Identification of HIV-1 Reverse Transcriptase-Associated Ribonuclease H Inhibitors Based on 2-Hydroxy-1,4-naphthoquinone Mannich Bases
Abstract
:1. Introduction
2. Results
2.1. Lawsone Mannich Bases
2.2. HIV-1 RNase H Inhibition
2.3. HIV-1 RNase H Molecular Docking
2.4. Molecular Dynamics Simulations
2.5. Inhibition of HIV-1 and SARS-CoV-2 Replication
2.6. ADMET Analysis
3. Discussion
4. Materials and Methods
4.1. Chemistry
4.1.1. Synthesis of New Compounds
3-[(Dodecylamino)(6-bromo-2-pyridyl)methyl]-2-hydroxy-1,4-naphthoquinone (1g)—Typical Procedure
3-[(Tetradecylamino)(6-bromo-2-pyridyl)methyl]-2-hydroxy-1,4-naphthoquinone (1h)
3-[(Hexadecylamino)(6-bromo-2-pyridyl)methyl]-2-hydroxy-1,4-naphthoquinone (1i)
3-[(Benzylamino)(6-bromo-2-pyridyl)methyl]-2-hydroxy-1,4-naphthoquinone (1j)
3-[(Tetradecylamino)(2-fluorophenyl)methyl]-2-hydroxy-1,4-naphthoquinone (2b)
3-[(Tetradecylamino)(2-chlorophenyl)methyl]-2-hydroxy-1,4-naphthoquinone (2c)
3-[(Tetradecylamino)(2-hydroxyphenyl)methyl]-2-hydroxy-1,4-naphthoquinone (2e)
3-[(Tetradecylamino)(3,5-dichloro-2-hydroxyphenyl)methyl]-2-hydroxy-1,4-naphthoquinone (2j)
3-[(Benzylamino)(3,5-dichloro-2-hydroxyphenyl)methyl]-2-hydroxy-1,4-naphthoquinone (2l)
3-[(Tetradecylamino)(3,5-dibromo-2-hydroxyphenyl)methyl]-2-hydroxy-1,4-naphthoquinone (2n)
3-[(Benzylamino)(3,5-dibromo-2-hydroxyphenyl)methyl]-2-hydroxy-1,4-naphthoquinone (2p)
4.2. HIV1-RDDP-Independent-RNase H Inhibition
4.3. Molecular Modeling
4.4. Molecular Dynamics Simulations and MM-GBSA Analysis
4.5. Inhibition of HIV-1 Replication
4.5.1. Cells
4.5.2. Virus
4.5.3. CPRG and MTT Assay: On HelaP4 Cells
4.5.4. Fluorescence-Activated Cell Sorting (FACS) Combined with Zombie Aqua
4.6. Inhibition of SARS-CoV-2 Replication
4.7. ADMET Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Borade, A.S.; Kale, B.N.; Shete, R.V. A phytopharmacological review on Lawsonia inermis (Linn.). Int. J. Pharm. Life Sci. 2011, 2, 536–541. [Google Scholar]
- Nair, A.S.; Sekar, M.; Gan, S.H.; Kumarasamy, V.; Subramaniyan, V.; Wu, Y.S.; Rani, N.N.I.M.; Wong, L.S. Lawsone unleashed: A comprehensive review on chemistry, biosynthesis, and therapeutic potentials. Drug Des. Devel. Ther. 2024, 18, 3295–3313. [Google Scholar] [CrossRef] [PubMed]
- Inagaki, R.; Ninomiya, M.; Tanaka, K.; Koketsu, M. Synthesis, characterization, and antileukemic properties of naphthoquinone derivatives of lawsone. ChemMedChem 2015, 10, 1413–1423. [Google Scholar] [CrossRef] [PubMed]
- Freire, C.P.V.; Ferreira, S.B.; de Oliveira, N.S.M.; Matsuura, A.B.J.; Gama, I.L.; da Silva, F.C.; de Souza, M.C.B.V.; Lima, E.S.; Ferreira, V.F. Synthesis and biological evaluation of substituted α- and β-2,3-dihydrofuran naphthoquinones as potent anticandidal agents. Med. Chem. Commun. 2010, 1, 229–232. [Google Scholar] [CrossRef]
- da Silva, G.B.; Neves, A.P.; Vargas, M.D.; Marinho-Filho, J.D.B.; Costa-Lotufo, L.V. New insights into 3-(aminomethyl)naphthoquinones: Evaluation of cytotoxicity, electrochemical behavior and search for structure-activity correlation. Bioorg. Med. Chem. Lett. 2016, 26, 3537–3542. [Google Scholar] [CrossRef] [PubMed]
