Thermal Characterisation and Toxicity Profile of Potential Drugs from a Class of Disubstituted Heterofused Triazinones
Abstract
:1. Introduction
2. Results and Discussion
2.1. TG/DSC Analysis of Disubstituted Heterofused Triazinones (1–12) in Air
2.2. TG/FTIR Analysis of Disubstituted Heterofused Triazinones (1–12) in Nitrogen
2.3. The Toxicity Profile of the Selected Compounds (1, 2, 6, 8, 9, 11, and 12) to the Developing Zebrafish
2.4. The Effect of the Investigated Compounds (1–12) on Red Blood Cells
3. Materials and Methods
3.1. Disubstituted Heterofused Triazinones (1–12)
3.2. Thermal Analysis Methods
3.3. Toxicity Studies on a Zebrafish Model
3.4. Investigation of the Effect of Compounds 1–12 on Erythrocytes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sztanke, K.; Tkaczyński, T. Synthesis of new derivatives of 3-benzyl-8-aryl-7,8-dihydro-6H-imidazo[2,1-c][1,2,4]triazin-4-one. Acta Pol. Pharm. Drug Res. 1997, 54, 71–74. [Google Scholar]
- Hordyjewska, A.; Sztanke, K.; Radej, S.; Rzymowska, J.; Pasternak, K.; Roliński, J. Antiproliferative activity of new synthesized derivatives of imidazotriazinone in breast cancer cell line (T47D). In Pierwiastki, Środowisko i Życie Człowieka; Pasternak, K., Ed.; Polskie Towarzystwo Magnezologiczne: Lublin, Poland, 2009; pp. 75–79. [Google Scholar]
- Janicka, M.; Sztanke, M.; Sztanke, K. Reversed-phase liquid chromatography with octadecylsilyl, immobilized artificial membrane and cholesterol columns in correlation studies with in silico biological descriptors of newly synthesized antiproliferative and analgesic active compounds. J. Chromatogr. A 2013, 1318, 92–101. [Google Scholar] [CrossRef]
- Janicka, M.; Sztanke, M.; Sztanke, K. Modeling the Blood-Brain Barrier Permeability of Potential Heterocyclic Drugs via Biomimetic IAM Chromatography Technique Combined with QSAR Methodology. Molecules 2024, 29, 287. [Google Scholar] [CrossRef] [PubMed]
- Sztanke, M.; Sztanke, K.; Ostasz, A.; Głuchowska, H.; Łyszczek, R. Thermal Investigations of Annelated Triazinones—Potential Analgesic and Anticancer Agents. Molecules 2023, 28, 6542. [Google Scholar] [CrossRef] [PubMed]
- Schulze, M.C.; Scott, B.L.; Chavez, D.E. A high density pyrazolo-triazine explosive (PTX). J. Mater. Chem. A 2015, 3, 17963–17965. [Google Scholar] [CrossRef]
- Shi, H.; Wang, Y.; Wang, X.; Zhang, X.; Huang, M.; Yang, H.; Luo, Z. Concise synthesis of a fused energetic pyrazolotriazine with good performance. N. J. Chem. 2024, 48, 1212–1216. [Google Scholar] [CrossRef]
- Hu, Y.; Lu, Z.-J.; Dong, W.-S.; Zhang, J.-G.; Sinditskii, V.P. Detonation performance enhancement through a positional isomerism modification strategy. N. J. Chem. 2022, 46, 13874–13879. [Google Scholar] [CrossRef]
- Yang, P.; Yang, H.; Yang, W.; Tang, J.; Zhang, G.; Hu, W.; Cheng, G. Studies on the Synthesis and Properties of High-Energy Low-Sensitivity Compounds Based on 3-Amino-1,2,4-triazole. Cryst. Growth Des. 2022, 22, 4221–4227. [Google Scholar] [CrossRef]
- Li, C.; Lei, C.; Tang, J.; Zhu, T.; Cheng, G.; Yang, H. C–C bonded bis-5,6 fused triazole–triazine compound: An advanced heat-resistant explosive with high energy and low sensitivity. Dalton Trans. 2022, 51, 15292–15299. [Google Scholar] [CrossRef]
- Li, J.; Zhang, X.; Wang, Y.; Su, D.; Pang, S.; He, C. Towards improved comprehensive energetic properties by skeleton modification. N. J. Chem. 2024, 48, 1067–1070. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, S.; Li, S.; Lu, J.; Zhang, J.; Pang, S. Searching for long intra-annular nitrogen chains: Synthesis, characterization, and decomposition mechanism of tetrazolo[1,5-b][1,2,4]triazines. Mater. Des. 2016, 90, 1050–1058. [Google Scholar] [CrossRef]
