Effects of Mo2C on Microstructures and Comprehensive Properties of Ti(C, N)-Based Cermets Prepared Using Spark Plasma Sintering
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phase Compositions and Binding States
2.2. Microstructures
2.3. Mechanical Properties
2.4. Magnetic Properties and Resistivity
3. Experiments
3.1. Preparation of Ti(C, N)-Based Cermet
3.2. Characterization
4. Conclusions
- When keeping the sintering temperature, holding time, and sintering pressure constant at 1450 °C, 16 min, and 30 MPa, the addition of Mo2C shifts the XRD diffraction peaks of Ti(C, N) to lower angles, while a more complete core-ring structure emerges in the microstructure of Ti(C, N). This phenomenon induces alterations in the mechanical properties of the cermet samples. With a Mo2C addition of 6 wt.%, the sample exhibits the smallest grain size of the black hard phase (0.64 μm) and a well-distributed core-ring structure. The density of the sample is 6.45 g/cm3, the Vickers hardness is HV 2318, the fracture toughness is 8.3 MPa·m1/2, the saturated magnetization strength is 11.4 emu/g, and the resistivity is 5.2 × 10−5 Ω·m;
- With a Mo2C addition of 6 wt.%, keeping the same sintering pressure (30 MPa) and holding time (16 min) while varying the sintering temperature, the XRD diffraction peak intensities of Ti(C, N) and WC decrease. At a sintering temperature of 1450 °C, the Ti(C, N) grains achieve their smallest size (0.58 μm), accompanied by a uniform thickness of the rim phase and optimal mechanical properties of the sample. Under these conditions, the sample exhibits a density of 5.96 g/cm3, a Vickers hardness of HV 2318, a fracture toughness of 8.2 MPa·m1/2, a saturation magnetization strength of 10.0 emu/g, and a resistivity of 4.8 × 10−5 Ω·m;
- With a Mo2C addition of 6 wt.%, maintaining a sintering temperature of 1450 °C and a sintering pressure of 25 MPa, and varying the holding time, the XRD diffraction peaks of Ti(C, N) shift to lower angles as the holding time increases. At a holding time of 16 min, the sample exhibits a clear core-ring interface, a uniformly thick ring phase, and the smallest hard phase grain size (0.62 µm). Under these conditions, the sample achieves a density of 6.47 g/cm3, a Vickers hardness of HV 2845, a fracture toughness of 11.7 MPa·m1/2 a saturation magnetization strength of 7.25 emu/g, and a resistivity of 5.3 × 10−5 Ω·m;
- With a Mo2C addition of 6 wt.%, the optimal sintering conditions of the samples are a sintering temperature of 1450 °C, a holding time of 16 min, and a sintering pressure of 25 MPa. Under these conditions, the prepared samples exhibit the best properties, including a density of 6.27 g/cm3, Vickers hardness of HV 2731, fracture toughness of 10.1 MPa·m1/3, saturated magnetization strength of 10.3 emu/g, and resistivity of 5.5 × 10−5 Ω·m. In comparison to samples without Mo2C, the presence of Mo2C resulted in notable improvements in hardness, density, and fracture toughness, with increases of 63%, 15%, and 84%, respectively.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, M.M.; Jiang, Y.; Lin, N.; Kang, X.Y.; Yan, Y.; Huang, J.H.; Liu, Y.; Qiu, S.; He, Y.H. Investigation of the oxidation behavior and high oxidation-resistant mechanism of Ti(C, N)-based cermets. Corros. Sci. 2020, 177, 108959. [Google Scholar] [CrossRef]
- Yang, X.H.; Wang, K.F.; Zhang, G.H.; Chou, K.C. Fabrication and performances of WC-Co cemented carbide with a low cobalt content. J. Appl. Ceram. Technol. 2022, 19, 1341–1353. [Google Scholar] [CrossRef]