- Paengsri, W.; Baramee, A. Synthesis and evaluation of anti-tuberculosis and anticancer activities of hydroxynaphthoquinone derivatives. Chiang Mai J. Sci. 2013, 40, 70–76. [Google Scholar]
- Pinto, A.V.; Pinto, C.N.; Pinto, M.C.R.F.; Rita, R.S.; Pezzella, C.A.; de Castro, S.L. Trypanocidal activity of synthetic heterocyclic derivatives of active quinones from Tabebuia sp. Arzneimittelforschung 1997, 47, 74–79. [Google Scholar] [PubMed]
- Baramee, A.; Coppin, A.; Mortuaire, M.; Pelinski, L.; Tomavo, S.; Brocard, J. Synthesis and in vitro activities of ferrocenic aminohydroxynaphthoquinones against Toxoplasma gondii and Plasmodium falciparum. Bioorg. Med. Chem. 2006, 14, 1294–1302. [Google Scholar] [CrossRef] [PubMed]
- Silva, R.S.F.; Costa, E.M.; Trindade, Ú.L.T.; Teixeira, D.V.; Pinto, M.C.F.R.; Santos, G.L.; Malta, V.R.S.; de Simone, C.A.; Pinto, A.V.; de Castro, S.L. Synthesis of naphthofuranquinones with activity against Trypanosoma cruzi. Eur. J. Med. Chem. 2006, 41, 526–530. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Santos, I.O.; Gaur, P.; Ferreira, V.F.; Garcia, C.R.S.; da Rocha, D.R. Addition of thiols to o-quinone methide: New 2-hydroxy-3-phenyl-phenylsulfanylmethyl[1,4]naphthoquinones an their activity against the human malaria parasite Plasmodium falciparum (3D7). Eur. J. Med. Chem. 2013, 59, 48–53. [Google Scholar] [CrossRef]
- Bolognesi, M.L.; Lizzi, F.; Perozzo, R.; Brun, R.; Cavalli, A. Synthesis of a small library of 2-phenoxy-1,4-naphthoquinone and 2-phenoxy-1,4-anthraquinone derivatives bearing anti-trypanosomal and anti-leishmanial activity. Bioorg. Med. Chem. Lett. 2008, 18, 2272–2276. [Google Scholar] [CrossRef] [PubMed]
- Neves, A.P.; da Silva, G.B.; Vargas, M.D.; Pinheiro, C.B.; Visentin, L.C.; Filho, J.D.B.M.; Araújo, A.J.; Costa-Lotufo, L.V.; Pessoa, C.; de Moraes, M.O. Novel platinum complexes of 3-(aminomethyl)naphthoquinone Mannich base: Synthesis, crystal structure and cytotoxic activities. Dalton Trans. 2010, 39, 10203–10216. [Google Scholar] [CrossRef] [PubMed]
- Mahal, K.; Ahmad, A.; Schmitt, F.; Lockhauserbäumer, J.; Starz, K.; Pradhan, R.; Padhye, S.; Sarkar, F.H.; Koko, W.S.; Schobert, R.; et al. Improved anticancer and antiparasitic activity of new lawsone Mannich bases. Eur. J. Med. Chem. 2017, 126, 421–431. [Google Scholar] [CrossRef] [PubMed]
- Al Nasr, I.; Jentzsch, J.; Winter, I.; Schobert, R.; Ersfeld, K.; Koko, W.S.; Mujawah, A.A.H.; Khan, T.A.; Biersack, B. Antiparasitic activities of new lawsone Mannich bases. Arch. Pharm. Chem. Life Sci. 2019, 352, 1900128. [Google Scholar] [CrossRef]
- Pinto, A.M.V.; Leite, J.P.G.; Neves, A.P.; da Silva, G.B.; Vargas, M.D.; Paixao, I.C.N.P. Synthetic aminomethylnaphthoquinones inhibit the in vitro replication of bovine herpesvirus 5. Arch. Virol. 2014, 159, 1827–1833. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Tovar, G.; Vega-Rodríguez, S.; Leyva, E.; Loredo-Carillo, S.; de Loera, D.; López-López, L.I. The relevance and insights on 1,4-naphthoquinones as antimicrobial and antitumoral molecules: A systematic review. Pharmaceuticals 2023, 16, 496. [Google Scholar] [CrossRef]
