The Synthesis, Crystal Structure, Modification, and Cytotoxic Activity of α-Hydroxy-Alkylphosphonates
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of α-Hydroxyphosphonates and α-Hydroxyphosphine Oxides
2.2. X-Ray Diffraction Studies of α-Hydroxyphosphonate 2a and α-Hydroxyphosphine Oxide 2d
2.3. Modification of the α-Hydroxyphosphonates 1b, 1c, 2b, and 2c and α-Hydroxyphosphine Oxide 1d
2.4. Bioactivity Study
3. Experimental Section
3.1. General Information
3.2. General Procedure for the Synthesis of Dialkyl α-Hydroxy-Ethylphosphonates (1b and 1c) and α-Hydroxyethyl-Diarylphosphine Oxides (1d–f)
3.2.1. Diethyl α-Hydroxy-Ethylphosphonate (1b)
3.2.2. Dibutyl α-Hydroxy-Ethylphosphonate (1c)
3.2.3. α-Hydroxyethyl-Diphenylphosphine Oxide (1d)
3.2.4. α-Hydroxyethyl-bis(4-methylphenyl)phosphine Oxide (1e)
3.2.5. α-Hydroxyethyl-bis(3,5-dimethylphenyl)phosphine Oxide (1f)
3.3. General Procedure for the Synthesis of Dialkyl α-Hydroxy-α-Methyl-Ethylphosphonates (2a–c) (Method A)
3.3.1. Dimethyl α-Hydroxy-α-Methyl-Ethylphosphonate (2a)
3.3.2. Diethyl α-Hydroxy-α-Methyl-Ethylphosphonate (2b)
3.3.3. Dibutyl α-Hydroxy-α-Methyl-Ethylphosphonate (2c)
3.4. General Procedure for the Synthesis of Diaryl α-Hydroxy-α-Methyl-Ethylphosphine Oxides (2d–f) (Method B)
3.4.1. α-Hydroxy-α-Methyl-Ethyl-Diphenylphosphine Oxide (2d)
3.4.2. Bis(4-Methylphenyl)(α-Hydroxy-α-Methyl-Ethyl)Phosphine Oxide (2e)
3.4.3. Bis(3,5-Dimethylphenyl)(α-Hydroxy-α-Methyl-Ethyl)Phosphine Oxide (2f)
3.5. General Procedure for the Synthesis of Acylated Diethyl and Dibutyl a-Hydroxyphosphonates and Diphenyl α-Hydroxyphosphine Oxide (3Ab–Db, 3Ac, 3Ad, 4Ab–Cb, and 4Ac)
3.5.1. Diethyl α-Acetyloxy-Ethylphosphonate (3Ab)
3.5.2. Diethyl α-Propionyloxy-Ethylphosphonate (3Bb)
3.5.3. Diethyl α-Butyryloxy-Ethylphosphonate (3Cb)
3.5.4. Diethyl α-Benzoyloxy-Ethylphosphonate (3Db)
3.5.5. Dibutyl α-Acetyloxy-Ethylphosphonate (3Ac)
3.5.6. Diphenyl α-Acetyloxy-Ethylphosphine Oxide (3Ad)
3.5.7. Diethyl (α-Acetyloxy-α-Methyl-Ethyl)Phosphonate (4Ab)
3.5.8. Diethyl (α-Propionyloxy-α-Methyl-Ethyl)Phosphonate (4Bb)
3.5.9. Diethyl (α-Butyryloxy-α-Methyl-Ethyl)Phosphonate (4Cb)
3.5.10. Dibutyl (α-Acetyloxy-α-Methyl-Ethyl)Phosphonate (4Ac)
3.6. Synthesis of Diethyl α-Methanesulfonyloxy-Ethylphosphonate (5)
3.7. Synthesis of Tetraethyl Ethylidenebisphosphonate (6a) and Diethyl α-(Diphenylphosphinoyl)-Ethylphosphonate (6b)
3.7.1. Tetraethyl Ethylidenebisphosphonate (6a)
3.7.2. Diethyl α-(Diphenylphosphinoyl)-Ethylphosphonate (6b)
3.8. Single-Crystal X-Ray Diffraction Studies
3.9. Bioactivity Experimental
3.9.1. Cell Culturing
3.9.2. Cell Viability Assays
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pudovik, A.N.; Konovalova, I.V. Addition reactions of esters of phosphorus(III) acids with unsaturated systems. Synthesis 1979, 2, 81–96. [Google Scholar] [CrossRef]
- Rádai, Z.; Keglevich, G. Synthesis and Reactions of α-Hydroxyphosphonates. Molecules 2018, 23, 1493. [Google Scholar] [CrossRef] [PubMed]
