Eco-Friendly Dyeing and Functional Finishing of Organic Cotton Using Optimized Oolong Tea Stems (Agricultural Waste) Through Response Surface Methodology
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Methods
2.2.1. Aqueous Extraction of Dye
2.2.2. Phytochemical Analysis of Extracted Dye
UV–Visible Absorption Spectrum of Tea Stem Extract
Fourier Transform Infrared (FTIR) Spectroscopy of Tea Stem Extract
2.2.3. Optimization of Dyeing Process
2.2.4. Pre-Mordanting and Dyeing of Organic Cotton Fabrics
2.2.5. Color Measurement
2.2.6. Color Fastness Testing
2.2.7. Evaluation of Fiber Surface Morphology
2.2.8. Antimicrobial Testing
2.2.9. UV Protection Testing
2.2.10. Antioxidant Testing
3. Results and Discussion
3.1. Chracterization of Tea Extract
3.2. Optimization of Dyeing Process for Organic Cotton Fabric Using Oolong Tea Stem Extract
3.3. Analysis of Dyeing Effect of Oolong Tea Stem Extract on Organic Cotton
3.4. Analysis of Antibacterial Effectiveness
3.5. Anti-UV Effect Analysis
3.6. Analysis of Antioxidant Effects
4. Conclusions
4.1. Research Conclusions
4.2. Application Advantages and Challenges of Oolong Tea Stem Dyes in Textile Dyeing
4.3. Study Limitations and Suggestions for Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mamun, M.A.; Haji, A.; Mahmud, M.H.; Repon, M.R.; Islam, M.T. Bibliometric evidence on the trend and future direction of the research on textile coloration with natural sources. Coatings 2023, 13, 413. [Google Scholar] [CrossRef]
- Hagan, E.; Poulin, J. Statistics of the Early Synthetic Dye Industry. Herit. Sci. 2021, 9, 33. [Google Scholar] [CrossRef]
- Liu, W.; Xue, J.; Kannan, K. Occurrence of and Exposure to Benzothiazoles and Benzotriazoles from Textiles and Infant Clothing. Sci. Total Environ. 2017, 592, 91–96. [Google Scholar] [CrossRef]
- Grancarić, A.M.; Ristic, N.; Tarbuk, A.; Ristic, L. Electrokinetic phenomena of cationised cotton and its dyeability with reactive dyes. Fibres Text. East. Eur. 2013, 21, 106–110. [Google Scholar]
- Sadeghi-Kiakhani, M.; Hashemi, E.; Norouzi, M.-M. Characterization and Antibacterial Studies of Phytosynthesized Palladium Nanoparticles on Wool Fibers Using Colorants Extracted from Saffron Petals. Int. J. Environ. Sci. Technol. 2024, 22, 1–14. [Google Scholar] [CrossRef]
- Chen, X.; Deng, Q.; Lin, S.; Du, C.; Zhao, S.; Hu, Y.; Yang, Z.; Lyu, Y.; Han, J. A new approach for risk assessment of aggregate dermal exposure to banned azo dyes in textiles. Regul. Toxicol. Pharmacol. 2017, 91, 173–178. [Google Scholar] [CrossRef] [PubMed]
- European Chemicals Agency. Understanding Reach. ECHA—European Chemicals Agency. 2015. Available online: http://echa.europa.eu/web/guest/regulations/reach/understanding-reach (accessed on 18 January 2025).
