The Effect of Zeolite Na-X and Clinoptilolite as Functional Fillers on the Mechanical, Thermal and Barrier Properties of Thermoplastic Polyurethane
Abstract
:1. Introduction
2. Results
2.1. Chemical Properties
2.2. Morphological Properties
2.3. Thermal Properties
2.4. Mechanical Properties
2.5. Barrier Properties
2.6. Rheological Properties
3. Materials and Methods
3.1. Materials
3.2. TPU-Based Composites Preparation
3.3. TPU-Based Composite Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, N.; Hui, D.; Singh, R.; Ahuja, I.P.S.; Feo, L.; Fraternali, F. Recycling of Plastic Solid Waste: A State of Art Review and Future Applications. Compos. B Eng. 2017, 115, 409–422. [Google Scholar] [CrossRef]
- Evode, N.; Qamar, S.A.; Bilal, M.; Barceló, D.; Iqbal, H.M.N. Plastic Waste and Its Management Strategies for Environmental Sustainability. Case Stud. Chem. Environ. Eng. 2021, 4, 100142. [Google Scholar] [CrossRef]
- Recupido, F.; Lama, G.C.; Ammendola, M.; De Luca Bossa, F.; Minigher, A.; Campaner, P.; Morena, A.G.; Tzanov, T.; Ornelas, M.; Barros, A.; et al. Rigid composite bio-based polyurethane foams: From synthesis to LCA analysis. Polymer 2023, 267, 125674. [Google Scholar] [CrossRef]
- Cherif Lahimer, M.; Ayed, N.; Horriche, J.; Belgaied, S. Characterization of Plastic Packaging Additives: Food Contact, Stability and Toxicity. Arab. J. Chem. 2017, 10, S1938–S1954. [Google Scholar] [CrossRef]
- Meng, W.; Sun, H.; Su, G. Plastic Packaging-Associated Chemicals and Their Hazards—An Overview of Reviews. Chemosphere 2023, 331, 138795. [Google Scholar] [CrossRef] [PubMed]
- de Anda-Flores, Y.B.; Cordón-Cardona, B.A.; González-León, A.; Valenzuela-Quintanar, A.I.; Peralta, E.; Soto-Valdez, H. Effect of Assay Conditions on the Migration of Phthalates from Polyvinyl Chloride Cling Films Used for Food Packaging in México. Food Packag. Shelf Life 2021, 29, 100684. [Google Scholar] [CrossRef]
- Verdolotti, L.; Di Caprio, M.R.; Lavorgna, M.; Buonocore, G.G. Polyurethane nanocomposite foams: Correlation between nanofillers, porous morphology, and structural and functional properties. In Polyurethane Polymers: Composites and Nanocomposites; Elsevier: Amsterdam, The Netherlands, 2017; pp. 277–310. [Google Scholar]
- Yao, Y.; Xiao, M.; Liu, W. A Short Review on Self-Healing Thermoplastic Polyurethanes. Macromol. Chem. Phys. 2021, 222, 2100002. [Google Scholar] [CrossRef]
- El-Nawasany, L.I.; Sundookh, A.; Kadoum, L.A.; Yasin, M.A.; AlSalem, H.S.; Binkadem, M.S.; Al-Goul, S.T.; Zidan, N.S.; Shoueir, K.R. Ameliorating Characteristics of Magnetically Sensitive TPU Nanofibers-Based Food Packaging Film for Long-Life Cheese Preservation. Food Biosci. 2023, 53, 102633. [Google Scholar] [CrossRef]