- Plouard, P.; de Zordo-Banliat, A.; Clarion, L.; Loiseau, S.; Virieux, D.; Ayad, T. Stereoselective Synthesis of α-Hydroxyphosphonates, A Literature Survey. ChemCatChem 2024, 16, e202400824. [Google Scholar] [CrossRef]
- Kulkarni, M.A.; Lad, U.P.; Desai, U.V.; Mitragotri, S.D.; Wadgaonkar, P.P. Mechanistic approach for expeditious and solvent-free synthesis of α-hydroxy phosphonates using potassium phosphate as catalyst. Comptes Rendus Chim. 2013, 16, 148–152. [Google Scholar] [CrossRef]
- Pandi, M.; Chanani, P.K.; Govindasamy, S. An efficient synthesis of α-hydroxy phosphonates and 2-nitroalkanols using Ba(OH)2 as catalyst. Appl. Catal. A 2012, 441–442, 119–123. [Google Scholar] [CrossRef]
- Sardarian, A.R.; Kaboudin, B. Surface-mediated solid phase reactions: Preparation of diethyl 1-hydroxyarylmethylphosphonates on the surface of magnesia. Synth. Commun. 1997, 27, 543–551. [Google Scholar] [CrossRef]
- Hudson, H.R.; Yusuf, R.O.; Matthews, R.W. The preparation of dimethyl α-hydroxyphosphonates and the chemical shift non-equivalence of their diastereotopic methyl ester groups. Phosphorus Sulfur Silicon Relat. Elem. 2008, 183, 1527–1540. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, Y.; Chang, L.; Zhao, J.; Shang, D.; Liu, X.; Lin, L.; Feng, X. Highly efficient synthesis of quaternary α-hydroxy phosphonates via Lewis acid-catalyzed hydrophosphonylation of ketones. Adv. Synth. Catal. 2009, 351, 2567–2572. [Google Scholar] [CrossRef]
- Tajbakhsh, M.; Khaksar, S.; Tafazoli, Z.; Bekhradnia, A. MgCl2/Et3N Base System as a New Catalyst for the Synthesis of α-Hydroxyphosphonate. Chin. J. Chem. 2012, 30, 827–829. [Google Scholar] [CrossRef]
- Kong, D.-L.; Liu, R.-D.; Li, G.-Z.; Zhang, P.-W.; Wu, M.-S. A Rapid, Convenient, Solventless Green Approach for the Synthesis of α-Hydroxyphosphonates by Grinding. Asian J. Chem. 2014, 26, 1246–1248. [Google Scholar] [CrossRef]
- Ramananarivo, H.R.; Solhy, A.; Sebti, J.; Smahi, A.; Zahouily, M.; Clark, J.; Sebti, S. An Eco-Friendly Paradigm for the Synthesis of α-Hydroxyphosphonates Using Sodium-Modified Fluorapatite under Solventless Conditions. ACS Sustain. Chem. Eng. 2013, 1, 403–409. [Google Scholar] [CrossRef]
- Kafarski, P.; Gorny vel Gorniak, M.; Andrasiak, I. Kabachnik–Fields reaction under green conditions—A critical overview. Curr. Green Chem. 2015, 2, 218–222. [Google Scholar] [CrossRef]
- Keglevich, G.; Tóth, V.R.; Drahos, L. Microwave-Assisted Synthesis of α-Hydroxybenzylphosphonates and -benzylphosphine Oxides. Heteroatom Chem. 2011, 22, 15–17. [Google Scholar] [CrossRef]
- Texier-Boullet, F.; Foucaud, A. Synthesis of 1-Hydroxyalkanephosphonic Esters on Alumina. Synthesis 1982, 916, 25. [Google Scholar] [CrossRef]
- Texier-Boullet, F.; Foucaud, A. A Convenient Synthesis of Dialkyl 1-Hydroxyalkanephosphonates using Potassium or Caesium Fluoride without Solvent. Synthesis 1982, 1982, 165–166. [Google Scholar] [CrossRef]