- Che, J.N.; Yang, X. A recent (2009–2021) perspective on sustainable color and textile coloration using natural plant resources. Heliyon 2022, 8, e10979. [Google Scholar] [CrossRef] [PubMed]
- Haji, A.; Naebe, M. Cleaner dyeing of textiles using plasma treatment and natural dyes: A review. J. Clean. Prod. 2020, 265, 121866. [Google Scholar] [CrossRef]
- Sadeghi-Kiakhani, M.; Hashemi, E.; Norouzi, M.-M. Production of Antibacterial Wool Fiber Through the Clean Synthesis of Palladium Nanoparticles (PdNPs) by Crocus sativus L. Stamen Extract. Fibers Polym. 2024, 25, 3357–3367. [Google Scholar] [CrossRef]
- Afonso, T.B.; Bonifácio-Lopes, T.; Costa, E.M.; Pintado, M.E. Phenolic Compounds from By-Products for Functional Textiles. Materials 2023, 16, 7248. [Google Scholar] [CrossRef] [PubMed]
- Mia, R.; Bakar, M.A.; Islam, M.R.; Ahmed, T. Eco-Friendly Coloration from Mahogany Wood Waste for Sustainable Dyeing of Organic Nonwoven Cotton Fabric. Results Eng. 2023, 17, 101032. [Google Scholar] [CrossRef]
- Rather, L.J.; Zhou, Q.; Ali, A.; Haque, Q.; Mohd, R.; Li, Q. Valorization of Agro-Industrial Waste from Peanuts for Sustainable Natural Dye Production: Focus on Adsorption Mechanisms, Ultraviolet Protection, and Antimicrobial Properties of Dyed Wool Fabric. ACS Food Sci. Technol. 2021, 1, 427–442. [Google Scholar] [CrossRef]
- Jose, S.; Pandit, P.; Pandey, R. Chickpea Husk—A Potential Agro Waste for Coloration and Functional Finishing of Textiles. Ind. Crops Prod. 2019, 142, 111833. [Google Scholar] [CrossRef]
- Xia, W.; Li, Z.; Tang, Y.; Li, Q. Sustainable Recycling of Café Waste as Natural Bio Resource and Its Value Adding Applications in Green and Effective Dyeing/Bio Finishing of Textile. Sep. Purif. Technol. 2023, 309, 123091. [Google Scholar] [CrossRef]
- Pasrija, D.; Anandharamakrishnan, C.J. Techniques for extraction of green tea polyphenols: A review. Food Bioprocess Technol. 2015, 8, 935–950. [Google Scholar] [CrossRef]
- Pan, S.Y.; Nie, Q.; Tai, H.C.; Song, X.L.; Tong, Y.F.; Zhang, L.J.; Wu, X.W.; Lin, Z.H.; Zhang, Y.Y.; Ye, D.Y.; et al. Tea and tea drinking: China’s outstanding contributions to the mankind. Chin. Med. 2022, 17, 27. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zhang, Y.D.; Sun, W.J. Application Status of White Tea Processing Application Status of White Tea Processing Technologies and Equipments. China Tea 2024, 46, 14–22. [Google Scholar]
- Assad, M.; Ashaolu, T.J.; Khalifa, I.; Baky, M.H.; Farag, M.A. Dissecting the role of microorganisms in tea production of different fermentation levels: A multifaceted review of their action mechanisms, quality attributes and future perspectives. World J. Microbiol. Biotechnol. 2023, 39, 265. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Ma, M.; Zhang, S.; Wang, D. Efficient utilization of tea resources through encapsulation: Dual perspectives from core material to wall material. J. Agric. Food Chem. 2023, 71, 1310–1324. [Google Scholar] [CrossRef] [PubMed]
- Cheng, T.H.; Liu, Z.J.; Yang, J.Y.; Huang, Y.Z.; Tang, R.C.; Qiao, Y.F. Extraction of functional dyes from tea stem waste in alkaline medium and their application for simultaneous coloration and flame retardant and bioactive functionalization of silk. ACS Sustain. Chem. Eng. 2019, 7, 18405–18413. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, J.; Chen, L.; Jiang, H. Research Process on Comprehensive Utilization of Tea Stalks. J. Tea Commun. 2020, 47, 20–24. [Google Scholar]
- Tutak, M.; Korkmaz, N.E. Environmentally friendly natural dyeing of organic cotton. J. Nat. Fibers 2012, 9, 51–59. [Google Scholar] [CrossRef]
- Jiang, H.; Guo, R.; Mia, R.; Zhang, H.; Lü, S.; Yang, F.; Mahmud, S.; Liu, H. Eco-friendly dyeing and finishing of organic cotton fabric using natural dye (gardenia yellow) reduced-stabilized nanosilver: Full factorial design. Cellulose 2022, 29, 2663–2679. [Google Scholar] [CrossRef]
- Vuthiganond, N.; Nakpathom, M.; Mongkholrattanasit, R. Azoic deep dyeing of silk and UV protection using plant polyphenols and diazonium coupling. Fibers Polym. 2020, 21, 1052–1060. [Google Scholar] [CrossRef]