- Moustafa, H.; Darwish, N.A.; Youssef, A.M. Rational Formulations of Sustainable Polyurethane/Chitin/Rosin Composites Reinforced with ZnO-Doped-SiO2 Nanoparticles for Green Packaging Applications. Food Chem. 2022, 371, 131193. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, Z.; Song, X.; Peng, W.; Zhao, X.; Zhao, H.; Liang, D.; Huang, C.; Duan, Q. A Silver Nanoparticles-Polylactic Acid Microspheres/Polylactic Acid-Thermoplastic Polyurethane Nanofibers Hierarchical Antibacterial Film. Ind. Crops Prod. 2024, 207, 117773. [Google Scholar] [CrossRef]
- Marlina Ginting, E.; Bukit Affan Siregar, N.M. Preparation and Characterization of Natural Zeolite and Rice Husk Ash as Filler Material HDPE Thermoplastic. Chem. Mater. Res. 2015, 7, 20–27. [Google Scholar]
- Frida, E.; Bukit, N.; Zebua, F. Analysis Mechanics and Thermal Composites Thermoplastic High Density Polyethylene with Zeolite Modification Filler. Chem. Mater. Res. 2014, 3, 126–134. [Google Scholar]
- Verdolotti, L.; Di Maio, E.; Forte, G.; Lavorgna, M.; Iannace, S. Hydration-induced reinforcement of polyurethane-cement foams: Solvent resistance and mechanical properties. J. Mat. Sci. 2010, 45, 3388–3391. [Google Scholar] [CrossRef]
- Sheng, X.; Zhao, Y.; Zhang, L.; Lu, X. Properties of Two-Dimensional Ti3C2 MXene/Thermoplastic Polyurethane Nanocomposites with Effective Reinforcement via Melt Blending. Compos. Sci. Technol. 2019, 181, 107710. [Google Scholar] [CrossRef]
- Mesgari, M.; Aalami, A.H.; Sahebkar, A. Antimicrobial Activities of Chitosan/Titanium Dioxide Composites as a Biological Nanolayer for Food Preservation: A Review. Int. J. Biol. Macromol. 2021, 176, 530–539. [Google Scholar] [CrossRef] [PubMed]
- Selvarajan, V.; Obuobi, S.; Ee, P.L.R. Silica Nanoparticles—A Versatile Tool for the Treatment of Bacterial Infections. Front. Chem. 2020, 8, 602. [Google Scholar] [CrossRef]
- Alatoom, A.; Al-Othman, A.; Al-Nashash, H.; Al-Sayah, M. Development and Characterization of Novel Composite and Flexible Electrode Based on Titanium Dioxide. IEEE Trans. Compon. Packag. Manuf. Technol. 2020, 10, 1079–1087. [Google Scholar] [CrossRef]
- Pitiphattharabun, S.; Auewattanapun, K.; Htet, T.L.; Thu, M.M.; Panomsuwan, G.; Techapiesancharoenkij, R.; Ohta, J.; Jongprateep, O. Reduced Graphene Oxide/Zinc Oxide Composite as an Electrochemical Sensor for Acetylcholine Detection. Sci. Rep. 2024, 14, 14224. [Google Scholar] [CrossRef]
- Yu, B.; Tawiah, B.; Wang, L.-Q.; Yin Yuen, A.C.; Zhang, Z.-C.; Shen, L.-L.; Lin, B.; Fei, B.; Yang, W.; Li, A.; et al. Interface Decoration of Exfoliated MXene Ultra-Thin Nanosheets for Fire and Smoke Suppressions of Thermoplastic Polyurethane Elastomer. J. Hazard. Mater. 2019, 374, 110–119. [Google Scholar] [CrossRef]
- Mamytbekov, G.K.; Zheltov, D.A.; Milts, O.S.; Nurtazin, Y.R. Polymer–Zeolite Composites: Synthesis, Characterization and Application. Colloids Interfaces 2024, 8, 8. [Google Scholar] [CrossRef]
- Babalar, M.; Siddiqua, S.; Sakr, M.A. A Novel Polymer Coated Magnetic Activated Biochar-Zeolite Composite for Adsorption of Polystyrene Microplastics: Synthesis, Characterization, Adsorption and Regeneration Performance. Sep. Purif. Technol. 2024, 331, 125582. [Google Scholar] [CrossRef]