- Shamsipur, M.; Pourmortazavi, S.M.; Beigi, A.A.M.; Heydari, R.; Khatibi, M. Thermal stability and decomposition kinetic studies of acyclovir and zidovudine drug compounds. AAPS PharmSciTech 2013, 14, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, M.I.; Gomes, E.C.; Soares, C.D.; Oliveira, M.A. Thermal behavior study and decomposition kinetics of amiodarone hydrochloride under isothermal conditions. Drug Dev. Ind. Pharm. 2011, 37, 638–647. [Google Scholar] [CrossRef]
- Giron, D. Applications of thermal analysis and coupled techniques in pharmaceutical industry. J. Therm. Anal. Calorim. 2002, 68, 335–357. [Google Scholar] [CrossRef]
- Hsieh, W.H.; Cheng, W.T.; Chen, L.C.; Lin, S.Y. Non-isothermal dehydration kinetic study of aspartame hemihydrate using DSC, TGA and DSC-FTIR microspectroscopy. Asian J. Pharm. Sci. 2018, 13, 212–219. [Google Scholar] [CrossRef]
- Sangeetha Margreat, S.; Ramalingam, S.; Sebastian, S.; Xavier, S.; Periandy, S.; Daniel, J.C.; Maria Julie, M. DFT, spectroscopic, DSC/TGA, electronic, biological and molecular docking investigation of 2,5-thiophenedicarboxylic acid: A promising anticancer agent. J. Mol. Struct. 2020, 1200, 127099. [Google Scholar] [CrossRef]
- Alamro, F.S.; Tolan, D.A.; El-Nahas, A.M.; Ahmed, H.A.; El-Atawy, M.A.; Al-Kadhi, N.S.; Aziz, S.G.; Shibl, M.F. Wide nematogenic azomethine/ester liquid crystals based on new biphenyl derivatives: Mesomorphic and computational studies. Molecules 2022, 27, 4150. [Google Scholar] [CrossRef] [PubMed]
- Fragnito, A.; Bianco, N.; Iasiello, M.; Mauro, G.M.; Mongibello, L. Experimental and numerical analysis of a phase change material-based shell-and-tube heat exchanger for cold thermal energy storage. J. Energy Storage 2022, 56, 105975. [Google Scholar] [CrossRef]
- Bianco, N.; Fragnito, A.; Iasiello, M.; Mauro, G.M.; Mongibello, L. Multi-objective optimization of a phase change material-based shell-and-tube heat exchanger for cold thermal energy storage: Experiments and numerical modeling. Appl. Therm. Eng. 2022, 215, 119047. [Google Scholar] [CrossRef]
- Materazzi, S. Thermogravimetry–Infrared Spectroscopy (TG-FTIR) Coupled Analysis. Appl. Spectrosc. Rev. 1997, 32, 385–404. [Google Scholar] [CrossRef]
- Guo, Y. Impact of solid-state characteristics to the physical stability of drug substance and drug product. In Handbook of Stability testing in Pharmaceutical Development; Huynh-Ba, K., Ed.; Springer: New York, NY, USA, 2009. [Google Scholar]
- Chadha, R.; Kashid, N.; Jain, D.V.S. Characterization and quantification of amorphous content in some selected parenteral cephalosporins by calorimetric method. J. Therm. Anal. Calorim. 2005, 81, 277–284. [Google Scholar] [CrossRef]
- Long, S.; Zhou, P.; Parkin, S.; Li, T. Polymorphism and solid-to-solid phase transitions of a simple organic molecule, 3-chloroisonicotinic acid. CrystEngComm 2015, 17, 2389–2397. [Google Scholar] [CrossRef]
- Chadha, R.; Arora, P.; Saini, A.; Singh Jain, D. An insight into thermodynamic relationship between polymorphic forms of efavirenz. J. Pharm. Pharm. Sci. 2012, 15, 234–251. [Google Scholar] [CrossRef]
- Yoshioka, S.; Stella, V.J. Stability of Drugs and Dosage Forms; Kluwer Academic Publisher: New York, NY, USA; Boston, MA, USA; Dordrecht, The Netherlands; London, UK; Moscow, Russia, 2002. [Google Scholar]
- Sztanke, M.; Rzymowska, J.; Sztanke, K. Anti-Tumor Active Isopropylated Fused Azaisocytosine-Containing Congeners Are Safe for Developing Danio rerio as well as Red Blood Cells and Activate Apoptotic Caspases in Human Breast Carcinoma Cells. Molecules 2022, 27, 1211. [Google Scholar] [CrossRef]
- Schulz, A.; Surkau, J. Main group cyanides: From hydrogen cyanide to cyanido-complexes. Rev. Inorg. Chem. 2023, 43, 49–188. [Google Scholar] [CrossRef]