- Rogachev, A.S.; Vadchenko, S.G.; Kochetov, N.A.; Kovalev, D.Y.; Politano, O. Combustion synthesis of TiC-based ceramic-metal composites with high entropy alloy binder. J. Eur. Ceram. Soc. 2019, 40, 2527–2532. [Google Scholar] [CrossRef]
- Chicardi, E.; Bermejo, R.; Gotor, F.J.; Llanes, L.; Torres, Y. Influence of tempe-rature on the biaxial strength of cemented carbides with different microstructures. Int. J. Refract. Met. Hard Mater. 2018, 71, 82–91. [Google Scholar] [CrossRef]
- Willersinn, S.; Bart, H.J. Reactive extraction and critical raw materials: Industrial recovery of tungsten. Chem. Ing. Tech. 2017, 89, 82–91. [Google Scholar] [CrossRef]
- Peng, Y.; Wang, H.B.; Zhao, C.; Hu, H.X.; Liu, X.M.; Song, X.Y. Nanocrystalline WC-Co composite with ultrahigh hardness and toughness. Compos. Part B Eng. 2020, 197, 108161. [Google Scholar] [CrossRef]
- Xian, G.; Xiong, J.; Fan, H.Y.; Jiang, F.; Zhao, H.B.; Xian, L.J.; Qin, Z.H. Mechanical and wear properties of TiN films on differently pretreated TiCN-based cermets. Appl. Surf. Sci. 2021, 570, 151180. [Google Scholar] [CrossRef]
- Kang, X.Y.; Lin, N.; He, Y.H.; Zhang, Q.K.; Zhang, M.M.; Yan, Y.; Liu, Y. Improvement of microstructure, mechanical properties and cutting performance of Ti(C, N)-based cermets by ultrafine La2O3 additions. Ceram. Int. 2021, 47, 19934–19944. [Google Scholar] [CrossRef]
- Besharatloo, H.; de Nicolás, M.; Roa, J.J.; Dios, M.; Mateo, A.; Ferrari, B.; Gordo, E.; Llanes, L. Assessment of mechanical properties at microstructural length scale of Ti(C, N)–FeNi ceramic-metal composites by means of massive nano-indentation and statistical analysis. Ceram. Int. 2019, 45, 20202–20210. [Google Scholar] [CrossRef]
- Liang, L.Q.; Wei, B.X.; Wang, D.; Fang, W.B.; Chen, L.; Wang, Y.J. Densification, microstructures, and mechanical properties of (Zr, Ti)(C, N) ceramics fabricated by spark plasma sintering. J. Eur. Ceram. Soc. 2022, 42, 6445–6456. [Google Scholar] [CrossRef]
- Zhang, G.T.; Zheng, Y.; Ke, Z.; Zhang, J.J.; Zhao, Y.J.; Lu, X.P. Effect of WC content on the microstructure and mechanical properties of Ti(C, N)-based cermets fabricated by insitu carbothermal reduction of TiO2. Mat. Sci. Eng. A-Struct. 2019, 761, 138024. [Google Scholar] [CrossRef]
- Arvidsson, R.; Söderman, M.L.; Sandén, B.A.; Nordelöf, A.; André, H.; Tillman, A.M. A crustal scarcity indicator for long-term global elemental resource assessment in LCA. Int. J. Life Cycle Assess. 2020, 25, 1805–1817. [Google Scholar] [CrossRef]
- Wang, X.L.; Wang, Q.F.; Dong, Z.J.; Zhou, X.Q.; Zhang, B.Y.; Meng, C. Microstructure and mechanical properties of multicomponent metal Ti(C, N)-based cermets. Metals 2020, 10, 927. [Google Scholar] [CrossRef]
- Liu, J.B.; Huo, Y.L.; Xiong, J.; Guo, Z.X.; Yang, T.E.; Ye, J.L.; Zhao, J.F.; Liu, Y. Growth and prope-rties of multi-layer nano CrAlN/TiAlN composite coating on the cermets with CrFeCoNiMo, CrFeCoNiMn, CrFeCoNiAl high entropy alloy phase. Appl. Surf. Sci. 2022, 572, 151309. [Google Scholar] [CrossRef]
- Lengauer, W.; Scagnetto, F. Ti(C, N)-based cermets: Critical review of achievements and recent developments. Solid State Phenom. 2018, 274, 53–100. [Google Scholar] [CrossRef]
- Yu, H.J.; Liu, Y.; Jin, Y.Z.; Ye, J.W. Effect of secondary carbides addition on the microstructure and mechanical properties of (Ti, W, Mo, V)(C, N)-based cermets. Int. J. Refract. Met. Hard Mater. 2011, 29, 586–590. [Google Scholar] [CrossRef]