- Şenol, Z.M.; Elma, E.; El Messaoudi, N.; Mehmeti, V. Performance of Cross-Linked Chitosan-Zeolite Composite Adsorbent for Removal of Pb2+ Ions from Aqueous Solutions: Experimental and Monte Carlo Simulations Studies. J. Mol. Liq. 2023, 391, 123310. [Google Scholar] [CrossRef]
- Elboughdiri, N. The Use of Natural Zeolite to Remove Heavy Metals Cu (II), Pb (II) and Cd (II), from Industrial Wastewater. Cogent Eng. 2020, 7, 1782623. [Google Scholar] [CrossRef]
- Yin, Y.; Wu, J.; Wang, X.; Ma, K.; Zhai, W.; Wu, Z.; Zhang, J. Synthesis of Zeolite Molecular Sieve 13X from Coal-Fired Slag for Efficient Room Temperature CO2 Adsorption. Chem. Eng. Sci. 2024, 288, 119838. [Google Scholar] [CrossRef]
- Feng, C.; Jiaqiang, E.; Han, W.; Deng, Y.; Zhang, B.; Zhao, X.; Han, D. Key Technology and Application Analysis of Zeolite Adsorption for Energy Storage and Heat-Mass Transfer Process: A Review. Renew. Sustain. Energ. Rev. 2021, 144, 110954. [Google Scholar] [CrossRef]
- Khanal, S.; Lu, Y.; Ahmed, S.; Ali, M.; Xu, S. Synergistic Effect of Zeolite 4A on Thermal, Mechanical and Flame Retardant Properties of Intumescent Flame Retardant HDPE Composites. Polym. Test. 2020, 81, 106177. [Google Scholar] [CrossRef]
- Soudmand, B.H.; Mohsenzadeh, R. Mechanical, Morphological, and Numerical Evaluation of Biocompatible Ultra-High Molecular Weight Polyethylene/Nano-Zeolite Nanocomposites. Polym. Compos. 2024, 45, 3666–3682. [Google Scholar] [CrossRef]
- Sasaki, M.; Liu, Y.; Ebara, M. Zeolite Composite Nanofiber Mesh for Indoxyl Sulfate Adsorption toward Wearable Blood Purification Devices. Fibers 2021, 9, 37. [Google Scholar] [CrossRef]
- Tang, W.; Han, J.; Zhang, S.; Sun, J.; Li, H.; Gu, X. Synthesis of 4A Zeolite Containing La from Kaolinite and Its Effect on the Flammability of Polypropylene. Polym. Compos. 2018, 39, 3461–3471. [Google Scholar] [CrossRef]
- Kajtár, D.A.; Kenyó, C.; Renner, K.; Móczó, J.; Fekete, E.; Kröhnke, C.; Pukánszky, B. Interfacial Interactions and Reinforcement in Thermoplastics/Zeolite Composites. Compos. B Eng. 2017, 114, 386–394. [Google Scholar] [CrossRef]
- Huang, Z.; Guo, Y.H.; Zhang, T.M.; Zhang, X.H.; Guo, L.Y. Fabrication and Characterizations of Zeolite β-Filled Polyethylene Composite Films. Packag. Technol. Sci. 2013, 26, 1–10. [Google Scholar] [CrossRef]
- Boschetto, D.L.; Lerin, L.; Cansian, R.; Pergher, S.B.C.; Di Luccio, M. Preparation and Antimicrobial Activity of Polyethylene Composite Films with Silver Exchanged Zeolite-Y. Chem. Eng. J. 2012, 204, 210–216. [Google Scholar] [CrossRef]
- Souza, A.F.; Behrenchsen, L.; Souza, S.J.; Yamashita, F.; Leimann, F.V. Production and characterization of starch composite films with silver loaded zeolite. Int. Food Res. J. 2018, 25, 1309–1314. [Google Scholar]