- Mellau, G.C.; Winnewisser, B.P.; Winnewisser, M. Near infrared emission spectrum of HCN. J. Mol. Spectrosc. 2008, 249, 23–42. [Google Scholar] [CrossRef]
- Krupa, J.; Wierzejewska, M.; Lundell, J. Experimental FTIR-MI and Theoretical Studies of Isocyanic Acid Aggregates. Molecules 2023, 28, 1430. [Google Scholar] [CrossRef] [PubMed]
- Wilmshurst, J.K.; Bernstein, J.H. The infrared and Raman spectra of toluene, toluene-α-d3, m-xylene, and m-xylene-αα’-d6. Can. J. Chem. 1957, 35, 911. [Google Scholar] [CrossRef]
- Mukherjee, M.; Bandyopadhyay, B.; Biswas, P.; Chakraborty, T. Amine inversion effects on the IR spectra of aniline in the gas phase and cold inert gas matrixes. Indian J. Phys. 2012, 86, 201. [Google Scholar] [CrossRef]
- Sieghard, A.; Keppler, K.; Lerch, P.; Quack, M.; Wokaun, A. Synchrotron-based highest resolution FTIR spectroscopy of chlorobenzene. J. Mol. Struc. 2015, 315, 92. [Google Scholar]
- Silverstein, R.M.; Webster, F.X. Spectrometric Identification of Organic Compounds, 6th ed.; Wiley: New York, NY, USA, 1996. [Google Scholar]
- Lindenmaier, R.; Scharko, N.K.; Tonkyn, R.G.; Nguyen, K.T.; Williams, S.D.; Johnson, T.J. Improved assignments of the vibrational fundamental modes of ortho-, meta-, and para-xylene using gas- and liquid-phase infrared and Raman spectra combined with ab initio calculations: Quantitative gas phase infrared spectra for detection. J. Mol. Struct. 2017, 1149, 332–351. [Google Scholar] [CrossRef]
- Mrozek, R.; Rzączyńska, Z.; Sikorska-Iwan, M. Thermal Analysis of Manganese(II) Complexes With Glycine. J. Therm. Anal. Calorim. 2001, 63, 83. [Google Scholar] [CrossRef]
- Tian, L.; Xia, J.; Kolomenskii, A.A.; Schuessler, H.A.; Zhu, F.; Li, Y.; He, J.; Dong, Q.; Zhang, S. Gas phase multicomponent detection and analysis combining broadband dual-frequency comb absorption spectroscopy and deep learning. Commun. Eng. 2023, 2, 54. [Google Scholar] [CrossRef]
- OECD. OECD Guidelines for the Testing of Chemicals, Test No. 236: Fish Embryo Acute Toxicity (FET) Test; OECD: Paris, France, 2013. [Google Scholar]
- Bauer, B.; Mally, A.; Liedtke, D. Zebrafish Embryos and Larvae as Alternative Animal Models for Toxicity Testing. Int. J. Mol. Sci. 2021, 22, 13417. [Google Scholar] [CrossRef] [PubMed]
- Miyawaki, I. Application of zebrafish to safety evaluation in drug discovery. Toxicol. Pathol. 2020, 33, 197–210. [Google Scholar] [CrossRef]
- Bambino, K.; Chu, J. Zebrafish in toxicology and environmental health. Curr. Top. Dev. Biol. 2017, 124, 331–367. [Google Scholar] [PubMed]
- Modarresi Chahardehi, A.; Arsad, H.; Lim, V. Zebrafish as a Successful Animal Model for Screening Toxicity of Medicinal Plants. Plants 2020, 9, 1345. [Google Scholar] [CrossRef]
- Rosa, J.G.S.; Lima, C.; Lopes-Ferreira, M. Zebrafish Larvae Behavior Models as a Tool for Drug Screenings and Pre-Clinical Trials: A Review. Int. J. Mol. Sci. 2022, 23, 6647. [Google Scholar] [CrossRef]
- Lee, H.-C.; Lin, C.-Y.; Tsai, H.-J. Zebrafish, an In Vivo Platform to Screen Drugs and Proteins for Biomedical Use. Pharmaceuticals 2021, 14, 500. [Google Scholar] [CrossRef]
- Finney, D.J. Probit analysis. J. Inst. Actuar. 1952, 78, 388–390. [Google Scholar]
- Pagano, M.; Faggio, C. The use of erythrocyte fragility to assess xenobiotic cytotoxicity. Cell Biochem. Funct. 2015, 33, 351–355. [Google Scholar] [CrossRef] [PubMed]
- Sæbø, I.P.; Bjørås, M.; Franzyk, H.; Helgesen, E.; Booth, J.A. Optimization of the hemolysis assay for the assessment of cytotoxicity. Int. J. Mol. Sci. 2023, 24, 2914. [Google Scholar] [CrossRef] [PubMed]
- Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes. Off. J. Eur. Union 2010, L276, 33–79.