- Smahi, A.; Solhy, A.; Tahir, R.; Sebti, S.; Mayoral, J.A.; García, J.I.; Fraile, J.M.; Zahouily, M. Preparation of α-hydroxyphosphonates over phosphate catalysts. Catal. Commun. 2008, 9, 2503–2508. [Google Scholar] [CrossRef]
- Solhy, A.; Sebti, S.; Tahir, R.; Sebti, J.; Ould Abba, M.; Bousmina, M.; Vaudreuil, S.; Zahouily, M. Remarkable Catalytic Activity of Sodium-Modified-Hydroxyapatite in the Synthesis of α-Hydroxyphosphonates. Curr. Org. Chem. 2010, 14, 1517–1522. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, Y.; Qian, Q.; Yuan, D.; Yao, Y. n-BuLi as a Highly Efficient Precatalyst for Hydrophosphonylation of Aldehydes and Unactivated Ketones. Org. Lett. 2014, 16, 6172–6175. [Google Scholar] [CrossRef]
- Keglevich, G.; Rádai, Z.; Kiss, N.Z. To date the greenest method for the preparation of α-hydroxyphosphonates from substituted benzaldehydes and dialkyl phosphites. Green Process Synth. 2017, 6, 197–201. [Google Scholar] [CrossRef]
- Grün, A.; Greiner, I.; Keglevich, G. The Synthesis of α-Hydroxy- and α-Chlorophosphonic Acid Derivatives Starting from Benzaldehydes and Phosphorous Acid or Dimethyl Phosphite. Curr. Org. Chem. 2019, 23, 968–973. [Google Scholar] [CrossRef]
- Sharghi, H.; Jokar, M.; Doroodmand, M.M. Iron-doped single-walled carbon nanotubes as new heterogeneous and highly efficient catalyst for acylation of alcohols, phenols, carboxylic acids and amines under solvent-free conditions. Adv. Synth. Catal. 2011, 353, 426–442. [Google Scholar] [CrossRef]
- Firouzabadi, H.; Iranpoor, N.; Sobhani, S.; Amoozgar, Z. Copper triflate as a useful catalyst for the high-yielding preparation of α-acetyloxyphosphonates under solvent-free conditions. Synthesis 2004, 2004, 295–297. [Google Scholar] [CrossRef]
- Firouzabadi, H.; Iranpoor, N.; Farahi, S. Solid Trichlorotitanium(IV) trifluoromethanesulfonate TiCl3(OTf) catalyzed efficient acylation of –OH and –SH: Direct esterification of alcohols with carboxylic acids and transesterification of alcohols with esters under neat conditions. J. Mol. Catal. Chem. 2008, 289, 61–68. [Google Scholar] [CrossRef]
- Yang, J.; Ma, J.; Che, W.; Li, M.; Li, G.; Song, B. Microwave-assisted synthesis and antitumor activity of salicyl acyloxy phosphonate derivatives. Chin. J. Org. Chem. 2014, 34, 2566–2571. [Google Scholar] [CrossRef]
- Rádai, Z.; Hodula, V.; Kiss, N.Z.; Kóti, J.; Keglevich, G. Phosphorylation of (1-aryl-1-hydroxymethyl)phosphonates. Mendeleev Commun. 2019, 29, 153–154. [Google Scholar] [CrossRef]
- Szalai, Z.; Debrei, M.; Ábrányi-Balogh, P.; Bősze, S.; Oláhné Szabó, R.; Karaghiosoff, K.; Drahos, L.; Keglevich, G. Synthesis of Mesylated and Tosylated α-Hydroxy Benzylphosphonates; Their Reactivity and Cytostatic Activity. ACS Omega 2024, 9, 31043–31055. [Google Scholar] [CrossRef]
- Stowasser, B.; Budt, K.-H.; Jian-Qi, L.; Peyman, A.; Ruppert, D. New hybrid transition state analog inhibitors of HIV protease with peripheric C2-symmetry. Tetrahedron Lett. 1992, 33, 6625–6628. [Google Scholar] [CrossRef]