- Cohen, J. Combo of two HIV vaccines fails its big tests. Science 2020, 367, 611–612. [Google Scholar] [CrossRef]
- Henderson, L.J.; Reoma, L.B.; Kovacs, J.A.; Nath, A. Advances toward curing HIV-1 infection in tissue reservoirs. J. Virol. 2018, 94, e00375-19. [Google Scholar] [CrossRef] [PubMed]
- Menéndez-Arias, L. Molecular basis of human immunodeficiency virus type 1 drug resistance: Overview and recent developments. Antivir. Res. 2013, 98, 93–120. [Google Scholar] [CrossRef] [PubMed]
- Stella-Ascariz, N.; Arribas, J.R.; Paredes, R.; Li, J.Z. The role of HIV-1 drug-resistant minority variants in treatment failure. J. Infect. Dis. 2017, 216, S847–S850. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.K.; Gregson, J.; Parkin, N.; Haile-Selassie, H.; Tanuri, A.; Andrade Forero, L.; Kaleebu, P.; Watera, C.; Aghokeng, A.; Mutenda, N.; et al. HIV-1 drug resistance before initiation or re-initiation of first-line antiretroviral therapy in low-income and middle-income countries: A systematic review and meta-regression analysis. Lancet Infect. Dis. 2017, 18, 346–355. [Google Scholar] [CrossRef] [PubMed]
- Alvar, J.; Aparicio, P.; Aseffa, A.; Den Boer, M.; Canavate, C.; Dedet, J.-P.; Gradoni, L.; Ter Horst, R.; López-Vélez, R.; Moreno, J. The relationship between leishmaniasis and AIDS: The second 10 years. Clin. Microbiol. Rev. 2008, 21, 334–359. [Google Scholar] [CrossRef]
- Singh, K.P.; Crane, M.; Audsley, J.; Avihingsanon, A.; Sasadeusz, J.; Lewin, S.R. HIV-hepatitis B virus coinfection: Epidemiology, pathogenesis, and treatment. AIDS 2017, 31, 2035–2052. [Google Scholar] [CrossRef] [PubMed]
- Umumararungu, T.; Nyandwi, J.B.; Katandula, J.; Twizeyimana, E.; Tomani, J.C.; Gahamanyi, N.; Ishimwe, N.; Olawode, E.O.; Habarurema, G.; Mpenda, M.; et al. Current status of the small molecule anti-HIV drugs in the pipeline or recently approved. Bioorg. Med. Chem. 2024, 111, 117860. [Google Scholar] [CrossRef]
- Le Grice, S.F. Human immunodeficiency virus reverse transcriptase: 25 years of research, drug discovery, and promise. J. Biol. Chem. 2012, 287, 40850–40857. [Google Scholar] [CrossRef] [PubMed]
- Nowotny, M.; Yang, W. Stepwise analyses of metal ions in RNase H catalysis from substrate destabilization to product release. EMBO J. 2006, 25, 1924–1933. [Google Scholar] [CrossRef]
- Tramontano, E.; Corona, A.; Menéndez-Arias, L. Ribonuclease H, an unexploited target for antiviral intervention against HIV and hepatitis B virus. Antiviral Res. 2019, 171, 104613. [Google Scholar] [CrossRef]
- Schneider, A.; Corona, A.; Spöring, I.; Jordan, M.; Buchholz, B.; Maccioni, E.; di Santo, R.; Bodem, J.; Tramontano, E.; Wöhrl, B.M. Biochemical characterization of a multi-drug resistant HIV-1 subtype AG reverse transcriptase: Antagonism of AZT discrimination and excision pathways and sensitivity to RNase H inhibitors. Nucleic Acids Res. 2016, 44, 2310–2322. [Google Scholar] [CrossRef] [PubMed]
- Corona, A.; Ballana, E.; Distinto, S.; Rogolino, D.; Del Vecchio, C.; Carcelli, M.; Badia, R.; Riveira-Munoz, E.; Esposito, F.; Parolin, C.; et al. Targeting HIV-1 RNase H: N′-(2-hydroxy-benzylidene)-3,4,5-trihydroxybenzoylhydrazone as selective inhibitor active against NNRTIs-resistant variants. Viruses 2020, 12, 729. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Alcantara, J.; Bhardwaj, K.; Pananinathan, S.; Frieman, M.; Baric, R.S.; Kao, C.C. Small molecule inhibitors of the SARS-CoV Nsp15 endoribonuclease. Virus Adapt. Treat. 2010, 2, 125–133. [Google Scholar]
- Canal, B.; McClure, A.W.; Curran, J.F.; Wu, M.; Ulferts, R.; Weissmann, F.; Zeng, J.; Bertolin, A.P.; Milligan, J.C.; Basu, S.; et al. Identifying SARS-CoV-2 antiviral compounds by screening for small molecule inhibitors of nsp14/nsp10 exoribonuclease. Biochem. J. 2021, 478, 2445–2464. [Google Scholar] [CrossRef] [PubMed]
- Corona, A.; Di Leva, F.S.; Thierry, S.; Pescatori, L.; Cuzzucoli Crucitti, G.; Subra, F.; Delelis, O.; Esposito, F.; Rigogliuso, G.; Costi, R.; et al. Identification of highly conserved residues involved in inhibition of HIV-1 RNase H function by diketo acid derivatives. Antimicrob. Agents Chemother. 2014, 58, 6101–6110. [Google Scholar] [CrossRef]
- Min, B.-S.; Miyashiro, H.; Hattori, M. Inhibitory effects of quinones on RNase H activity associated with HIV-1 reverse transcriptase. Phytother. Res. 2002, 16, S57–S62. [Google Scholar] [CrossRef] [PubMed]
- Asthana, A.; Corona, A.; Shin, W.-J.; Kwak, M.-J.; Gaughan, C.; Tramontano, E.; Jung, J.U.; Schobert, R.; Jha, B.K.; Silverman, R.H.; et al. Analogs of the catechol derivative dynasore inhibit HIV-1 ribonuclease H, SARS-CoV-2 nsp14 exoribonuclease, and virus replication. Viruses 2023, 15, 1539. [Google Scholar] [CrossRef]
- Pires de Mello, C.P.; Sardoux, N.S.; Terra, L.; Amorim, L.C.; Vargas, M.D.; da Silva, G.B.; Castro, H.C.; Giongo, V.A.; Madeira, L.F.; Paixão, I.C. Aminomethylnaphthoquinones and hsv-1: In vitro and in silico evaluations of potential antivirals. Antivir. Ther. 2016, 21, 507–515. [Google Scholar] [CrossRef] [PubMed]
- Anastas, P.; Eghbali, N. Green chemistry: Principles and practice. Chem. Soc. Rev. 2010, 39, 301–312. [Google Scholar] [CrossRef] [PubMed]
- Giongo, V.; Falanga, A.; Pires de Melo, C.P.; da Silva, G.B.; Bellavita, R.; De-Simone, S.G.; Paixão, I.C.; Galdiero, S. Antiviral potential of naphthoquinones derivatives encapsulated within liposomes. Molecules 2021, 26, 6440. [Google Scholar] [CrossRef] [PubMed]
- Sonar, V.P.; Corona, A.; Distinto, S.; Maccioni, E.; Floris, C.; Alcaro, S.; Meleddu, R.; Tramontano, E.; Cottiglia, F.; Fois, B.; et al. Natural product-inspired esters and amides of ferulic and caffeic acid as dual inhibitors of HIV-1 reverse transcriptase. Eur. J. Med. Chem. 2017, 130, 248–260. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wei, F.; Borrego, D.; Zhao, F.; del Río, J.M.; Frutos-Beltrán, E.; Zhang, J.; Xu, S.; López-Carrobles, N.; Gao, S.; et al. Design, synthesis, and biological evaluation of novel double-winged galloyl derivatives as HIV-1 RNase H inhibitors. Eur. J. Med. Chem. 2022, 240, 114563. [Google Scholar] [CrossRef]