Compound | R1 | R2 | Melting Process | ||
---|---|---|---|---|---|
Tonset [°C] | Tpeak [°C] | ΔHm [kJ·mol−1] | |||
1 | H | H | 216 | 219 | 33.19 |
2 | H | 2-Cl | 238 | 242 | 41.52 |
3 | H | 4-Cl | 261 | 264 | 51.62 |
4 | 4-CH3 | H | 220 | 227 | 21.08 |
5 | 4-CH3 | 3-CH3 | 205 | 209 | 34.60 |
6 | 4-CH3 | 2-Cl | 236 | 240 | 32.11 |
7 | 4-CH3 | 4-Cl | 250 | 254 | 46.48 |
8 | 4-OCH2CH3 | H | 182 | 187 | 33.69 |
9 | 4-OCH2CH3 | 2-Cl | 208 | 211 | 52.82 |
10 | 4-OCH2CH3 | 3-Cl | 158 | 162 | 28.11 |
11 | 4-OCH2CH3 | 4-Cl | 219 | 221 | 35.79 |
12 | 2-CH3 | 2-Cl | 159 | 164 | 34.03 |
Compound | R1 | R2 | Decomposition Process | ||
---|---|---|---|---|---|
Step 1 | Step 2 | ||||
ΔT1 [°C] | Δm1 [%] | ΔT2 [°C] | |||
1 | H | H | 264–468 | 54.54 | 468–690 |
2 | H | 2-Cl | 275–472 | 53.68 | 472–669 |
3 | H | 4-Cl | 276–453 | 45.93 | 453–661 |
4 | 4-CH3 | H | 255–489 | 50.22 | 489–676 |
5 | 4-CH3 | 3-CH3 | 260–415 | 47.13 | 468–674 |
6 | 4-CH3 | 2-Cl | 264–454 | 49.94 | 454–641 |
7 | 4-CH3 | 4-Cl | 271–465 | 44.21 | 465–674 |
8 | 4-OCH2CH3 | H | 242–454 | 51.02 | 454–674 |
9 | 4-OCH2CH3 | 2-Cl | 243–453 | 47.91 | 453–668 |
10 | 4-OCH2CH3 | 3-Cl | 214–472 | 50.35 | 472–690 |
11 | 4-OCH2CH3 | 4-Cl | 251–468 | 45.36 | 468–686 |
12 | 2-CH3 | 2-Cl | 258–472 | 57.96 | 472–664 |
Compound | R1 | R2 | MNLC (µM) a | LC50 (95% CL b, µM) c | NOAEC (µM) | LOAEC (µM) |
---|---|---|---|---|---|---|
1 | H | H | 100 ± 0.0 | 144 (118–176) | 75 | 100 |
2 | H | 2-Cl | 125 ± 0.0 | 233 (192–282) | 100 | 125 |
6 | 4-CH3 | 2-Cl | 125 ± 0.0 | 236 (200–279) | 100 | 125 |
8 | 4-OCH2CH3 | H | 108 ± 14.4 | 169 (142–202) | 75 | 100 |
9 | 4-OCH2CH3 | 2-Cl | 108 ± 14.4 | 177 (148–213) | 75 | 100 |
11 | 4-OCH2CH3 | 4-Cl | 117 ± 14.4 | 186 (158–219) | 75 | 100 |
12 | 2-CH3 | 2-Cl | 183 ± 28.9 | 249 (216–286) | 125 | 150 |
Standard drug d | 75 ± 0.0 | 101 (80–127) | 50 | 75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sztanke, M.; Łyszczek, R.; Ostasz, A.; Głuchowska, H.; Sztanke, K. Thermal Characterisation and Toxicity Profile of Potential Drugs from a Class of Disubstituted Heterofused Triazinones. Molecules 2025, 30, 506. https://doi.org/10.3390/molecules30030506
Sztanke M, Łyszczek R, Ostasz A, Głuchowska H, Sztanke K. Thermal Characterisation and Toxicity Profile of Potential Drugs from a Class of Disubstituted Heterofused Triazinones. Molecules. 2025; 30(3):506. https://doi.org/10.3390/molecules30030506
Chicago/Turabian StyleSztanke, Małgorzata, Renata Łyszczek, Agnieszka Ostasz, Halina Głuchowska, and Krzysztof Sztanke. 2025. "Thermal Characterisation and Toxicity Profile of Potential Drugs from a Class of Disubstituted Heterofused Triazinones" Molecules 30, no. 3: 506. https://doi.org/10.3390/molecules30030506
APA StyleSztanke, M., Łyszczek, R., Ostasz, A., Głuchowska, H., & Sztanke, K. (2025). Thermal Characterisation and Toxicity Profile of Potential Drugs from a Class of Disubstituted Heterofused Triazinones. Molecules, 30(3), 506. https://doi.org/10.3390/molecules30030506