- Ren, Y.; Fu, R.; Fang, K.; Chen, W.; Hao, L.; Xie, R.; Shi, Z. Dyeing cotton with tea extract based on in-situ polymerization: An innovative mechanism of coloring cellulose fibers by industrial crop pigments. Ind. Crops Prod. 2019, 142, 111863. [Google Scholar] [CrossRef]
- Ren, Y.; Gong, J.; Wang, F.; Li, Z.; Zhang, J.; Fu, R.; Lou, J. Effect of dye bath pH on dyeing and functional properties of wool fabric dyed with tea extract. Dye. Pigment. 2016, 134, 334–341. [Google Scholar] [CrossRef]
- Yang, L.; Dai, X.; Meng, Y.; Zhou, L.; Yue, X. Comparative Study on Dyed Fabrics of Tea and Tea Stem Based on Kansei Engineering. Sustainability 2023, 15, 1134. [Google Scholar] [CrossRef]
- Gong, J.; Wang, F.; Ren, Y.; Li, Z.; Zhang, J.; Li, Q. Preparation of biomass pigments and dyeing based on bioconversion. J. Clean. Prod. 2018, 182, 301–312. [Google Scholar] [CrossRef]
- Wang, F.; Gong, J.; Ren, Y.; Zhang, J. Eco-dyeing with biocolourant based on natural compounds. R. Soc. Open Sci. 2018, 5, 171134. [Google Scholar] [CrossRef]
- Sukemi; Pratumyot, K.; Srisuwannaket, C.; Niamnont, N.; Mingvanish, W. Dyeing of cotton with the natural dye extracted from waste leaves of green tea (Camellia sinensis var. assamica). Color. Technol. 2019, 135, 121–126. [Google Scholar] [CrossRef]
- Ma, X.; Pan, T. Extraction of Polyphenols Dye From Tea Stem and Its Dyeing Properties on Ramie-Cotton Fabric. Knitt. Ind. 2021, 8, 58–62. [Google Scholar]
- Grande, R.; Räisänen, R.; Dou, J.; Rajala, S.; Malinen, K.; Nousiainen, P.A.; Österberg, M. In Situ Adsorption of Red Onion (Allium cepa) Natural Dye on Cellulose Model Films and Fabrics Exploiting Chitosan as a Natural Mordant. ACS Omega 2023, 8, 5451–5463. [Google Scholar] [CrossRef] [PubMed]
- Verma, M.; Singh, S.S.J.; Rose, N.M. Effect of biopolymer treatments on dyeing efficiency of cotton fabric with marigold petals. J. Pharmacogn. Phytochem. 2020, 9, 321–325. [Google Scholar]
- Islam, S.U.; Butola, B. A synergistic combination of shrimp shell derived chitosan polysaccharide with Citrus sinensis peel extract for the development of colourful and bioactive cellulosic textile. Int. J. Biol. Macromol. 2020, 158, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi-Kiakhani, M.; Safapour, S.; Golpazir-Sorkheh, Y. Sustainable Antimicrobial and Antioxidant Finishing and Natural Dyeing Properties of Wool Yarn Treated with Chitosan-Poly(Amidoamine) Dendrimer Hybrid as a Biomordant. J. Nat. Fibers 2022, 19, 9988–10000. [Google Scholar] [CrossRef]
- Kumar, R.; Reji, M. Response surface methodology (RSM): An overview to analyze multivariate data. Indian J. Microbiol. Res. 2023, 9, 241–248. [Google Scholar] [CrossRef]
- Chitichotpanya, P.; Vuthiganond, N.; Chutasen, P.; Inprasit, T. Green Production of Simultaneous Coloration and Functional Finishing on Hemp Textiles through Dyeing with Diospyros mollis Griff. Extract. J. Met. Mater. Min. 2023, 33, 108–119. [Google Scholar] [CrossRef]
- Yılmaz, F.; Bahtiyari, M.İ. Use of tea and tobacco industrial wastes in dyeing and antibacterial finishing of cotton fabrics. AATCC J. Res. 2020, 7, 25–31. [Google Scholar] [CrossRef]
- Garg, H.; Singhal, N.; Singh, A.; Khan, M.D.; Sheikh, J. Laccase-assisted colouration of wool fabric using green tea extract for imparting antioxidant, antibacterial, and UV protection activities. Environ. Sci. Pollut. Res. 2023, 30, 84386–84396. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.; Acton, C.; Fullerton, D.; Maltby, J.; Campling, J. Analysis of Variance (Anova). The SAGE Encyclopedia of Research Design. Brain Mapp. 2022, 1, 477–481. [Google Scholar] [CrossRef]
- ISO 105-X12:2001; Textiles—Tests for Colour Fastness. Part X12: Colour Fastness to Rubbing. ISO: Geneva, Switzerland, 2001.
- ISO 105-C10(2):2006; Textiles—Tests for Colour Fastness. Part C10 Colour Fastness to Washing with Soap or Soap and Soda. ISO: Geneva, Switzerland, 2006.
- ISO 105-E04:2013; Textiles—Tests for Colour Fastness. Part E04: Colour Fastness to Perspiration. ISO: Geneva, Switzerland, 2013.
- ISO 105-B01:2014; Textiles—Tests for Colour Fastness. Part B01: Colour Fastness to Light: Daylight. ISO: Geneva, Switzerland, 2014.
