Enhancing the Photocatalytic Efficacy of g-C3N4 Through Irradiation Modification and Composite Construction with Ti3C2 for Photodynamic Therapy
Abstract
:1. Introduction
2. Results and Discussion
2.1. XRD and FT-IR Analysis
2.2. XPS Analysis
2.3. FE-SEM and HR-TEM Analysis
2.4. Analysis of Photocatalytic Activity
2.5. Photocatalytic Degradation of Organic Dyes
2.6. Effects on CAL-27 Cell Proliferation
2.7. Impact on the Lateral Migration of CAL-27 Cells
2.8. Impact on Mitochondrial Membrane Potential of CAL-27 Cells
3. Materials and Methods
3.1. Preparation of TC/CN Composites
3.2. Material Characterization
3.3. Photocatalytic Degradation Experiments
3.4. MTT Assay
3.5. Cell Scratch Assay
3.6. JC-1 Staining
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, Z.; Zhang, L.; Zhang, Z.; Liu, Z. Advances in Photosensitizer-Related Design for Photodynamic Therapy. Asian J. Pharm. Sci. 2021, 16, 668–686. [Google Scholar] [CrossRef]
- Bhatta, A.K.; Keyal, U.; Wang, X.; Gellén, E. A Review of the Mechanism of Action of Lasers and Photodynamic Therapy for Onychomycosis. Lasers Med. Sci 2017, 32, 469–474. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, Y.; Wu, C.; Shi, J. Nanoplatform-Based Cascade Engineering for Cancer Therapy. Chem. Soc. Rev. 2020, 49, 9057–9094. [Google Scholar] [CrossRef]
- Songca, S.P.; Adjei, Y. Applications of Antimicrobial Photodynamic Therapy against Bacterial Biofilms. IJMS 2022, 23, 3209. [Google Scholar] [CrossRef]
- Houthoofd, S.; Vuylsteke, M.; Mordon, S.; Fourneau, I. Photodynamic Therapy for Atherosclerosis. The Potential of Indocyanine Green. Photodiagnosis Photodyn. Ther. 2020, 29, 101568. [Google Scholar] [CrossRef] [PubMed]
- Lan, J.; Chen, S.; Chen, Z.; Luo, D.; Yu, C.; Zeng, L.; Sun, W.; Zhang, X.; Yao, X.; Wu, F.; et al. Chemo-Photodynamic Antitumour Therapy Based on Er-Doped Upconversion Nanoparticles Coated with Hypocrellin B and MnO2. Biomater. Adv. 2024, 161, 213891. [Google Scholar] [CrossRef]
- Szeimies, R.-M.; Dirschka, T.; Fargnoli, M.C.; Gilaberte, Y.; Hædersdal, M.; Chavda, R.; Calzavara-Pinton, P. A Review of MAL-PDT for the Treatment Strategy of Actinic Keratosis: Broader Clinical Perspectives Beyond the Data and Guideline Recommendations. Dermatol. Ther. 2023, 13, 1409–1421. [Google Scholar] [CrossRef] [PubMed]
- Mytych, W.; Bartusik-Aebisher, D.; Łoś, A.; Dynarowicz, K.; Myśliwiec, A.; Aebisher, D. Photodynamic Therapy for Atherosclerosis. IJMS 2024, 25, 1958. [Google Scholar] [CrossRef]
- Grandi, V.; Paroli, G.; Puliti, E.; Bacci, S.; Pimpinelli, N. Single ALA-PDT Irradiation Induces Increase in Mast Cells Degranulation and Neuropeptide Acute Response in Chronic Venous Ulcers: A Pilot Study. Photodiagnosis Photodyn. Ther. 2021, 34, 102222. [Google Scholar] [CrossRef] [PubMed]
- Borgia, F.; Coppola, M.; Giuffrida, R.; Cannavò, S.P. Excellent Cosmetic Result of Daylight Photodynamic Therapy for Facial Flat Warts in a Child. Photodiagnosis Photodyn. Ther. 2019, 26, 27–28. [Google Scholar] [CrossRef] [PubMed]