- Pokalwar, R.U.; Hangarge, R.V.; Maske, P.V.; Shingare, M.S.; Pokalwar, R.U.; Hangarge, R.V.; Maske, P.V.; Shingare, M.S. Synthesis and antibacterial activities of α-hydroxyphosphonates and α-acetyloxyphosphonates derived from 2-chloroquinoline-3-carbaldehyde. Arkivoc 2006, 11, 196–204. [Google Scholar] [CrossRef]
- Kategaonkar, A.H.; Pokalwar, R.U.; Sonar, S.S.; Gawali, V.U.; Shingate, B.B.; Shingare, M.S. Synthesis, in vitro antibacterial and antifungal evaluations of new α-hydroxyphosphonate and new α-acetoxyphosphonate derivatives of tetrazolo [1, 5-a] quinoline. Eur. J. Med. Chem. 2010, 45, 1128–1132. [Google Scholar] [CrossRef]
- Lorenz, W.; Henglein, A.; Schrader, G. The New Insecticide O,O-Dimethyl 2,2,2-Trichloro-1-hydroxyethylphosphonate. J. Am. Chem. Soc. 1955, 77, 2554–2556. [Google Scholar] [CrossRef]
- Song, H.; Mao, H.; Shi, D. Synthesis and Herbicidal Activity of α-Hydroxy Phosphonate Derivatives Containing Pyrimidine Moiety. Chin. J. Chem. 2010, 28, 2020–2024. [Google Scholar] [CrossRef]
- Rao, K.U.M.; Sundar, C.S.; Prasad, S.S.; Rani, C.R.; Reddy, C.S. Neat Synthesis and Antioxidant Activity of α-Hydroxyphosphonates. Bull. Korean Chem. Soc. 2011, 32, 3343–3347. [Google Scholar] [CrossRef]
- Naidu, K.R.M.; Kumar, K.S.; Arulselvan, P.; Reddy, C.B.; Lasekan, O. Synthesis of α-Hydroxyphosphonates and Their Antioxidant Properties. Arch. Pharm. Chem. Life Sci. 2012, 345, 957–963. [Google Scholar] [CrossRef] [PubMed]
- Rádai, Z.; Szeles, P.; Kiss, N.Z.; Hegedűs, L.; Windt, T.; Nagy, V.; Keglevich, G. Green synthesis and cytotoxic activity of dibenzyl α-hydroxyphosphonates and α-hydroxyphosphonic acids. Heteroatom Chem. 2018, 29, e21436. [Google Scholar] [CrossRef]
- Zhao, Z.; Xue, W.; Gao, Y.; Tang, G.; Zhao, Y. Copper-Catalyzed Synthesis of α-Hydroxy Phosphonates from H-Phosphonates and Alcohols or Ethers. Chem. Asian J. 2013, 8, 713–716. [Google Scholar] [CrossRef]
- Mary, F.; Arrachart, G.; Leydier, A.; Pellet-Rostaing, P. Synthesis of organophosphorus ligands with a central oxygen atom and their applications in solvent extraction. Tetrahedron 2019, 75, 3968–3976. [Google Scholar] [CrossRef]
- Emoto, T.; Gomi, H.; Yoshifuji, M.; Okazaki, R.; Inamoto, N. Metal Phosphinylides and Phosphinothioylides. I. Formation of Metal Diphenylphosphinylides and Diphenylphosphinothioylides and the Reactions with Some Organic Halides and Aldehydes. Bull. Chem. Soc. Japan 1974, 47, 2449–2452. [Google Scholar] [CrossRef]
- Stankevic, M.; Pisklak, J.; Wlodarczyk, K. Aryl group—A leaving group in arylphosphine oxides. Tetrahedron 2016, 72, 810–824. [Google Scholar] [CrossRef]
- Li, B.; Liu, M.; Rehman, S.U.; Li, C. Rh-Catalyzed Regio- and Enantioselective Allylic Phosphinylation. J. Am. Chem. Soc. 2022, 144, 2893–2898. [Google Scholar] [CrossRef]
- Szalai, Z.; Kis, A.S.; Schindler, J.; Karaghiosoff, K.; Keglevich, G. Synthesis of α-Hydroxyethylphosphonates and α-Hydroxyethylphosphine Oxides: Role of Solvents During Optical Resolution. Symmetry 2024, 16, 1557. [Google Scholar] [CrossRef]
- Texier-Boullet, F.; Foucaud, A. Reactions en milieu heterogene liquide-solide: Reactions de Wittig-Horner et addition du phosphite de diethyle sur les composes carbonyles en presence de KF, 2H2O. Tetrahedron Lett. 1980, 21, 2161–2164. [Google Scholar] [CrossRef]
- Wang, C.; Zhou, J.; Lv, X.; Wen, J.; He, H. Solvent-Free Synthesis of Tertiary α Hydroxyphosphates by the Triethylamine Catalyzed Hydrophosphonylation of Ketones. Phosphorus Sulfur Silicon Relat. Elem. 2013, 188, 1334–1339. [Google Scholar] [CrossRef]
- Santacroce, V.; Paris, E.; Cauzzi, D.; Maggi, R.; Maestri, G. A Simple Heterogeneous Catalyst for Phosphite Addition on Carbonyl Groups. Eur. J. Org. Chem. 2016, 463–466. [Google Scholar] [CrossRef]
- Li, C.; Yano, T.; Ishida, N.; Murakami, M. Pyridine-Directed Palladium-Catalyzed Phosphonation of C(sp2)-H Bonds Angew. Chem. Int. Ed. 2013, 52, 9801–9804. [Google Scholar] [CrossRef]
- Morgalyuk, V.; Strelkova, T.; Brel, V. New synthesis of trimethylsilyl esters of phosphorus(III) acids. Monatschefte Chem. Chem. Mon. 2019, 150, 1993–1997. [Google Scholar] [CrossRef]
- Sowa, S.; Stankevič, M.; Szmigielska, A.; Małuszyńska, H.; Kozioł, A.E.; Pietrusiewicz, K.M. Reduction of Functionalized Tertiary Phosphine Oxides with BH3. J. Org. Chem. 2015, 80, 1672–1688. [Google Scholar] [CrossRef]
- Dankowski, M.; Praefcke, K.; Lee, J.-S.; Nyburg, S.C. Organische Photochemie, XXXVII. Photofragmentierung eines Aroyl-Diphenylphosphins in Diphenylphosphinigsäure. Phosphorus Sulfur 1980, 8, 359–364. [Google Scholar] [CrossRef]
- Chekhlov, A.N. Crystal Structure Refinement for 2-(Diphenylphosphoryl)propan-2-ol. J. Struct. Chem. 2001, 42, 152–155. [Google Scholar] [CrossRef]
- Hong, D. CCDC 2337094: Experimental Crystal Structure Determination. 2024. Available online: https://www.ccdc.cam.ac.uk/structures/search?id=doi:10.5517/ccdc.csd.cc2jfy42&sid=DataCite (accessed on 5 January 2025).
- DIAMOND, Crystal Impact GbR., Version 3.2i. Available online: https://www.crystalimpact.de/diamond (accessed on 5 January 2025).
- Kolodyazhnaya, O.O.; Kolodyazhnyi, O.I. Biocatalytic Separation of α-Hydroxyphosphonates with Lipase of Burkholderia cepacian. Russ. J. General Chem. 2010, 80, 1718–1719. [Google Scholar] [CrossRef]
- Deng, W.; Hu, Y.; Hu, J.; Li, X.; Li, Y.; Huang, Y. Electrochemically induced Markovnikov-type selective hydro/deuterophosphonylation of electron-rich alkenes. Chem. Commun. 2022, 58, 12094–12097. [Google Scholar] [CrossRef]
- Teulade, M.-P.; Savignac, P.J.; Teulade, M.-P.; Savignac, P.J. Alkylidènediphosphonates et vinylphosphonates: Une démarche synthétiques sélective par voie carbanionique. Organomet. Chem. 1986, 304, 283–300. [Google Scholar] [CrossRef]
- Program Package ‘CrysAlisPro 1.171.40.82a’; Rigaku Oxford Diffraction: The Woodlands, TX, USA, 2020; Available online: https://rigaku.com/products (accessed on 5 January 2025).