- Wan, W.C.; Wang, J.; Liang, M.X.; Fan, K.Y.; Wang, Z.Y.; Li, Y.H. Fracture behaviors of Ti(C, N)-based cermets with different contents of metal binder. Ceram. Int. 2022, 48, 32399–32408. [Google Scholar] [CrossRef]
- Guo, S.Q. Physical and mechanical behaviours of hot-pressed TaC–HfC ceramics with La2O3 additive. Adv. Appl. Ceram. 2021, 120, 117–126. [Google Scholar] [CrossRef]
- Wan, W.C.; Xiong, J.; Liang, M.X. Effects of secondary carbides on the microstructure, mechanical properties and erosive wear of Ti(C, N)-based cermets. Ceram. Int. 2017, 43, 944–952. [Google Scholar] [CrossRef]
- Yin, Z.B.; Yuan, J.T.; Xu, W.W.; Ye, J.D.; Liu, K.; Yan, S.Y. Improvement in microstructure and mechanical properties of Ti(C, N) cermets prepared by two-step spark plasma sintering. Ceram. Int. 2019, 45, 752–758. [Google Scholar] [CrossRef]
- Patel, U.S.; Rawal, S.K.; Arif, A.F.M.; Veldhuis, S.C. Influence of secondary carbides on microstructure, wear mechanism, and tool performance for different cermet grades during high-speed dry finish turning of AISI 304 stainless steel. Wear 2020, 452, 203285. [Google Scholar] [CrossRef]
- Qiu, H.; Li, X.Q.; Pan, C.L.; Fan, J.F.; Qu, S.G. Effect of Mo2C addition on the form-ation of core-rim structure and mechanical properties of Ti(C, N)-WC-Mo2C-(Ni, Co) cermet. J. Mater. Res. Technol. 2023, 25, 750–762. [Google Scholar] [CrossRef]
- Wang, S.Y.; Xiong, W.H.; Yan, M.S.; Fan, C. Effects of molybdenum on the microstructure and mechanical properties of Ti(C, N)-based cermets with low Ni. Rare Met. 2006, 25, 90–95. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Wan, W.C.; Wang, J.; Fan, K.Y.; Li, Y.H.; Xiong, J.; Du, H. Carburization and wear behavior of self-lubricating Ti(C, N)-based cermets with various secondary carbides. Ceram. Int. 2021, 47, 26678–26691. [Google Scholar] [CrossRef]
- Zhao, L.B.; Lin, N.; Han, X.Q.; Ma, C.; Wang, Z.Y.; He, Y.H. Influence of microstructure evolution on mechanical properties, wear resistance and corrosion resistance of Ti(C, N)-based cermet tools with various WC additions. Met. Mater. Int. 2021, 27, 2773–2781. [Google Scholar] [CrossRef]
- Song, J.P.; Gao, J.J.; Rafiq, A.; Lv, M. Cutting performances of TiCN–HfC and TiCN–HfC–WC ceramic tools in dry turning hardened AISI H13. Adv. Appl. Ceram. 2020, 119, 380–386. [Google Scholar] [CrossRef]
- Hu, Z.Y.; Zhang, Z.H.; Cheng, X.W.; Wang, F.C.; Zhang, Y.F.; Li, S.L. A review of multi-physical fields induced phenomena and effects in spark plasma sintering: Fundamentals and applications. Mater. Des. 2020, 191, 108662. [Google Scholar] [CrossRef]
- Tokita, M. Progress of spark plasma sintering (SPS) method, systems, ceramics applications and industrialization. Ceramics 2021, 4, 160–198. [Google Scholar] [CrossRef]
- Babapoor, A.; Asl, M.S.; Ahmadi, Z.; Namini, A.S. Effects of spark plasma sintering temperature on densification, hardness and thermal conductivity of titanium carbide. Ceram. Int. 2018, 44, 14541–14546. [Google Scholar] [CrossRef]
- Han, C.L.; Tian, C.G. Effect of Mo2C on the microstructure and mechanical properties of (Ti,W)C–Ni cermets. Powder Metall. Met. Ceram. 2014, 53, 57–63. [Google Scholar] [CrossRef]
- Li, P.P.; Ye, J.W.; Liu, Y.; Yang, D.J.; Yu, H.J. Study on the formation of core–rim structure in Ti(CN)-based cermets. Int. J. Refract. Met. Hard Mater. 2012, 35, 27–31. [Google Scholar] [CrossRef]
- Xiao, P.; Ge, X.M.; Wang, H.B.; Liu, Z.L.; Fisher, A.; Wang, X. Novel molybdenum carbide–tungsten carbide composite nanowires and their electrochemical activation for efficient and stable hydrogen evolution. Adv. Funct. Mater. 2015, 25, 1520–1526. [Google Scholar] [CrossRef]
- Pang, X.M.; Zhou, F.L.; Li, B.; Jiang, J.X.; Zhou, J.X. Optical thermostability and weatherability of TiN/TiC-Ni/Mo cermet-based spectral selective absorbing coating by laser cladding. Opt. Mater. 2021, 117, 111195. [Google Scholar] [CrossRef]
- Li, M.S.; Li, X.F.; Li, W.H.; Meng, X.B.; Yu, Y.; Sun, X.L. Atomic layer deposition derived amorphous TiO2 thin film decorating graphene nanosheets with superior rate capability. Electrochem. Commun. 2015, 57, 43–47. [Google Scholar] [CrossRef]
- Xiong, B.Y.; Zhao, W.B.; Chen, L.S.; Shi, J.L. One-step synthesis of W2C@N,P-C nanocatalysts for efficient hydrogen electrooxidation across the whole pH range. Adv. Funct. Mater. 2019, 29, 1902505. [Google Scholar] [CrossRef]
- Ke, Z.; Zheng, Y.; Zhang, G.T.; Wu, H.; Xu, X.Y.; Lu, X.P.; Zhu, X.G. Fabrication of dual-grain structure WC-Co cemented carbide by in-situ carbothermal reduction of WO3 and subsequent liquid sintering. Ceram. Int. 2020, 46, 12767–12772. [Google Scholar] [CrossRef]
- Xi, Z.W.; Jia, W.Z.; Zhu, Z.R. WO3–ZrO2–TiO2 Composite oxide supported Pt as an efficient catalyst for continuous hydrogenolysis of glycerol. Catal. Lett. 2021, 151, 124–137. [Google Scholar] [CrossRef]
- YMa, Y.; Wang, C.Y.; Qin, Z.H.; Chen, G.Q.; Xia, L.; Zhong, B. Preparation of cauliflower shaped hp-Co/GNs composite microwave absorbing materials. Mater. Charact. 2022, 189, 111907. [Google Scholar] [CrossRef]
- Wang, C.G.; Zhao, S.S.; Song, X.X.; Wang, N.N.; Peng, H.L.; Su, J.; Zeng, S.Y.; Xu, X.J.; Yang, J. Suppressed Dissolution and Enhanced Desolvation in Core-Shell MoO3@ TiO2 Nanorods as a High-Rate and Long-Life Anode Material for Proton Batteries. Adv. Energy Mater. 2022, 12, 2200157. [Google Scholar] [CrossRef]
- Gou, Q.S.; Xiong, J.; Guo, Z.X.; Liu, J.B.; Yang, L.; Li, X.R. Influence of NbC additions on microstructure and wear resistance of Ti(C, N)-based cermets bonded by CoCrFeNi high-entropy alloy. Int. J. Refract. Met. Hard Mater. 2021, 94, 105375. [Google Scholar] [CrossRef]
- Kang, X.Y.; Lin, N.; He, Y.H.; Zhang, M.M. Influence of ZrC addition on the microstructure, mechanical properties and oxidation resistance of Ti(C, N)-based cermets. Ceram. Int. 2018, 44, 11151–11159. [Google Scholar] [CrossRef]
- Xiong, H.W.; Wu, Y.X.; Li, Z.Y.; Gan, X.P.; Zhou, K.C.; Chai, L.Y. Comparison of Ti(C, N)-based cermets by vacuum and gas-pressure sintering: Microstructure and mechanical properties. Ceram. Int. 2018, 44, 805–813. [Google Scholar] [CrossRef]
- Rafiaei, S.M.; Bahrami, A.; Shokouhimehr, M. Influence of Ni/Co binders and Mo2C on the microstructure evolution and mechanical properties of (Ti0.93W0.07)C–based cermets. Ceram. Int. 2018, 44, 17655–17659. [Google Scholar] [CrossRef]
- Dong, D.Q.; Yang, W.; Xiang, X.; Huang, B.; Xiong, H.W.; Zhang, L.; Shi, K.H. Microstructural evolution and phase transition mechanism of Ti(C, N)-based cermets during vacuum sintering process. Ceram. Int. 2021, 47, 8020–8029. [Google Scholar] [CrossRef]
- Gao, J.J.; Song, J.P.; Lv, M. Microstructure and mechanical properties of TiC0.7N0.3-HfC-WC-Ni-Mo cermet tool materials. Materials 2018, 11, 968. [Google Scholar] [CrossRef]
- Lu, Z.Y.; Du, J.; Sun, Y.J.; Su, G.S.; Zhang, C.Y.; Kong, X.M. Effect of ultrafine WC contents on the microstructures, mechanical properties and wear resistances of regenerated coarse grained WC-10Co cemented carbides. Int. J. Refract. Met. Hard Mater. 2021, 97, 105516. [Google Scholar] [CrossRef]
- Rafiaei, S.M.; Kim, J.H.; Kang, S. Effect of nitrogen and secondary carbide on the microstructure and properties of (Ti0.93W0.07)C–Ni cermets. Int. J. Refract. Met. Hard Mater. 2014, 44, 123–128. [Google Scholar] [CrossRef]
- Huang, J.H.; Huang, S.G.; Zhou, P.; Lauwers, B.; Qian, J.; Vleugels, J. Microstructure and mechanical properties of WC or Mo2C modified NbC-Ni cermets. Int. J. Refract. Met. Hard Mater. 2021, 95, 105440. [Google Scholar] [CrossRef]
- Zhou, H.J.; Huang, M.C.; Yang, H.; Tao, H.L.; Yin, Y.H.; Luo, F.H. Densification kinetics and sintering behaviour of a Ti(C0.7N0.3)-WC-Mo2C–NbC-(Co,Ni) compact. J. Alloys Compd. 2020, 843, 156072. [Google Scholar] [CrossRef]
- Aramian, A.; Sadeghian, Z.; Narimani, M.; Razavi, N.; Berto, F. A review on the microstructure and properties of TiC and Ti(C, N) based cermets. Int. J. Refract. Met. Hard Mater. 2023, 115, 106320. [Google Scholar] [CrossRef]
- Heydari, L.; Lietor, P.F.; Corpas-Iglesias, F.A.; Laguna, O.H. Ti(C, N) and WC-based cermets: A review of synthesis, properties and applications in additive manufacturing. Materials 2021, 14, 6786. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.Q.; Xiong, W.H.; Zhou, S.Q.; Zhang, M.; Huang, B.; Chen, S. Magnetization of TiC–10TiN–xMC–yNi (MC=Mo2C, WC) cermets. Mater. Des. 2017, 115, 255–261. [Google Scholar] [CrossRef]
- Lóh, N.J.; Simão, L.; Faller, C.A.; De Noni, A.; Montedo, O.R.K. A review of two-step sintering for ceramics. Ceram. Int. 2018, 42, 12556–12572. [Google Scholar] [CrossRef]
- Akhtar, K.; Khan, S.A.; Khan, S.B.; Asiri, A.M. Scanning Electron Microscopy: Principle and Applications in Nanomaterials Characterization. In Handbook of Materials Characterization; Sharmam, S.K., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 113–145. [Google Scholar] [CrossRef]
- Shetty, D.K.; Wright, I.G.; Mincer, P.N.; Clauer, A.H. Indentation fracture of WC-Co cermets. J. Mater. Sci. 1985, 20, 1873–1882. [Google Scholar] [CrossRef]
Powder | Ti(C, N) | WC | Co | Mo2C |
---|---|---|---|---|
Particle size (μm) | 0.62 | 0.2 | 0.05 | 3 |
Purity | 99.9% | 99.9% | 99.9% | 99.9% |
Ti(C, N) (wt.%) | WC (wt.%) | Co (wt.%) | Mo2C (wt.%) |
---|---|---|---|
67 | 25 | 8 | 0.0 |
65 | 25 | 8 | 2.0 |
63 | 25 | 8 | 4.0 |
61 | 25 | 8 | 6.0 |
59 | 25 | 8 | 8.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiao, M.; Zhao, Z.; Zhang, G.; Zheng, H. Effects of Mo2C on Microstructures and Comprehensive Properties of Ti(C, N)-Based Cermets Prepared Using Spark Plasma Sintering. Molecules 2025, 30, 492. https://doi.org/10.3390/molecules30030492
Qiao M, Zhao Z, Zhang G, Zheng H. Effects of Mo2C on Microstructures and Comprehensive Properties of Ti(C, N)-Based Cermets Prepared Using Spark Plasma Sintering. Molecules. 2025; 30(3):492. https://doi.org/10.3390/molecules30030492
Chicago/Turabian StyleQiao, Mu, Zhiwei Zhao, Guoguo Zhang, and Hongjuan Zheng. 2025. "Effects of Mo2C on Microstructures and Comprehensive Properties of Ti(C, N)-Based Cermets Prepared Using Spark Plasma Sintering" Molecules 30, no. 3: 492. https://doi.org/10.3390/molecules30030492
APA StyleQiao, M., Zhao, Z., Zhang, G., & Zheng, H. (2025). Effects of Mo2C on Microstructures and Comprehensive Properties of Ti(C, N)-Based Cermets Prepared Using Spark Plasma Sintering. Molecules, 30(3), 492. https://doi.org/10.3390/molecules30030492