- do Nascimiento Sousa, S.D.; Santiago, R.G.; Soares Maia, D.A.; de Oliveira Silva, E.; Vieira, R.S.; Bastos-Neto, M. Ethylene adsorption on chitosan/zeolite composite films for packaging applications. Food Packag. Shelf Life 2020, 26, 100584. [Google Scholar] [CrossRef]
- Ghobadi, E.; Hemmati, M.; Khanbabaei, G.; Shojaei, M.; Asghari, M. Effect of Nanozeolite 13X on Thermal and Mechanical Properties of Polyurethane Nanocomposite Thin Films. Int. J. Nano Dimens. 2015, 6, 177. [Google Scholar]
- Lei, J.; Yao, G.; Sun, Z.; Wang, B.; Yu, C.; Zheng, S. Fabrication of a Novel Antibacterial TPU Nanofiber Membrane Containing Cu-Loaded Zeolite and Its Antibacterial Activity toward Escherichia Coli. J. Mater. Sci. 2019, 54, 11682–11693. [Google Scholar] [CrossRef]
- Yıldırım, M.A.; Sanli, A.; Türkoğlu, N.; Denktaş, C. Fabrication of Electrospun Nanofibrous Clinoptilolite Doped Thermoplastic Polyurethane Scaffolds for Skeletal Muscle Tissue Engineering. J. Appl. Polym. Sci. 2023, 140, e54233. [Google Scholar] [CrossRef]
- Doula, M.K. Synthesis of a Clinoptilolite-Fe System with High Cu Sorption Capacity. Chemosphere 2007, 67, 731–740. [Google Scholar] [CrossRef]
- Favvas, E.P.; Tsanaktsidis, C.G.; Sapalidis, A.A.; Tzilantonis, G.T.; Papageorgiou, S.K.; Mitropoulos, A.C. Clinoptilolite, a Natural Zeolite Material: Structural Characterization and Performance Evaluation on Its Dehydration Properties of Hydrocarbon-Based Fuels. Microporous Mesoporous Mater. 2016, 225, 385–391. [Google Scholar] [CrossRef]
- Fajdek-Bieda, A.; Wróblewska, A.; Miądlicki, P.; Tołpa, J.; Michalkiewicz, B. Clinoptilolite as a Natural, Active Zeolite Catalyst for the Chemical Transformations of Geraniol. React. Kinet. Mech. Catal. 2021, 133, 997–1011. [Google Scholar] [CrossRef]
- Tsitsishvili, V.; Nanuli, D.; Tsu, I.J.; Melikishvili, P.; Mirdzveli, N. Transformation of Natural Analcime and Phillipsite During their Hydrothermal Recrystallization into Zeolites A and X. Int. J. Adv. Res. 2019, 7, 219–230. [Google Scholar] [CrossRef]
- Mansouri, N.; Rikhtegar, N.; Ahmad Panahi, H.; Atabi, F.; Shahraki, B.K. Porosity, Characterization and Structural Properties of Natural Zeolite—Clinoptilolite—As a Sorbent. Environ. Prot. Eng. 2013, 39, 139–152. [Google Scholar]
- Verdolotti, L.; Di Maio, E.; Lavorgna, M.; Iannace, S.; Nicolais, L. Polyurethane-cement-based foams: Characterization and potential uses. J. Appl. Poly Sci. 2008, 107, 1–8. [Google Scholar] [CrossRef]
- Pascarella, A.; Recupido, F.; Lama, G.C.; Sorrentino, L.; Campanile, A.; Liguori, B.; Berthet, M.; Rollo, G.; Lavorgna, M.; Verdolotti, L. Design and Development of Sustainable Polyurethane Foam: A Proof-of-Concept as Customizable Packaging for Cultural Heritage Applications. Adv. Eng. Mater. 2024, 26, 2301888. [Google Scholar] [CrossRef]