- Sheldrick, G.M. SHELXS-97: Program for Crystal Structure Solution; University of Göttingen: Göttingen, Germany, 1997. [Google Scholar]
- Sheldrick, G.M. SHELXL-97: Program for the Refinement of Crystal Structures; University of Göttingen: Göttingen, Germany, 1997. [Google Scholar]
- Spek, A.L. PLATON: A Multipurpose Crystallographic Tool; Utrecht University: Utrecht, The Netherlands, 1999. [Google Scholar]
- Szász, Z.; Enyedi, K.; Takács, A.; Fekete, N.; Mező, G.; Kőhidai, L.; Lajkó, E. Characterisation of the cell and molecular biological effect of peptide-based daunorubicin conjugates developed for targeting pancreatic adenocarcinoma (PANC-1) cell line. Biomed Pharmacother. 2024, 173, 116293. [Google Scholar] [CrossRef]
Entry | R | Y | Starting Material | Z | ZC(O)Cl [Equiv.] | t [day] | T [°C] | Yield [%] | Product |
---|---|---|---|---|---|---|---|---|---|
1 | H | OEt | 1b | Me | 3 | 1 | 25 | 65 | 3Ab |
2 | H | OEt | 1b | Et | 1.5 | 3 | 25 | 73 | 3Bb |
3 | H | OEt | 1b | Pr | 1.5 | 3 | 25 | 67 | 3Cb |
4 | H | OEt | 1b | Ph | 1.5 | 3 | 25 | 68 | 3Db |
5 | H | OBu | 1c | Me | 3 | 2 | 25 | 65 | 3Ac |
6 | H | Ph | 1d | Me | 3 | 3 | 60 1 | 85 | 3Ad |
7 | Me | OEt | 2b | Me | 3 | 1 | 60 1 | 62 | 4Ab |
8 | Me | OEt | 2b | Et | 1.5 | 3 | 60 | 62 | 4Bb |
9 | Me | OEt | 2b | Pr | 1.5 | 3 | 60 | 88 | 4Cb |
10 | Me | OBu | 2c | Me | 3 | 3 | 60 1 | 61 | 4Ac |
Entry | P Reagent | P reagent [Equiv.] | t [day] | T [°C] | Conversion 1 [%] | Yield [%] | Product |
---|---|---|---|---|---|---|---|
1 | P(OEt)3 | 5 | 2 | 135 | 25 | - | 6a |
2 | 9 | 3 | 150 | 50 | 35 | ||
3 | 9 | 3 | 150 | 62 2 | - | ||
4 | 9 | 6 | 150 | 66 (70 2) | 50 2 | ||
5 | Ph2POEt | 5 | 1 | 135 | 40 | 36 | 6b |
6 | 5 | 2 | 150 | 70 2 | - | ||
7 | 5 | 3 | 150 | 100 | 75 |
PANC-1 | U266 | |||||
---|---|---|---|---|---|---|
Compound | 1 μM | 10 μM | 100 μM | 1 μM | 10 μM | 100 μM |
1b | 0.95 ± 0.04 | 1.08 ± 0.01 | 1.02 ± 0.03 | 0.88 ± 0.12 | 0.90 ± 0.03 | 0.85 ± 0.01 |
1c | 0.97 ± 0.03 | 1.02 ± 0.04 | 0.94 ± 0.05 | 1.23 ± 0.26 x | 0.94 ± 0.03 | 0.91 ± 0.02 |
1d | 1.07 ± 0.09 | 1.07 ± 0.01 | 1.02 ± 0.01 | 1.09 ± 0.09 x | 0.97 ± 0.03 | 0.85 ± 0.02 |
1e | 1.09 ± 0.11 x | 1.07 ± 0.03 | 1.01 ± 0.02 | 1.14 ± 0.01 x | 1.00 ± 0.02 | 0.85 ± 0.04 |
2a | 1.04 ± 0.06 | 1.02 ± 0.04 | 1.02 ± 0.06 | 0.95 ± 0.07 | 1.00 ± 0.05 | 0.84 ± 0.08 |
2b | 0.94 ± 0.08 | 1.07 ± 0.02 | 0.99 ± 0.06 | 0.91 ± 0.04 | 1.01 ± 0.01 | 0.77 ± 0.06 |
