chem. Commun. 2016, 52, 3560. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Zhang, C.-y. Single base extension reaction-based surface enhanced Raman spectroscopy for DNA methylation assay. Biosens. Bioelectron. 2012, 31, 451–457. [Google Scholar] [CrossRef] [PubMed]
- Schuebel, K.E.; Chen, W.; Cope, L.; Glöckner, S.C.; Suzuki, H.; Yi, J.M.; Chan, T.A.; Van Neste, L.; Van Criekinge, W.; Van Den Bosch, S.; et al. Comparing the DNA Hypermethylome with Gene Mutations in Human Colorectal Cancer. PLoS Genet. 2007, 3, e157. [Google Scholar] [CrossRef]
- Suter, C.M.; Norrie, M.; Ku, S.L.; Cheong, K.F.; Tomlinson, I.; Ward, R.L. CpG Island Methylation Is a Common Finding in Colorectal Cancer Cell Lines. Br. J. Cancer 2003, 88, 413–419. [Google Scholar] [CrossRef]
- Mund, C.; Beier, V.; Bewerunge, P.; Dahms, M.; Lyko, F.; Hoheisel, J.D. Array-Based Analysis of Genomic DNA Methylation Patterns of the Tumour Suppressor Gene P16 INK4A Promoter in Colon Carcinoma Cell Lines. Nucleic Acids Res. 2005, 33, e73. [Google Scholar] [CrossRef]
- León-Bejarano, F.; Méndez, M.O.; Ramírez-Elías, M.G.; Alba, A. Improved Vancouver Raman Algorithm Based on Empirical Mode Decomposition for Denoising Biological Samples. Appl. Spectrosc. 2019, 73, 1436–1450. [Google Scholar] [CrossRef]
- Bian, X.; Shi, Z.; Shao, Y.; Chu, Y.; Tan, X. Variational Mode Decomposition for Raman Spectral Denoising. Molecules 2023, 28, 6406. [Google Scholar] [CrossRef]
Oligonucleotide Name | Sequence |
---|---|
Unmethylated DNA | Sense: 5′-CGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGAAAAAAAAAA-3′ |
Antisense: 3′-AAAAAAAAAAGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGC-5′ | |
Methylated DNA | Sense: 5′-CmGCmGCmGCmGCmGCmGCmGCmGCmGCmGCmGCmGCmGCmGCmGCmGCmGCmGCmGCmGCmGCmGCmGCmGCmAAAAAAAAAA-3′ |
Antisense: 3′-AAAAAAAAAAGCmGCmGCmGCmGCmGCmGCmGCmGCmGCmGCmGCmGCmGCmGCmGCmGCmGCmGCmGCmGCmGCmGCmGCmGCm-5′ | |
Low CpG Unmethylated DNA | Sense: 5′-CGCTGACTCGACTGTGCAGTCGTGACTGCTCGAGACGTCGCATGTGCTAGAAAAAAAAAA-3′ Antisense: 3′-AAAAAAAAAAGCGACTGAGCTGACACGTCAGCACTGACGAGCTCTGCAGCGTACACGATC-5′ |
Low CpG methylated DNA | Sense: 5′-CmGCTGACTCmGACTGTGCAGTCmGTGACTGCTCmGAGACmGTCmGCATGTGCTAGAAAAAAAAAA-3′ Antisense: 3′- AAAAAAAAAAGCmGACTGAGCmTGACACGTCAGCmACTGACGAGCmTCTGCmAGCmGTACACGATC-5′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alom, K.M.; Tukova, A.; Lyu, N.; Rodger, A.; Wang, Y. Label-Free Surface-Enhanced Raman Scattering for Genomic DNA Cytosine Methylation Reading. Molecules 2025, 30, 403. https://doi.org/10.3390/molecules30020403
Alom KM, Tukova A, Lyu N, Rodger A, Wang Y. Label-Free Surface-Enhanced Raman Scattering for Genomic DNA Cytosine Methylation Reading. Molecules. 2025; 30(2):403. https://doi.org/10.3390/molecules30020403
Chicago/Turabian StyleAlom, Kazi Morshed, Anastasiia Tukova, Nana Lyu, Alison Rodger, and Yuling Wang. 2025. "Label-Free Surface-Enhanced Raman Scattering for Genomic DNA Cytosine Methylation Reading" Molecules 30, no. 2: 403. https://doi.org/10.3390/molecules30020403
APA StyleAlom, K. M., Tukova, A., Lyu, N., Rodger, A., & Wang, Y. (2025). Label-Free Surface-Enhanced Raman Scattering for Genomic DNA Cytosine Methylation Reading. Molecules, 30(2), 403. https://doi.org/10.3390/molecules30020403