- Haryńska, A.; Gubańska, I.; Kucińska-Lipka, J.; Janik, H. Fabrication and Characterization of Flexible Medical-Grade TPU Filament for Fused Deposition Modeling 3DP Technology. Polymers 2018, 10, 1304. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.J.; Chao, C.Y. Effect of Containing Polyhydric Alcohol Liquefied Wood on the Properties of Thermoplastic Polyurethane Resins. Eur. J. Wood Wood Prod. 2018, 76, 1745–1752. [Google Scholar] [CrossRef]
- Yahiaoui, M.; Denape, J.; Paris, J.Y.; Ural, A.G.; Alcalá, N.; Martínez, F.J. Wear Dynamics of a TPU/Steel Contact under Reciprocal Sliding. Wear 2014, 315, 103–114. [Google Scholar] [CrossRef]
- Dumludag, F.; Yener, M.Y.; Basturk, E.; Madakbas, S.; Kahraman, V.; Umer, M.A.; Yahsi, U.; Tav, C. Effects of Boron Nitrite in Thermoplastic Polyurethane on Thermal, Electrical and Free Volume Properties. Polym. Bull. 2019, 76, 4087–4101. [Google Scholar] [CrossRef]
- Sen, F.; Madakbas, S.; Bastürk, E.; Kahraman, M.V. Morphology and Mechanical Properties of Thermoplastic Polyurethane/Colemanite Composites. Polymer 2017, 41, 1019–1026. [Google Scholar]
- Cruz, S.M.; Viana, J.C. Melt Blending and Characterization of Carbon Nanoparticles-Filled Thermoplastic Polyurethane Elastomers. J. Elastomers Plast. 2015, 47, 647–665. [Google Scholar] [CrossRef]
- Strankowski, M.; Korzeniewski, P.; Strankowska, J.; Anu, A.S.; Thomas, S. Morphology, Mechanical and Thermal Properties of Thermoplastic Polyurethane Containing Reduced Graphene Oxide and Graphene Nanoplatelets. Materials 2018, 11, 82. [Google Scholar] [CrossRef]
- Villani, M.; Consonni, R.; Canetti, M.; Bertoglio, F.; Iervese, S.; Bruni, G.; Visai, L.; Iannace, S.; Bertini, F. Polyurethane-Based Composites: Effects of Antibacterial Fillers on the Physical-Mechanical Behavior of Thermoplastic Polyurethanes. Polymers 2020, 12, 362. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Shi, M.; Yang, W.; Yan, H.; Zhang, C.; An, Y.; Zhang, F. Experimental Investigation of Flame Retardancy and Mechanical Properties of APP/EG/TPU Multilayer Composites Prepared by Microlayer Coextrusion Technology. J. Appl. Polym. Sci. 2021, 138, 50219. [Google Scholar] [CrossRef]
- Liu, W.; He, T. Effect of ZnO Nanoparticles on Mechanical Properties of Polyacrylate Composites. Acad. J. Mater. Chem. 2024, 5, 62–71. [Google Scholar]
- Chang, B.P.; Akil, H.M.; Nasir, R.M. Mechanical and Tribological Properties of Zeolite-Reinforced UHMWPE Composite for Implant Application. Procedia Eng. 2013, 68, 88–94. [Google Scholar] [CrossRef]
- Guo, C.; Wang, S.; Zhang, S.; Wang, X.; Guo, H. The Structure and Packaging Properties of Films Made by Poly(Lactic Acid)/Lactide Grafted Zeolite. J. Memb. Sci. 2024, 690, 122227. [Google Scholar] [CrossRef]
- Roy Goswami, S.; Sudhakaran Nair, S.; Zhang, X.; Tanguy, N.; Yan, N. Starch Maleate/Epoxidized Soybean Oil/Polylactic Acid Films with Improved Ductility and Biodegradation Potential for Packaging Fatty Foods. ACS Sustain. Chem. Eng. 2022, 10, 14185–14194. [Google Scholar] [CrossRef]
- Lagonski, H.-C. Permeation of Gases and Condensable Substances through Monolayer and Multilayer Structures. In Plastic Packaging; Wiley: Hoboken, NJ, USA, 2008; pp. 297–347. [Google Scholar]