2c | 0.96 ± 0.10 | 1.11 ± 0.04 | 1.00 ± 0.04 | 1.01 ± 0.02 | 0.99 ± 0.05 | 0.95 ± 0.07 |
2a | 2d | |
---|---|---|
Empirical formula | C5H13O4P | C15H17O2P |
Formula mass | 168.12 | 348.39 |
T [K] | 123(2) | 123(2) |
Crystal size [mm] | 0.35 × 0.30 × 0.20 | 0.40 × 0.15 × 0.10 |
Crystal description | colorless block | colorless block |
Crystal system | orthorhombic | monoclinic |
Space group | Pbca | P21/c |
a [Ǻ] | 7.8977(2) | 11.0791(3) |
b [Ǻ] | 11.5547(2) | 10.3343(3) |
c [Ǻ] | 17.7550(4) | 11.5536(3) |
α [°] | 90.0 | 90.0 |
β [°] | 90.0 | 96.055(2) |
γ [°] | 90.0 | 90.0 |
V [Ǻ3] | 1620.24(6) | 1315.45(6) |
Z | 8 | 4 |
ρcalcd. [g cm−3] | 1.378 | 1.314 |
μ [mm−1] | 0.299 | 0.200 |
F(000) | 720 | 552 |
Θ range [°] | 3.33–25.24 | 1.85–25.24 |
Index ranges | −11 ≤ h ≤ 11 | −15 ≤ h ≤ 15 |
−16 ≤ k ≤ 16 | −14 ≤ k ≤ 14 | |
−25 ≤ l ≤ 25 | −16 ≤ l ≤ 16 | |
Reflns. collected | 30,439 | 25,660 |
Reflns. obsd. | 2228 | 3327 |
Reflns. unique | 2472(Rint = 0.0275) | 4016(Rint = 0.0380) |
R1, wR2 (2σ data) | 0.0250, 0.0697 | 0.0357, 0.0913 |
R1, wR2 (all data) | 0.0289, 0.0721 | 0.0461, 0.0993 |
GOOF on F2 | 1.047 | 1.054 |
Peak/hole [e Ǻ−3] | 0.427/−0.272 | 0.377/−0.334 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szalai, Z.; Kis, A.S.; Takács, A.; Kőhidai, L.; Karaghiosoff, K.; Czugler, M.; Drahos, L.; Keglevich, G. The Synthesis, Crystal Structure, Modification, and Cytotoxic Activity of α-Hydroxy-Alkylphosphonates. Molecules 2025, 30, 428. https://doi.org/10.3390/molecules30020428
Szalai Z, Kis AS, Takács A, Kőhidai L, Karaghiosoff K, Czugler M, Drahos L, Keglevich G. The Synthesis, Crystal Structure, Modification, and Cytotoxic Activity of α-Hydroxy-Alkylphosphonates. Molecules. 2025; 30(2):428. https://doi.org/10.3390/molecules30020428
Chicago/Turabian StyleSzalai, Zsuzsanna, Anna Sára Kis, Angéla Takács, László Kőhidai, Konstantin Karaghiosoff, Mátyás Czugler, László Drahos, and György Keglevich. 2025. "The Synthesis, Crystal Structure, Modification, and Cytotoxic Activity of α-Hydroxy-Alkylphosphonates" Molecules 30, no. 2: 428. https://doi.org/10.3390/molecules30020428
APA StyleSzalai, Z., Kis, A. S., Takács, A., Kőhidai, L., Karaghiosoff, K., Czugler, M., Drahos, L., & Keglevich, G. (2025). The Synthesis, Crystal Structure, Modification, and Cytotoxic Activity of α-Hydroxy-Alkylphosphonates. Molecules, 30(2), 428. https://doi.org/10.3390/molecules30020428