- Wang, P.; Wu, H.; Zheng, X.; Bian, L.; Sun, Y.; Wang, Z.; Li, C. High-binding-fastness Dye from Functional Extracts of Keemun Black Tea Waste for Dyeing Flax Fabric. Color. Technol. 2021, 138, 255–265. [Google Scholar] [CrossRef]
- Aalipourmohammadi, M.; Davodiroknabadi, A.; Nazri, A. Producing multifunctional wool fabrics using nano zinc oxide in presence of natural dye henna. Indian J. Fibre Text. Res. IJFTR 2020, 45, 286–292. [Google Scholar] [CrossRef]
- GB/T 18830-2009; Textiles—Evaluation for Solar Ultraviolet Radiation Protective Properties. China Textile Industry Federation: Beijing, China, 2009. Available online: https://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=D75CFFB67CAFB0CA77A2E38971A0D3DC (accessed on 18 January 2025).
- Borah, S.; Bhuyan, P.M.; Sarma, B.; Hazarika, S.; Gogoi, A.; Gogoi, P. Sustainable dyeing of mulberry silk fabric using extracts of green tea (Camellia sinensis): Extraction, mordanting, dyed silk fabric properties and silk-dye interaction mechanism. Ind. Crops Prod. 2023, 205, 117517. [Google Scholar] [CrossRef]
- Huang, Z.; Li, X.; Gouda, M. Application of FT-IR, and Hyperspectral Analytical Protocols for Tea Leaves Natural Catechins and Caffeine Detection and Evaluation. In Plant Chemical Compositions and Bioactivities; Springer: New York, NY, USA, 2024; pp. 1–12. [Google Scholar]
- Giorgini, E.; Notarstefano, V.; Foligni, R.; Carloni, P.; Damiani, E. First ATR-FTIR Characterization of Black, Green and White Teas (Camellia sinensis) from European Tea Gardens: A PCA Analysis to Differentiate Leaves from the In-Cup Infusion. Foods 2023, 13, 109. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Wang, D.; Liang, P.; Zhang, D.; Du, X.; Ni, D.; Yu, Z. Vibrational (FT-IR, Raman) analysis of tea catechins based on both theoretical calculations and experiments. Biophys. Chem. 2020, 256, 106282. [Google Scholar] [CrossRef]
- Gong, J.; Chen, G.; Deng, Y.; Li, C.; Fang, K. Non-Destructive Detection of Tea Polyphenols in Fu Brick Tea Based on Hyperspectral Imaging and Improved PKO-SVR Method. Agriculture 2024, 14, 1701. [Google Scholar] [CrossRef]
- Luo, X.; Xu, L.; Huang, P.; Wang, Y.; Liu, J.; Hu, Y.; Wang, P.; Kang, Z. Nondestructive testing model of tea polyphenols based on hyperspectral technology combined with chemometric methods. Agriculture 2021, 11, 673. [Google Scholar] [CrossRef]
- Kim, S. Dyeing characteristics and UV protection property of green tea dyed cotton fabrics: Focusing on the effect of chitosan mordanting condition. Fibers Polym. 2006, 7, 255–261. [Google Scholar] [CrossRef]
- GB/T 3920-2008; Textiles—Tests for Colour Fastness—Colour Fastness to Rubbing. China Textile Industry Federation: Beijing, China, 2008. Available online: https://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=B3A328DB1DC2961307967A5B7210AD62 (accessed on 18 January 2025).
- GB/T 3921-2008; Textiles—Tests for Colour Fastness—Colour Fastness to Washing with Soap or Soap and Soda. China Textile Industry Federation: Beijing, China, 2008. Available online: https://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=E5D26806EBD592C1A5A108D62ADB5741 (accessed on 18 January 2025).
- GB/T 3922-2013; Textiles—Tests for Colour Fastness―Colour Fastness to Perspiration. China Textile Industry Federation: Beijing, China, 2013. Available online: https://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=DE26C352BCB0F0D52A13A7D114F16E27 (accessed on 18 January 2025).
- GB/T 8427-2019; Textiles—Tests for Color Fastness—Color Fastness to Artificial Light: Xenon Arc. China Textile Industry Federation: Beijing, China, 2019. Available online: https://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=899976172F11848D482E463B6A653888 (accessed on 18 January 2025).
- Nadeem, T.; Javed, K.; Anwar, F.; Malik, M.H.; Khan, A. Sustainable Dyeing of Wool and Silk with Conocarpus erectus L. Leaf Extract for the Development of Functional Textiles. Sustainability 2024, 16, 811. [Google Scholar] [CrossRef]
- Butola, B.S.; Roy, A. Chitosan polysaccharide as a renewable functional agent to develop antibacterial, antioxidant activity and colourful shades on wool dyed with tea extract polyphenols. Int. J. Biol. Macromol. 2018, 120, 1999–2006. [Google Scholar] [CrossRef]
- Bonet-Aracil, M.Á.; Díaz-García, P.; Bou-Belda, E.; Sebastiá, N.; Montoro, A.; Rodrigo, R. UV protection from cotton fabrics dyed with different tea extracts. Dye. