Facile Preparation of Flexible Phenolic-Silicone Aerogels with Good Thermal Stability and Fire Resistance
Abstract
:1. Introduction
2. Results
2.1. Fabrication of Sample S1–S5
2.2. Chemical Structure Characterization
2.3. Thermal Performance
2.4. Flame Resistance
2.5. Aperture and Contact Angle
2.6. Mechanical Property
3. Materials and Methods
3.1. Materials and Chemicals
3.2. Fabrication of Hybrid Aerogel
3.3. Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Almeida, C.M.R.; Ghica, M.E.; Duraes, L. An overview on alumina-silica-based aerogels. Adv. Colloid Interface Sci. 2020, 282, 102189. [Google Scholar] [CrossRef]
- Seraji, M.M.; Arefazar, A. Thermal ablation-insulation performance, microstructural, and mechanical properties of carbon aerogel based lightweight heat shielding composites. Polym. Eng. Sci. 2021, 61, 1338–1352. [Google Scholar] [CrossRef]
- Abd Halim, Z.A.; Ahmad, N.; Yajid, M.A.M.; Hamdan, H. Thermal insulation performance of silicone rubber/silica aerogel composite. Mater. Chem. Phys. 2022, 276, 125359. [Google Scholar] [CrossRef]
- Çok, S.S.; Koç, F.; Gi, N. Lightweight and highly hydrophobic silica aerogels dried in ambient pressure for an efficient oil/organic solvent adsorption. J. Hazard. Mater. 2020, 408, 124858. [Google Scholar]
- Shimizu, T.; Kanamori, K.; Nakanishi, K. Silicone-Based Organic-Inorganic Hybrid Aerogels and Xerogels. Chemistry 2017, 23, 5176–5187. [Google Scholar] [CrossRef] [PubMed]
- Reséndiz-Hernández, P.J.; Cortés-Hernández, D.A.; Saldívar-Ramírez, M.M.G.; Acuña-Gutiérrez, I.O.; Flores-Valdés, A.; Torres-Rincón, S.; Méndez-Nonell, J. Novel bioactive materials: Silica aerogel and hybrid silica aerogel/pseudowollastonite. Bol. Soc. Esp. Cerám. Vidr. 2014, 53, 235–239. [Google Scholar] [CrossRef]
- Chen, X.T.; Guo, S.N.; Tan, S.J.; Ma, J.H.; Xu, T.; Wu, Y.; Ji, G.B. An environmentally friendly chitosan-derived VO2 carbon aerogel for radar infrared compatible stealth. Carbon 2023, 213, 118313. [Google Scholar] [CrossRef]
- Lorjai, P.; Chaisuwan, T.; Wongkasemjit, S. Porous structure of polybenzoxazine-based organic aerogel prepared by sol–gel process and their carbon aerogels. J. Sol-Gel Sci. Technol. 2009, 52, 56–64. [Google Scholar] [CrossRef]
- Yuan, C.F.; Wang, D.G.; Zhang, Y.J.; Li, K.; Ding, J. Research progress on preparation, modification, and application of phenolic aerogel. Nanotechnol. Rev. 2023, 12, 20230109. [Google Scholar] [CrossRef]
- Wu, C.; Huang, H.; Jin, X.Y.; Yan, X.J.; Wang, H.B.; Pan, Y.W.; Zhang, X.H.; Hong, C.Q. Water-assisted synthesis of phenolic aerogel with superior compression and thermal insulation performance enabled by thick-united nano-structure. Chem. Eng. J. 2023, 464, 142805. [Google Scholar] [CrossRef]
- Ebisike, K.; Okoronkwo, A.E.; Alaneme, K.K. Synthesis and characterization of Chitosan–silica hybrid aerogel using sol-gel method. J. King Saud Univ.-Sci. 2020, 32, 550–554. [Google Scholar] [CrossRef]
- Rezaei, S.; Jalali, A.; Zolali, A.M.; Alshrah, M.; Karamikamkar, S.; Park, C.B. Robust, ultra-insulative and transparent polyethylene-based hybrid silica aerogel with a novel non-particulate structure. J. Colloid Interface Sci. 2019, 548, 206–216. [Google Scholar] [CrossRef]
- Kantor, Z.; Wu, T.; Zeng, Z.; Gaan, S.; Lehner, S.; Jovic, M.; Bonnin, A.; Pan, Z.; Mazrouei-Sebdani, Z.; Opris, D.M.; et al. Heterogeneous silica-polyimide aerogel-in-aerogel nanocomposites. Chem. Eng. J. 2022, 443, 136401. [Google Scholar] [CrossRef]
- Cuce, E.; Cuce, P.M.; Wood, C.J.; Riffat, S.B. Toward aerogel based thermal superinsulation in buildings: A comprehensive review. Renew. Sustain. Energy Rev. 2014, 34, 273–299. [Google Scholar] [CrossRef]
- Niu, B.; Cai, H.; Liu, J.; Jiang, Z.; Zhang, X.; Zhu, X.; Cao, Y.; Zhang, Y.; Long, D. Co-optimizing compressive and heat-insulation properties of rigid fibrous ceramics by compositing with phenolic aerogel. J. Am. Ceram. Soc. 2023, 107, 450–460. [Google Scholar] [CrossRef]
- Schwan, M.; Ratke, L. Flexibilisation of resorcinol–formaldehyde aerogels. J. Mater. Chem. A 2013, 1, 13462–13468. [Google Scholar] [CrossRef]
- Schwan, M.; Tannert, R.; Ratke, L. New soft and spongy resorcinol–formaldehyde aerogels. J. Supercrit. Fluids 2016, 107, 201–208. [Google Scholar] [CrossRef]
- Schwan, M.; Naikade, M.; Raabe, D.; Ratke, L. From hard to rubber-like: Mechanical properties of resorcinol–formaldehyde aerogels. J. Mater. Sci. 2015, 50, 5482–5493. [Google Scholar] [CrossRef]
- Wang, L.P.; Lian, W.X.; Yin, B.; Liu, X.P.; Tang, S.K. Silica nanowires-reinforced silica aerogels with outstanding thermal insulation, thermal stability and mechanical properties. Ceram. Int. 2024, 50, 6693–6702. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Yan, Y.M.; Jiang, Y.Z.; Yan, H.R.; Ye, L.Q. Flexible APD silica aerogels derived from Methyltriethoxysilane and Dimethyldiethoxysilane via surfactant-free sol-gel process. J. Sol-Gel Sci. Technol. 2024, 109, 461–470. [Google Scholar] [CrossRef]
- Kanamori, K. Homogeneous silicone network formation in aqueous sol–gel systems toward low-density porous materials. J. Ceram. Soc. Jpn. 2024, 132, 69–78. [Google Scholar] [CrossRef]
- Rashid, A.B.; Shishir, S.I.; Mahfuz, M.A.; Hossain, M.T.; Hoque, M.E. Silica Aerogel: Synthesis, Characterization, Applications, and Recent Advancements. Part. Part. Syst. Charact. 2023, 40, 2200186. [Google Scholar] [CrossRef]
- Guo, Z.; Yang, R.; Wang, T.; An, L.; Ren, S.; Zhou, C. Cost-Effective Additive Manufacturing of Ambient Pressure-Dried Silica Aerogel. J. Manuf. Sci. Eng. 2021, 143, 011011. [Google Scholar] [CrossRef]
- Deng, X.; Wu, L.L.; Deng, Y.M.; Huang, S.Q.; Sun, M.T.; Wang, X.W.; Liu, Q.; Li, M.; Li, Z. Effects of precursor concentration on the physicochemical properties of ambient-pressure-dried MTES based aerogels with using pure water as the only solvent. J. Sol-Gel Sci. Technol. 2021, 100, 477–488. [Google Scholar] [CrossRef]
- Li, C.D.; Liu, Q.S.; Zhang, G.H.; Lin, L.L.; Ostrikov, K. Rapid synthesis of MTES-derived silica aerogel monoliths in Cetyltrimethylammonium bromide/water solvent system by ambient pressure drying. Powder Technol. 2023, 418, 118314. [Google Scholar] [CrossRef]
- Ding, J.; Zhong, K.; Liu, S.; Wu, X.; Shen, X.; Cui, S.; Chen, X. Flexible and super hydrophobic polymethylsilsesquioxane based silica aerogel for organic solvent adsorption via ambient pressure drying technique. Powder Technol. 2020, 373, 716–726. [Google Scholar] [CrossRef]
- Urata, S.; Kuo, A.-T.; Murofushi, H. Origin of Flexibility of Organic–Inorganic Aerogels: Insights from Atomistic Simulations. J. Phys. Chem. C 2018, 122, 20555–20563. [Google Scholar] [CrossRef]
- Liu, C.; Wu, S.; Yang, Z.; Sun, H.; Zhu, Z.; Liang, W.; Li, A. Mechanically Robust and Flame-Retardant Silicon Aerogel Elastomers for Thermal Insulation and Efficient Solar Steam Generation. ACS Omega 2020, 5, 8638–8646. [Google Scholar] [CrossRef]
- Zhang, Y.; Shen, Q.; Li, X.; Wang, L.; Nie, C. Facile preparation of a phenyl-reinforced flexible silica aerogel with excellent thermal stability and fire resistance. Mater. Chem. Front. 2021, 5, 4214–4224. [Google Scholar] [CrossRef]