- Turan, D. Water Vapor Transport Properties of Polyurethane Films for Packaging of Respiring Foods. Food Eng. Rev. 2021, 13, 54–65. [Google Scholar] [CrossRef]
- Wang, Y.; Gupta, M.; Schiraldi, D.A. Oxygen Permeability in Thermoplastic Polyurethanes. J. Polym. Sci. B Polym. Phys. 2012, 50, 681–693. [Google Scholar] [CrossRef]
Sample | Tg1 [°C] | Tg2 [°C] | Tm [°C] | ΔHm [J/g] |
---|---|---|---|---|
TPU | −33 | 104 | 214 | 2.38 |
TPU + 5% Na-X | −37 | 108 | 212 | 5.87 |
TPU + 7.5% Na-X | −38 | 116 | 214 | 4.41 |
TPU + 10% Na-X | −39 | 137 | 216 | 3.85 |
TPU + 5% CLN | −35 | 136 | 212 | 6.33 |
TPU + 7.5% CLN | −40 | 128 | 211 | 5.89 |
TPU + 10% CLN | −41 | 132 | 213 | 4.95 |
Sample | T1 [°C] | T2 [°C] | Residue at 1000 °C/% |
---|---|---|---|
TPU | 343 | 384 | 0.06 |
TPU + 5% Na-X | 328 | 375 | 4.12 |
TPU + 7.5% Na-X | 324 | 383 | 6.41 |
TPU + 10% Na-X | 323 | 347 | 9.70 |
TPU + 5% CLN | 324 | 375 | 3.97 |
TPU + 7.5% CLN | 327 | 373 | 6.26 |
TPU + 10% CLN | 326 | 343 | 8.67 |
Sample | D [10−6 cm2/s] | S cm3(STP)/cm3⋅atm | J [103 cm3/m2 s] | P [10−6 cm3⋅m/m2⋅s⋅atm] |
---|---|---|---|---|
TPU | 2.53 | 45.8 | 7.70 | 1.16 |
TPU + 5% Na-X | 1.97 | 44.7 | 5.94 | 0.88 |
TPU + 7.5% Na-X | 2.31 | 45.4 | 8.40 | 1.05 |
TPU + 10% Na-X | 2.19 | 42.9 | 6.84 | 0.94 |
Sample | TPU (%) | Zeolite Na-X (%) | Clinoptilolite (%) |
---|---|---|---|
TPU | 100 | - | - |
TPU + 5% Na-X | 95 | 5 | - |
TPU + 7.5% Na-X | 92.5 | 7.5 | - |
TPU + 10% Na-X | 90 | 10 | - |
TPU + 5% CLN | 95 | - | 5 |
TPU + 7.5% CLN | 92.5 | - | 7.5 |
TPU + 10% CLN | 90 | - | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Russo, N.; Verdolotti, L.; Lama, G.C.; Recupido, F.; Liguori, B.; Oliviero, M. The Effect of Zeolite Na-X and Clinoptilolite as Functional Fillers on the Mechanical, Thermal and Barrier Properties of Thermoplastic Polyurethane. Molecules 2025, 30, 420. https://doi.org/10.3390/molecules30020420
Russo N, Verdolotti L, Lama GC, Recupido F, Liguori B, Oliviero M. The Effect of Zeolite Na-X and Clinoptilolite as Functional Fillers on the Mechanical, Thermal and Barrier Properties of Thermoplastic Polyurethane. Molecules. 2025; 30(2):420. https://doi.org/10.3390/molecules30020420
Chicago/Turabian StyleRusso, Nello, Letizia Verdolotti, Giuseppe Cesare Lama, Federica Recupido, Barbara Liguori, and Maria Oliviero. 2025. "The Effect of Zeolite Na-X and Clinoptilolite as Functional Fillers on the Mechanical, Thermal and Barrier Properties of Thermoplastic Polyurethane" Molecules 30, no. 2: 420. https://doi.org/10.3390/molecules30020420
APA StyleRusso, N., Verdolotti, L., Lama, G. C., Recupido, F., Liguori, B., & Oliviero, M. (2025). The Effect of Zeolite Na-X and Clinoptilolite as Functional Fillers on the Mechanical, Thermal and Barrier Properties of Thermoplastic Polyurethane. Molecules, 30(2), 420. https://doi.org/10.3390/molecules30020420