Ultrasound-Assisted and Citric Acid-Guided Creation of ZnO Nanoparticles with Optimized Morphologies to Boost Malachite Green Photocatalysis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterizations of the As-Synthesized ZnO NPs
2.2. Photocatalytic Activity
2.3. Optimization of Photodegradation Conditions
2.4. Photodegradation Mechanism
3. Experiments
3.1. Synthesis of ZnO NPs with Varying Floral Structures
3.2. Characterizations
3.3. Photocatalytic Degradation of MG
3.4. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gopinathan, R.; Kanhere, J.; Banerjee, J. Effect of Malachite Green Toxicity on Non Target Soil Organisms. Chemosphere 2015, 120, 637–644. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.-Y.; He, B.; Bian, Y.; Zhang, Y.; Feng, X. Malachite Green and Related Substances in Environmental Samples: Updates on Pretreatment and Analysis Methods. J. Environ. Chem. Eng. 2024, 12, 113812. [Google Scholar] [CrossRef]
- Bai, H.; Liu, B.; Jiang, Y.; Zhang, J.; Zhang, M.; Zhang, H.; Yu, K.; Kan, G.; Jiang, J. Adsorption-desorption behavior of malachite green on aged microplastics in seawater environment. Sep. Purif. Technol. 2025, 354, 128991. [Google Scholar] [CrossRef]
- Le Curieux, F.; Gohlke, J.M.; Pronk, A.; Andersen, W.C.; Chen, G.; Fang, J.-L.; Mitrowska, K.; Sanders, P.J.; Sun, M.; Umbuzeiro, G.A.; et al. Carcinogenicity of Gentian Violet, Leucogentian Violet, Malachite Green, Leucomalachite Green, and CI Direct Blue 218. Lancet Oncol. 2021, 22, 585–586. [Google Scholar] [CrossRef]
- de Almada Vilhena, A.O.; Lima, K.M.M.; de Azevedo, L.F.C.; Rissino, J.D.; de Souza, A.C.P.; Nagamachi, C.Y.; Pieczarka, J.C. The synthetic dye malachite green found in food induces cytotoxicity and genotoxicity in four different mammalian cell lines from distinct tissuesw. Toxicol. Res. 2023, 12, 693–701. [Google Scholar] [CrossRef]
- Cheng, C.-M.; Patel, A.K.; Singhania, R.R.; Tsai, C.-H.; Chen, aS.-Y.; Chen, C.-W.; Dong, C.D. Heterologous expression of bacterial CotA-laccase, characterization and its application for biodegradation of malachite green. Bioresour. Technol. 2021, 340, 125708. [Google Scholar] [CrossRef]
- Mittal, J. Recent progress in the synthesis of Layered Double Hydroxides and their application for the adsorptive removal of dyes: A review. J. Environ. Manag. 2021, 295, 113017. [Google Scholar] [CrossRef]
- Kadhom, M.; Kalash, K.; Al-Furaiji, M. Performance of 2D MXene as an adsorbent for malachite green removal. Chemosphere 2022, 290, 133256. [Google Scholar] [CrossRef]
- Ansari, A.; Nematollahi, D. A comprehensive study on the electrocatalytic degradation, electrochemical behavior and degradation mechanism of malachite green using electrodeposited nanostructured β-PbO2 electrodes. Water Res. 2018, 144, 462–473. [Google Scholar] [CrossRef]
- Teymori, M.; Khorsandi, H.; Aghapour, A.A.; Jafari, S.J.; Maleki, R. Electro-Fenton method for the removal of Malachite Green: Effect of operational parameters. Appl. Water Sci. 2019, 10, 39. [Google Scholar] [CrossRef]
- Hamouda, R.A.; El-Naggar, N.E.-A.; Doleib, N.M.; Saddiq, A.A. Bioprocessing strategies for cost-effective simultaneous removal of chromium and malachite green by marine alga Enteromorpha intestinalis. Sci. Rep. 2020, 10, 13479. [Google Scholar]
- Huang, A.; Yan, M.; Lin, J.; Xu, L.; Gong, H.; Gong, H. A Review of Processes for Removing Antibiotics from Breeding Wastewater. Int. J. Environ. Res. Public Health 2021, 18, 4909. [Google Scholar] [CrossRef] [PubMed]
- Rafiq, A.; Ikram, M.; Ali, S.; Niaz, F.; Khan, M.; Khan, Q.; Maqbool, M. Photocatalytic degradation of dyes using semiconductor photocatalysts to clean industrial water pollution. J. Ind. Eng. Chem. 2021, 97, 111–128. [Google Scholar] [CrossRef]
- Mohamed Isa, E.D.; Shameli, K.; Ch’ng, H.J.; Che Jusoh, N.W.; Hazan, R. Photocatalytic degradation of selected pharmaceuticals using green fabricated zinc oxide nanoparticles. Adv. Powder Technol. 2021, 32, 2398–2409. [Google Scholar] [CrossRef]
- Bica, B.O.; de Melo, J.V.S. Concrete blocks nano-modified with zinc oxide (ZnO) for photocatalytic paving: Performance comparison with titanium dioxide (TiO2). Constr. Build. Mater. 2020, 252, 119120. [Google Scholar] [CrossRef]
- Mao, T.; Liu, M.; Lin, L.; Cheng, Y.; Fang, C. A Study on Doping and Compound of Zinc Oxide Photocatalysts. Polymers 2022, 14, 4484. [Google Scholar] [CrossRef]
- Sun, Q.; Li, J.; Le, T. Zinc Oxide Nanoparticle as a Novel Class of Antifungal Agents: Current Advances and Future Perspectives. J. Agric. Food Chem. 2018, 66, 11209–11220. [Google Scholar] [CrossRef]
- Vu, A.-T.; Pham, T.; Do, X.; Tran, V.; Le, V.; Duc, D.; The Huu, N.; Nguyen Minh, V. Preparation of Hierarchical Structure Au/ZnO Composite for Enhanced Photocatalytic Performance: Characterization, Effects of Reaction Parameters, and Oxidizing Agent Investigations. Adsorpt. Sci. Technol. 2021, 2021, 1–19. [Google Scholar] [CrossRef]
- Zyoud, S.H.; Abdullah, C.A.C.; Ashames, A.; Hassan, N.; Yahia, I.S.; Zyoud, A.H.; Zahran, H.Y.; Qamhieh, N.; Makhadmeh, G.N.; AlZoubi, T. Superior photocatalytic degradation of pharmaceuticals and antimicrobial Features of iron-doped zinc oxide sub-microparticles synthesized via laser-assisted chemical bath technique. Results Eng. 2024, 24, 102875. [Google Scholar] [CrossRef]
- Liu, J.; Wang, H.; Wu, H.; Yang, Y.; Wang, C.; Wang, Q.; Jia, B.; Zheng, J. Research progress on zinc oxide-based heterojunction photocatalysts. J. Mater. Chem. A 2024, 12, 20838–20867. [Google Scholar] [CrossRef]
- Arsha Kusumam, T.V.; Panakkal, T.; Divya, T.; Nikhila, M.P.; Anju, M.; Anas, K.; Renuka, N.K. Morphology controlled synthesis and photocatalytic activity of zinc oxide nanostructures. Ceram. Int. 2016, 42, 3769–3775. [Google Scholar] [CrossRef]
- Hong, D.; Zang, W.; Guo, X.; Fu, Y.; He, H.; Sun, J.; Xing, L.; Liu, B.; Xue, X. High Piezo-photocatalytic Efficiency of CuS/ZnO Nanowires Using Both Solar and Mechanical Energy for Degrading Organic Dye. ACS Appl. Mater. Interfaces 2016, 8, 21302–21314. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, N.P.F.; Lourenço, M.A.O.; Baleuri, S.R.; Bianco, S.; Jagdale, P.; Calza, P. Biochar waste-based ZnO materials as highly efficient photocatalysts for water treatment. J. Environ. Chem. Eng. 2022, 10, 107256. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, B.; Chen, N.; Du, Y.; Ding, T.; Li, Y.; Chang, W. Synthesis of SnO2/ZnO flowerlike composites photocatalyst for enhanced photocatalytic degradation of malachite green. Opt. Mater. 2022, 133, 112978. [Google Scholar] [CrossRef]
- Matusoiu, F.; Negrea, A.; Nemes, N.S.; Ianasi, C.; Ciopec, M.; Negrea, P.; Duteanu, N.; Ianasi, P.; Duda-Seiman, D.; Muntean, D. Antimicrobial Perspectives of Active SiO2FexOy/ZnO Composites. Pharmaceutics 2022, 14, 2063. [Google Scholar] [CrossRef]
- Sun, Q.; Sun, Y.; Zhou, M.; Cheng, H.; Chen, H.; Dorus, B.; Lu, M.; Le, T. A 2D/3D g-C3N4/ZnO heterojunction enhanced visible-light driven photocatalytic activity for sulfonamides degradation. Ceram. Int. 2022, 48, 7283–7290. [Google Scholar] [CrossRef]
- Guo, Y.; Siretanu, I.; Mugele, F.; Mul, G.; Mei, B. pH-Dependent photocatalytic performance of faceted BiOBr semiconductor particles in degradation of dyes. Mol. Catal. 2024, 553, 113753. [Google Scholar] [CrossRef]
- Najam Khan, M.; Dutta, J. Comparison of photocatalytic activity of zinc stannate particles and zinc stannate/zinc oxide composites for the removal of phenol from water, and a study on the effect of pH on photocatalytic efficiency. Mater. Sci. Semicond. Process. 2015, 36, 124–133. [Google Scholar] [CrossRef]
- Zsirka, B.; Vágvölgyi, V.; Horváth, E.; Juzsakova, T.; Fónagy, O.; Szabó-Bárdos, E.; Kristóf, J. Halloysite-Zinc Oxide Nanocomposites as Potential Photocatalysts. Minerals 2022, 12, 476. [Google Scholar] [CrossRef]
- Mirzaei, A.; Chen, Z.; Haghighat, F.; Yerushalmi, L. Removal of pharmaceuticals and endocrine disrupting compounds from water by zinc oxide-based photocatalytic degradation: A review. Sustain. Cities Soc. 2016, 27, 407–418. [Google Scholar] [CrossRef]
- Ng, S.W.L.; Gao, M.; Ong, W.L.; Lim, K.J.H.; Peh, C.K.N.; Ho, G.W. Simultaneous in situ reduction and embedment of Cu nanoparticles into TiO2 for the design of exceptionally active and stable photocatalysts. J. Mater. Chem. A 2018, 6, 16213–16219. [Google Scholar] [CrossRef]
- Munyai, S.; Tetana, Z.N.; Mathipa, M.M.; Ntsendwana, B.; Hintsho-Mbita, N.C. Green synthesis of Cadmium Sulphide nanoparticles for the photodegradation of Malachite green dye, Sulfisoxazole and removal of bacteria. Optik 2021, 247, 167851. [Google Scholar] [CrossRef]
- Helaïli, N.; Boudjamaa, A.; Kebir, M.; Bachari, K. Efficient photo–catalytic degradation of malachite green using nickel tungstate material as photo–catalyst. Environ. Sci. Pollut. Res. 2017, 24, 6481–6491. [Google Scholar] [CrossRef]
- Abutaleb, A.; Ahmed, S.; Imran, M. Synergistic photocatalysis: Harnessing WSe2-ZnO nanocomposites for efficient malachite green dye degradation. Eur. Phys. J. Plus 2023, 138, 1046. [Google Scholar] [CrossRef]
- Pandey, D.; Daverey, A.; Dutta, K.; Arunachalam, K. Bioremoval of toxic malachite green from water through simultaneous decolorization and degradation using laccase immobilized biochar. Chemosphere 2022, 297, 134126. [Google Scholar] [CrossRef]
- Ju, Y.; Yang, S.; Ding, Y.; Sun, C.; Gu, C.; He, Z.; Qin, C.; He, H.; Xu, B. Microwave-enhanced H2O2-based process for treating aqueous malachite green solutions: Intermediates and degradation mechanism. J. Hazard. Mater. 2009, 171, 123–132. [Google Scholar] [CrossRef]
- Ju, Y.; Yang, S.; Ding, Y.; Sun, C.; Zhang, A.; Wang, L. Microwave-Assisted Rapid Photocatalytic Degradation of Malachite Green in TiO2 Suspensions: Mechanism and Pathways. J. Phys. Chem. A 2008, 112, 11172–11177. [Google Scholar] [CrossRef]
- Yong, L.; Zhanqi, G.; Yuefei, J.; Xiaobin, H.; Cheng, S.; Shaogui, Y.; Lianhong, W.; Qingeng, W.; Die, F. Photodegradation of malachite green under simulated and natural irradiation: Kinetics, products, and pathways. J. Hazard. Mater. 2015, 285, 127–136. [Google Scholar] [CrossRef]
- Xiong, J.; Li, W.; Zhao, K.; Li, W.; Cheng, G. Engineered zinc oxide nanoaggregates for photocatalytic removal of ciprofloxacin with structure dependence. J. Nanoparticle Res. 2020, 22, 155. [Google Scholar] [CrossRef]
- Lai, Y.; Meng, M.; Yu, Y.; Wang, X.; Ding, T. Photoluminescence and photocatalysis of the flower-like nano-ZnO photocatalysts prepared by a facile hydrothermal method with or without ultrasonic assistance. Appl. Catal. B Environ. 2011, 105, 335–345. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, X.; Li, S.; Zeng, J.; Huang, M.; Ma, M.; Ran, X.; Chen, X.; Yin, Y.; Sun, Q.; Le, T. Ultrasound-Assisted and Citric Acid-Guided Creation of ZnO Nanoparticles with Optimized Morphologies to Boost Malachite Green Photocatalysis. Molecules 2025, 30, 466. https://doi.org/10.3390/molecules30030466
Lei X, Li S, Zeng J, Huang M, Ma M, Ran X, Chen X, Yin Y, Sun Q, Le T. Ultrasound-Assisted and Citric Acid-Guided Creation of ZnO Nanoparticles with Optimized Morphologies to Boost Malachite Green Photocatalysis. Molecules. 2025; 30(3):466. https://doi.org/10.3390/molecules30030466
Chicago/Turabian StyleLei, Xianlu, Shuang Li, Jian Zeng, Meiqi Huang, Miaomiao Ma, Xueyan Ran, Xiang Chen, Yuting Yin, Qi Sun, and Tao Le. 2025. "Ultrasound-Assisted and Citric Acid-Guided Creation of ZnO Nanoparticles with Optimized Morphologies to Boost Malachite Green Photocatalysis" Molecules 30, no. 3: 466. https://doi.org/10.3390/molecules30030466
APA StyleLei, X., Li, S., Zeng, J., Huang, M., Ma, M., Ran, X., Chen, X., Yin, Y., Sun, Q., & Le, T. (2025). Ultrasound-Assisted and Citric Acid-Guided Creation of ZnO Nanoparticles with Optimized Morphologies to Boost Malachite Green Photocatalysis. Molecules, 30(3), 466. https://doi.org/10.3390/molecules30030466