- Tang, J.; Do, H.T.; Huber, A.D.; Casey, M.C.; Kirby, K.A.; Wilson, D.J.; Kankanala, J.; Parniak, M.A.; Sarafianos, S.G.; Wang, Z. Pharmacophore-based design of novel 3-hydroxypyrimidine-2,4-dione subtypes as inhibitors of HIV reverse transcriptase-associated RNase H: Tolerance of a nonflexible linker. Eur. J. Med. Chem. 2019, 166, 390–399. [Google Scholar] [CrossRef]
- Ito, Y.; Lu, H.; Kitajima, M.; Ishikawa, H.; Nakata, Y.; Iwatani, Y.; Hoshino, T. Sticklac-derived natural compounds inhibiting RNase H activity of HIV-1 reverse transcriptase. J. Nat. Prod. 2023, 86, 2487–2495. [Google Scholar] [CrossRef]
- Singh, S.; Weiss, A.; Goodman, J.; Fisk, M.; Kulkarni, S.; Lu, I.; Gray, J.; Smith, R.; Sommer, M.; Cheriyan, J. Niclosamide—A promising treatment for COVID-19. Br. J. Pharmacol. 2022, 179, 3250–3267. [Google Scholar] [CrossRef] [PubMed]
- Niyomdecha, N.; Suptawiwat, O.; Boonarkart, C.; Jitobaom, K.; Auewarakul, P. Inhibition of human immunodeficiency virus type 1 by niclosamide through mTORC1 inhibition. Heliyon 2020, 6, e04050. [Google Scholar] [CrossRef] [PubMed]
- Krátký, M.; Dzurková, M.; Janoušek, J.; Konečná, K.; Trejtnar, F.; Stolaříkova, J.; Vinšova, J. Sulfadiazine salicylaldehyde-based Schiff bases: Synthesis, antimicrobial activity and cytotoxicity. Molecules 2017, 22, 1573. [Google Scholar] [CrossRef] [PubMed]
- Richetta, C.; Subra, F.; Malet, I.; Leh, H.; Charpentier, C.; Corona, A.; Collin, G.; Descamps, D.; Deprez, E.; Parissi, V.; et al. Mutations in the 3′-PPT lead to HIV-1 replication without integration. J. Virol. 2022, 96, e0067622. [Google Scholar] [CrossRef]
- Das, A.T.; Berkhout, B. How polypurine tract changes in the HIV-1 RNA genome can cause resistance against the integrase inhibitor dolutegravir. mBio 2018, 9, e00006–e00018. [Google Scholar] [CrossRef] [PubMed]
- Ngcapu, S.; Theys, K.; Libin, P.; Marconi, V.C.; Sunpath, H.; Ndung’u, T.; Gordon, M.L. Characterization of nucleoside reverse transcriptase inhibitor-associated mutations in the RNase H region of HIV-1 subtype C infected individuals. Viruses 2017, 9, 330. [Google Scholar] [CrossRef]
- Schrödinger, L. Schrödinger Release 2024-2: Desmond Molecular Dynamics System; D. E. Shaw Research; Maestro-Desmond Interoperability Tools; Schrödinger: New York, NY, USA, 2024. [Google Scholar]
- Reliability and reproducibility checklist for molecular dynamics simulations. Commun. Biol. 2023, 6, 268.
- Shivakumar, D.; Williams, J.; Wu, Y.; Damm, W.; Shelley, J.; Sherman, W. Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. J. Chem. Theory Comput. 2010, 6, 1509–1519. [Google Scholar] [CrossRef] [PubMed]
- González, M.A. Force fields and molecular dynamics simulations. Collect. SFN 2011, 12, 169–200. [Google Scholar] [CrossRef]
- Rogge, S.M.J.; Vanduyfhuys, L.; Ghysels, A.; Waroquier, M.; Verstraelen, T.; Maurin, G.; Van Speybroeck, V. A comparison of barostats for the mechanical characterization of metal–organic frameworks. J. Chem. Theory Comput. 2015, 11, 5583–5597. [Google Scholar] [CrossRef] [PubMed]
- Martyna, G.J.; Klein, M.L.; Tuckerman, M. Nosé–Hoover chains: The canonical ensemble via continuous dynamics. J. Chem. Phys. 1992, 97, 2635–2643. [Google Scholar] [CrossRef]
- Tuckerman, M.; Berne, B.J.; Martyna, G.J. Reversible multiple time scale molecular dynamics. J. Chem. Phys. 1992, 97, 1990–2001. [Google Scholar] [CrossRef]
- Omelyan, I.; Kovalenko, A. MTS-MD of biomolecules steered with 3D-RISM-KH mean solvation forces accelerated with generalized solvation force extrapolation. J. Chem. Theory Comput. 2015, 11, 1875–1895. [Google Scholar] [CrossRef] [PubMed]
- Munir, S.; Thierry, S.; Subra, F.; Deprez, E.; Delelis, O. Quantitative analysis of the time-course of viral DNA forms during the HIV-1 life cycle. Retrovirology 2013, 10, 87. [Google Scholar] [CrossRef]
- Stefanelli, I.; Corona, A.; Cerchia, C.; Cassese, E.; Improta, S.; Costanzi, E.; Pelliccia, S.; Morasso, S.; Esposito, F.; Paulis, A.; et al. Broad-spectrum coronavirus 3C-like protease peptidomimetic inhibitors effectively block SARS-CoV-2 replication in cells: Design, synthesis, biological evaluation, and X-ray structure determination. Eur. J. Med. Chem. 2023, 253, 115311. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [PubMed]
Compound | HIV-1 RT RNase H | Compound | HIV-1 RT RNase H |
---|---|---|---|
RDS1759 | 8.7 ± 3.1 | 2a | 21.5 ± 0.9 |
13 | 5.8 ± 1.3 | 2b | 15.0 ± 5.1 |
Lawsone 2 | >100 | 2c | 7.3 ± 4.7 |
1a | 31.2 ± 6.5 | 2d | 17.6 ± 3.8 |
1b | 4.4 ± 1.1 | 2e | 8.5 ± 1.6 |
1c | 4.0 ± 0.01 | 2f | 7.0 ± 0.9 |
1d | 10.7 ± 4.1 | 2g | >100 |
1e | 3.1 ± 1.9 | 2h | 20.8 ± 0.2 |
1f | 17.4 ± 4.1 | 2i | 4.7 ± 1.6 |
1g | >100 | 2j | 43.7 ± 3.5 |
1h | >100 | 2k | 2.8 ± 1.4 |
1i | 78.6 ± 11.5 | 2l | 12.7 ± 3.4 |
1j | >100 | 2m | 7.1 ± 1.1 |
- | - | 2n | 105.3 ± 10.6 |
- | - | 2o | 32.5 ± 10.5 |
- | - | 2p | 19.6 ± 3.4 |
Compound | EC50 | CC50 | SI 2 |
---|---|---|---|
GC-376 | 0.84 ± 0.08 | >100 | >119 |
1e | 11.2 ± 2.1 | 35.3 ± 1.3 | 3.15 |
2k | >41.2 | 41.2 ± 1.3 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tu, N.Q.; Richetta, C.; Putzu, F.; Delelis, O.; Ahmed, K.; Masand, V.H.; Schobert, R.; Tramontano, E.; Corona, A.; Biersack, B. Identification of HIV-1 Reverse Transcriptase-Associated Ribonuclease H Inhibitors Based on 2-Hydroxy-1,4-naphthoquinone Mannich Bases. Molecules 2025, 30, 495. https://doi.org/10.3390/molecules30030495
Tu NQ, Richetta C, Putzu F, Delelis O, Ahmed K, Masand VH, Schobert R, Tramontano E, Corona A, Biersack B. Identification of HIV-1 Reverse Transcriptase-Associated Ribonuclease H Inhibitors Based on 2-Hydroxy-1,4-naphthoquinone Mannich Bases. Molecules. 2025; 30(3):495. https://doi.org/10.3390/molecules30030495
Chicago/Turabian StyleTu, Nhat Quang, Clémence Richetta, Federica Putzu, Olivier Delelis, Khursheed Ahmed, Vijay H. Masand, Rainer Schobert, Enzo Tramontano, Angela Corona, and Bernhard Biersack. 2025. "Identification of HIV-1 Reverse Transcriptase-Associated Ribonuclease H Inhibitors Based on 2-Hydroxy-1,4-naphthoquinone Mannich Bases" Molecules 30, no. 3: 495. https://doi.org/10.3390/molecules30030495
APA StyleTu, N. Q., Richetta, C., Putzu, F., Delelis, O., Ahmed, K., Masand, V. H., Schobert, R., Tramontano, E., Corona, A., & Biersack, B. (2025). Identification of HIV-1 Reverse Transcriptase-Associated Ribonuclease H Inhibitors Based on 2-Hydroxy-1,4-naphthoquinone Mannich Bases. Molecules, 30(3), 495. https://doi.org/10.3390/molecules30030495