- Simone, C.B., II; Friedberg, J.S.; Glatstein, E.; Stevenson, J.P.; Sterman, D.H.; Hahn, S.M.; Cengel, K.A. Photodynamic Therapy for the Treatment of Non-Small Cell Lung Cancer. J. Thorac. Dis. 2012, 4, 63–75. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Song, J.; Nie, L.; Chen, X. Reactive Oxygen Species Generating Systems Meeting Challenges of Photodynamic Cancer Therapy. Chem. Soc. Rev. 2016, 45, 6597–6626. [Google Scholar] [CrossRef]
- Liu, T.-Y.; Giddam, A.; Hussein, W.; Jia, Z.; McMillan, N.; Monteiro, M.; Toth, I.; Skwarczynski, M. Self-Adjuvanting Therapeutic Peptide-Based Vaccine Induce CD8+ Cytotoxic T Lymphocyte Responses in a Murine Human Papillomavirus Tumor Model. CDD 2015, 12, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Sobhani, N.; Samadani, A.A. Implications of Photodynamic Cancer Therapy: An Overview of PDT Mechanisms Basically and Practically. J. Egypt Natl. Cancer Inst. 2021, 33, 34. [Google Scholar] [CrossRef]
- Hakli, Ö.; Yarali, S.; Öner Usta, E.; Ayaz, F. Photodynamic Anti-Inflammatory Activity of Meso-aryl Substituted Porphyrin Derivative on Mammalian Macrophages. Photodiagnosis Photodyn. Ther. 2024, 45, 103922. [Google Scholar] [CrossRef]
- Yu, S.; Shi, J.; Sun, T.; Xie, Z.; Sun, L. Light-Induced Antimicrobial Activities of Porphyrin Derivatives as Photosensitizers. APL Mater. 2024, 12, 061110. [Google Scholar] [CrossRef]
- Korolchuk, A.M.; Zolottsev, V.A.; Misharin, A.Y. Conjugates of Tetrapyrrolic Macrocycles as Potential Anticancer Target-Oriented Photosensitizers. Top. Curr. Chem. 2023, 381, 10. [Google Scholar] [CrossRef] [PubMed]
- Mata, A.I.; Pereira, N.A.M.; Cardoso, A.L.; Nascimento, B.F.O.; Pineiro, M.; Schaberle, F.A.; Gomes-da-Silva, L.C.; Brito, R.M.M.; Pinho E Melo, T.M.V.D. Novel Foscan®-Derived Ring-Fused Chlorins for Photodynamic Therapy of Cancer. Bioorganic Med. Chem. 2023, 93, 117443. [Google Scholar] [CrossRef]
- Çelenk Kaya, E.; Ersoy, S.; Durmuş, M.; Kantekin, H. Synthesis of Fluorine-Containing Phthalocyanines and Investigation of the Photophysical and Photochemical Properties of the Metal-Free and Zinc Phthalocyanines. Heterocycl. Commun. 2018, 24, 259–265. [Google Scholar] [CrossRef]
- Ezquerra Riega, S.D.; Valli, F.; Rodríguez, H.B.; Marino, J.; Roguin, L.P.; Lantaño, B.; García Vior, M.C. Chalcogen Bearing Tetrasubstituted Zinc (II) Phthalocyanines for CT26 Colon Carcinoma Cells Photodynamic Therapy. Dye. Pigment. 2022, 201, 110110. [Google Scholar] [CrossRef]
- Gkikas, A.; Lampridis, S.; Patrini, D.; Kestenholz, P.B.; Scarci, M.; Minervini, F. How Effective Is Indocyanine Green (ICG) in Localization of Malignant Pulmonary Nodules? A Systematic Review and Meta-Analysis. Front. Surg. 2022, 9, 967897. [Google Scholar] [CrossRef]
- Zarepour, A.; Khosravi, A.; Yücel Ayten, N.; Çakır Hatır, P.; Iravani, S.; Zarrabi, A. Innovative Approaches for Cancer Treatment: Graphene Quantum Dots for Photodynamic and Photothermal Therapies. J. Mater. Chem. B 2024, 12, 4307–4334. [Google Scholar] [CrossRef]
- Liang, M.; Borjigin, T.; Zhang, Y.; Liu, H.; Liu, B.; Guo, H. Z-Scheme Au@Void@g-C3N4/SnS Yolk–Shell Heterostructures for Superior Photocatalytic CO2 Reduction under Visible Light. ACS Appl. Mater. Interfaces 2018, 10, 34123–34131. [Google Scholar] [CrossRef] [PubMed]
- Tong, Z.; Yang, D.; Li, Z.; Nan, Y.; Ding, F.; Shen, Y.; Jiang, Z. Thylakoid-Inspired Multishell g-C3N4 Nanocapsules with Enhanced Visible-Light Harvesting and Electron Transfer Properties for High-Efficiency Photocatalysis. ACS Nano 2017, 11, 1103–1112. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xie, X.; Wang, H.; Zhang, J.; Pan, B.; Xie, Y. Enhanced Photoresponsive Ultrathin Graphitic-Phase C 3 N 4 Nanosheets for Bioimaging. J. Am. Chem. Soc. 2013, 135, 18–21. [Google Scholar] [CrossRef] [PubMed]
- Vattikuti, S.V.P.; Hoang Ngoc, C.T.; Nguyen, H.; Nguyen Thi, N.H.; Shim, J.; Dang, N.N. Carbon Nitride Coupled Co3O4: A Pyrolysis-Based Approach for High-Performance Hybrid Energy Storage. J. Phys. Chem. Lett. 2023, 14, 9412–9423. [Google Scholar] [CrossRef]
- Ong, W.-J.; Tan, L.-L.; Ng, Y.H.; Yong, S.-T.; Chai, S.-P. Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer to Achieving Sustainability? Chem. Rev. 2016, 116, 7159–7329. [Google Scholar] [CrossRef]
- Zhang, Y.; Cheng, Y.; Yang, F.; Yuan, Z.; Wei, W.; Lu, H.; Dong, H.; Zhang, X. Near-Infrared Triggered Ti3C2/g-C3N4 Heterostructure for Mitochondria-Targeting Multimode Photodynamic Therapy Combined Photothermal Therapy. Nano Today 2020, 34, 100919. [Google Scholar] [CrossRef]
- Qi, K.; Lu, Z.; Gao, X.; Tan, G.; Zhang, Z.; Liu, D.; Dong, G.; Jing, D.; Luo, P. Enhancing Surface Hydroxyl Group Modulation on Carbon Nitride Boosts the Effectiveness of Photodynamic Treatment for Brain Glioma. ACS Appl. Mater. Interfaces 2024, 16, 29793–29804. [Google Scholar] [CrossRef]
- Wei, F.; Kuang, S.; Rees, T.W.; Liao, X.; Liu, J.; Luo, D.; Wang, J.; Zhang, X.; Ji, L.; Chao, H. Ruthenium(II) Complexes Coordinated to Graphitic Carbon Nitride: Oxygen Self-Sufficient Photosensitizers Which Produce Multiple ROS for Photodynamic Therapy in Hypoxia. Biomaterials 2021, 276, 121064. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Song, J.; Qiu, Y.; Wei, J.; Hong, Z.; Li, L.; Yang, H. Gold Nanoparticle-Decorated g-C3N4 Nanosheets for Controlled Generation of Reactive Oxygen Species upon 670 Nm Laser Illumination. ACS Appl. Mater. Interfaces 2019, 11, 10589–10596. [Google Scholar] [CrossRef]
- Telkhozhayeva, M.; Girshevitz, O. Roadmap toward Controlled Ion Beam-Induced Defects in 2D Materials. Adv. Funct. Mater. 2024, 34, 2404615. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, X.; Lou, J.; Huang, Y.; Peng, J.; Li, Y.; Liu, Y. Enhance ZnO Photocatalytic Performance via Radiation Modified G-C3N4. Molecules 2022, 27, 8476. [Google Scholar] [CrossRef]
- Harako, A.; Shimoda, S.; Suzuki, K.; Fukuoka, A.; Takada, T. Effects of the Electron-Beam-Induced Modification of g-C3N4 on Its Performance in Photocatalytic Organic Dye Decomposition. Chem. Phys. Lett. 2023, 813, 140320. [Google Scholar] [CrossRef]
- Pandey, R.P.; Rasheed, P.A.; Gomez, T.; Rasool, K.; Ponraj, J.; Prenger, K.; Naguib, M.; Mahmoud, K.A. Effect of Sheet Size and Atomic Structure on the Antibacterial Activity of Nb-MXene Nanosheets. ACS Appl. Nano Mater. 2020, 3, 11372–11382. [Google Scholar] [CrossRef]
- Wu, F.; Zheng, H.; Wang, W.; Wu, Q.; Zhang, Q.; Guo, J.; Pu, B.; Shi, X.; Li, J.; Chen, X.; et al. Rapid Eradication of Antibiotic-Resistant Bacteria and Biofilms by MXene and near-Infrared Light through Photothermal Ablation. Sci. China Mater. 2021, 64, 748–758. [Google Scholar] [CrossRef]
- Rasool, K.; Helal, M.; Ali, A.; Ren, C.E.; Gogotsi, Y.; Mahmoud, K.A. Antibacterial Activity of Ti3C2Tx MXene. ACS Nano 2016, 10, 3674–3684. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Li, Z.; Li, L.; Wang, J. Insights into the Photothermal Conversion of 2D MXene Nanomaterials: Synthesis, Mechanism, and Applications. Adv. Funct. Mater. 2020, 30, 2000712. [Google Scholar] [CrossRef]
- Shanthini, K.; Selvam, V.; Anitha, C.; Rexin Alphonse, N.; Pushpavalli, K.S.; Gomathinayagam, V. Designing Ti3C2/C3N4-Embedded Chitosan Nanocomposites for Efficient Antibiotic Degradation and Antibacterial Activity. Opt. Mater. 2024, 147, 114731. [Google Scholar] [CrossRef]
- Chen, H.; Wang, Y.; Chen, X.; Wang, Z.; Wu, Y.; Dai, Q.; Zhao, W.; Wei, T.; Yang, Q.; Huang, B.; et al. Research Progress on Ti3C2Tx-Based Composite Materials in Antibacterial Field. Molecules 2024, 29, 2902. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Tan, Q.; Li, Q.; Zhou, J.; Fan, J.; Li, B.; Sun, J.; Lv, K. 2D/2D Ti3C2 MXene/g-C3N4 Nanosheets Heterojunction for High Efficient CO2 Reduction Photocatalyst: Dual Effects of Urea. Appl. Catal. B Environ. 2020, 268, 118738. [Google Scholar] [CrossRef]
- Qiao, L.-L.; Zhang, F.-J.; Kai, C.-M.; Liu, C.; Wang, Y.-R.; Oh, W.-C. Preparation of 2D/2D g-C3N4/Ti3C2 MXene Composites by Calcination Synthesis Method for Visible Light Photocatalytic Degradation of Tetracycline. J. Korean Ceram. Soc. 2023, 60, 790–797. [Google Scholar] [CrossRef]
- Mohamed, N.A.; Safaei, J.; Ismail, A.F.; Mohamad Noh, M.F.; Arzaee, N.A.; Mansor, N.N.; Ibrahim, M.A.; Ludin, N.A.; Sagu, J.S.; Mat Teridi, M.A. Fabrication of Exfoliated Graphitic Carbon Nitride, (g-C3N4) Thin Film by Methanolic Dispersion. J. Alloys Compd. 2020, 818, 152916. [Google Scholar] [CrossRef]
- He, H.; Huang, L.; Zhong, Z.; Tan, S. Constructing Three-Dimensional Porous Graphene-Carbon Quantum Dots/g-C3N4 Nanosheet Aerogel Metal-Free Photocatalyst with Enhanced Photocatalytic Activity. Appl. Surf. Sci. 2018, 441, 285–294. [Google Scholar] [CrossRef]
- Li, B.; Song, H.; Han, F.; Wei, L. Photocatalytic Oxidative Desulfurization and Denitrogenation for Fuels in Ambient Air over Ti3C2/g-C3N4 Composites under Visible Light Irradiation. Appl. Catal. B Environ. 2020, 269, 118845. [Google Scholar] [CrossRef]
- Cheng, J.; Hu, Z.; Lv, K.; Wu, X.; Li, Q.; Li, Y.; Li, X.; Sun, J. Drastic Promoting the Visible Photoreactivity of Layered Carbon Nitride by Polymerization of Dicyandiamide at High Pressure. Appl. Catal. B Environ. 2018, 232, 330–339. [Google Scholar] [CrossRef]
- Yuan, A.; Lei, H.; Xi, F.; Liu, J.; Qin, L.; Chen, Z.; Dong, X. Graphene Quantum Dots Decorated Graphitic Carbon Nitride Nanorods for Photocatalytic Removal of Antibiotics. J. Colloid Interface Sci. 2019, 548, 56–65. [Google Scholar] [CrossRef]
- Guo, S.; Tang, Y.; Xie, Y.; Tian, C.; Feng, Q.; Zhou, W.; Jiang, B. P-Doped Tubular g-C3N4 with Surface Carbon Defects: Universal Synthesis and Enhanced Visible-Light Photocatalytic Hydrogen Production. Appl. Catal. B Environ. 2017, 218, 664–671. [Google Scholar] [CrossRef]
- Chen, P.-W.; Li, K.; Yu, Y.-X.; Zhang, W.-D. Cobalt-Doped Graphitic Carbon Nitride Photocatalysts with High Activity for Hydrogen Evolution. Appl. Surf. Sci. 2017, 392, 608–615. [Google Scholar] [CrossRef]
- Cao, Z.; Su, J.; Li, Y.; Li, J.; Wang, Z.; Li, M.; Fan, B.; Shao, G.; Wang, H.; Xu, H.; et al. High-Energy Ball Milling Assisted One-Step Preparation of g-C3N4/TiO2@Ti3C2 Composites for Effective Visible Light Degradation of Pollutants. J. Alloys Compd. 2021, 889, 161771. [Google Scholar] [CrossRef]
- Praus, P.; Smýkalová, A.; Škuta, R.; Koštejn, M.; Pavlovský, J.; Tokarský, J.; Foniok, K.; Filip Edelmannová, M.; Kočí, K. Graphitic C3N4 and Ti3C2 Nanocomposites for the Enhanced Photocatalytic Degradation of Organic Compounds and the Evolution of Hydrogen under Visible Irradiation. J. Photochem. Photobiol. A Chem. 2024, 447, 115260. [Google Scholar] [CrossRef]
- He, J.; Yang, J.; Jiang, F.; Liu, P.; Zhu, M. Photo-Assisted Peroxymonosulfate Activation via 2D/2D Heterostructure of Ti3C2/g-C3N4 for Degradation of Diclofenac. Chemosphere 2020, 258, 127339. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Peng, R.; Hood, Z.D.; Naguib, M.; Adhikari, S.P.; Wu, Z. Titania Composites with 2 D Transition Metal Carbides as Photocatalysts for Hydrogen Production under Visible-Light Irradiation. ChemSusChem 2016, 9, 1490–1497. [Google Scholar] [CrossRef] [PubMed]
- Xiao, R.; Zhao, C.; Zou, Z.; Chen, Z.; Tian, L.; Xu, H.; Tang, H.; Liu, Q.; Lin, Z.; Yang, X. In Situ Fabrication of 1D CdS Nanorod/2D Ti3C2 MXene Nanosheet Schottky Heterojunction toward Enhanced Photocatalytic Hydrogen Evolution. Appl. Catal. B Environ. 2020, 268, 118382. [Google Scholar] [CrossRef]
- Lee, D.-E.; Jyothirmai, M.V.; Mameda, N.; Jo, W.-K.; Tonda, S. 2D/2D Schottky-Type Hybrid Heterocatalyst Comprising S-Doped g-C3N4 and Delaminated Ti3C2 MXene: Synergistic Interplay of Dual Strategies for Effective H2 Generation and Pollutant Degradation. Appl. Surf. Sci. 2024, 669, 160516. [Google Scholar] [CrossRef]
- Guo, R.; Wang, J.; Bi, Z.; Chen, X.; Hu, X.; Pan, W. Recent Advances and Perspectives of g–C3N4–Based Materials for Photocatalytic Dyes Degradation. Chemosphere 2022, 295, 133834. [Google Scholar] [CrossRef] [PubMed]
- Pattanayak, D.S.; Surana, M.; Kumar, A.; Singh, D.; Pal, D. Graphitic Carbon Nitride(g-C3N4)-Based Photocatalysts for Dye Removal: Current Status. Sustain. Chem. Environ. 2024, 7, 100141. [Google Scholar] [CrossRef]
- Oladoye, P.O.; Ajiboye, T.O.; Omotola, E.O.; Oyewola, O.J. Methylene Blue Dye: Toxicity and Potential Elimination Technology from Wastewater. Results Eng. 2022, 16, 100678. [Google Scholar] [CrossRef]
- Chen, H.; Hu, Y.; Wu, C.; Liu, K.; Feng, R.; Yang, M.; Zhao, M.; Huang, B.; Li, Y. Mesoporous Titanium Dioxide Nanoparticles—Poly(N-Isopropylacrylamide) Hydrogel Prepared by Electron Beam Irradiation Inhibits the Proliferation and Migration of Oral Squamous Cell Carcinoma Cells. Polymers 2023, 15, 3659. [Google Scholar] [CrossRef]
- Zheng, X.; Feng, M.; Wan, J.; Shi, Y.; Xie, X.; Pan, W.; Hu, B.; Wang, Y.; Wen, H.; Wang, K.; et al. Anti-Damage Effect of Theaflavin-3′-Gallate from Black Tea on UVB-Irradiated HaCaT Cells by Photoprotection and Maintaining Cell Homeostasis. J. Photochem. Photobiol. B Biol. 2021, 224, 112304. [Google Scholar] [CrossRef]
- Kong, J.; Hu, X.-M.; Cai, W.-W.; Wang, Y.-M.; Chi, C.-F.; Wang, B. Bioactive Peptides from Skipjack Tuna Cardiac Arterial Bulbs (II): Protective Function on UVB-Irradiated HaCaT Cells through Antioxidant and Anti-Apoptotic Mechanisms. Mar. Drugs 2023, 21, 105. [Google Scholar] [CrossRef]
- Fais, G.; Sidorowicz, A.; Perra, G.; Dessì, D.; Loy, F.; Lai, N.; Follesa, P.; Orrù, R.; Cao, G.; Concas, A. Cytotoxic Effects of ZnO and Ag Nanoparticles Synthesized in Microalgae Extracts on PC12 Cells. Mar. Drugs 2024, 22, 549. [Google Scholar] [CrossRef]
k (min−1) | R2 | Degradation Rate (%) | |
---|---|---|---|
CN | 0.01511 | 0.983 | 78.0 |
100-CN | 0.01683 | 0.996 | 81.5 |
200-CN | 0.01836 | 0.999 | 86.8 |
400-CN | 0.01982 | 0.995 | 83.2 |
k (min−1) | R2 | Degradation Rate (%) | |
---|---|---|---|
200-CN | 0.02071 | 0.985 | 88.5% |
0.5-TC/200-CN | 0.02505 | 0.999 | 93.0% |
1-TC/200-CN | 0.02740 | 0.990 | 94.0% |
2-TC/200-CN | 0.02419 | 0.985 | 91.7% |
4-TC/200-CN | 0.019992 | 0.978 | 80.0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, B.; Wang, Y.; Chen, X.; Wu, Y.; Xu, K.; Xie, S.; Qin, Z.; Liu, X.; Chen, H.; Li, Y. Enhancing the Photocatalytic Efficacy of g-C3N4 Through Irradiation Modification and Composite Construction with Ti3C2 for Photodynamic Therapy. Molecules 2025, 30, 487. https://doi.org/10.3390/molecules30030487
Huang B, Wang Y, Chen X, Wu Y, Xu K, Xie S, Qin Z, Liu X, Chen H, Li Y. Enhancing the Photocatalytic Efficacy of g-C3N4 Through Irradiation Modification and Composite Construction with Ti3C2 for Photodynamic Therapy. Molecules. 2025; 30(3):487. https://doi.org/10.3390/molecules30030487
Chicago/Turabian StyleHuang, Bin, Yilun Wang, Xuguang Chen, Yue Wu, Kaidi Xu, Simeng Xie, Ziyang Qin, Xiang Liu, Huangqin Chen, and Yuesheng Li. 2025. "Enhancing the Photocatalytic Efficacy of g-C3N4 Through Irradiation Modification and Composite Construction with Ti3C2 for Photodynamic Therapy" Molecules 30, no. 3: 487. https://doi.org/10.3390/molecules30030487
APA StyleHuang, B., Wang, Y., Chen, X., Wu, Y., Xu, K., Xie, S., Qin, Z., Liu, X., Chen, H., & Li, Y. (2025). Enhancing the Photocatalytic Efficacy of g-C3N4 Through Irradiation Modification and Composite Construction with Ti3C2 for Photodynamic Therapy. Molecules, 30(3), 487. https://doi.org/10.3390/molecules30030487