- Wu, K.; Dong, W.; Pan, Y.; Cao, J.; Zhang, Y.; Long, D. Lightweight and Flexible Phenolic Aerogels with Three-Dimensional Foam Reinforcement for Acoustic and Thermal Insulation. Ind. Eng. Chem. Res. 2021, 60, 1241–1249. [Google Scholar] [CrossRef]
- Cao, J.; Wang, P.; Cai, H.; Niu, B.; Zhang, Y.; Long, D. Lightweight Nitrogen-Doped Phenolic Aerogels with Flame-Retardant and Thermal-Insulation Properties. ACS Appl. Polym. Mater. 2023, 5, 10276–10288. [Google Scholar] [CrossRef]
- Fan, X.; Deng, Z.; Huang, Z.; Shi, M. Synthesis and Characterization of Novel Phenolic Resin/Siloxane Aerogels via Ambient Pressure Drying. J. Macromol. Sci. Part B 2023, 62, 621–632. [Google Scholar] [CrossRef]
- Yu, Z.L.; Yang, N.; Apostolopoulou-Kalkavoura, V.; Qin, B.; Ma, Z.Y.; Xing, W.Y.; Qiao, C.; Bergstrom, L.; Antonietti, M.; Yu, S.H. Fire-Retardant and Thermally Insulating Phenolic-Silica Aerogels. Angew. Chem. Int. Ed. 2018, 57, 4538–4542. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Hong, C.; Jin, X.; Wu, C.; Wang, W.; Wang, H.; Pan, Y.; Wu, S.; Yan, X.; Han, W.; et al. Facile fabrication of superflexible and thermal insulating phenolic aerogels backboned by silicone networks. Compos. Part A Appl. Sci. Manuf. 2023, 164, 107270. [Google Scholar] [CrossRef]
- Hamamizadeh, E.; Mahabadi, H.A.; Khavanin, A. Investigating the Mechanical, Morphological, and Acoustic Properties of the Phenolic Aerogel/Flexible Polyurethane Foam Composite. J. Polym. Environ. 2022, 30, 2483–2492. [Google Scholar] [CrossRef]
- Sha, R.; Cheng, X.; Dai, J.; Zu, Y.; Zeng, Y.; Sha, J. Lightweight phenolic resin aerogel with excellent thermal insulation and mechanical properties via an ultralow shrinkage process. Mater. Lett. 2022, 324, 132626. [Google Scholar] [CrossRef]
- Huang, H.; Lv, Y.; Jin, X.; Wang, H.; Wu, C.; Pan, Y.; Yan, X.; Hong, C.; Han, W.; Zhang, X. Bifunctional silicone triggered long-range crosslinking phenolic aerogels with flexibility and thermal insulation for thermal regulation. Chem. Eng. J. 2023, 470, 144413. [Google Scholar] [CrossRef]
- Mougel, C.; Garnier, T.; Cassagnau, P.; Sintes-Zydowicz, N. Phenolic foams: A review of mechanical properties, fire resistance and new trends in phenol substitution. Polymer 2019, 164, 86–117. [Google Scholar] [CrossRef]
- Kanamori, K.; Ueoka, R.; Kakegawa, T.; Shimizu, T.; Nakanishi, K. Hybrid silicone aerogels toward unusual flexibility, functionality, and extended applications. J. Sol-Gel Sci. Technol. 2018, 89, 166–175. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, Z.; Zheng, Z.; Zuo, X.; Luo, L.; Guo, Y. Facile Preparation of Flexible Phenolic-Silicone Aerogels with Good Thermal Stability and Fire Resistance. Molecules 2025, 30, 464. https://doi.org/10.3390/molecules30030464
Su Z, Zheng Z, Zuo X, Luo L, Guo Y. Facile Preparation of Flexible Phenolic-Silicone Aerogels with Good Thermal Stability and Fire Resistance. Molecules. 2025; 30(3):464. https://doi.org/10.3390/molecules30030464
Chicago/Turabian StyleSu, Zengyue, Zhenrong Zheng, Xiaobiao Zuo, Lijuan Luo, and Yaxin Guo. 2025. "Facile Preparation of Flexible Phenolic-Silicone Aerogels with Good Thermal Stability and Fire Resistance" Molecules 30, no. 3: 464. https://doi.org/10.3390/molecules30030464
APA StyleSu, Z., Zheng, Z., Zuo, X., Luo, L., & Guo, Y. (2025). Facile Preparation of Flexible Phenolic-Silicone Aerogels with Good Thermal Stability and Fire Resistance. Molecules, 30(3), 464. https://doi.org/10.3390/molecules30030464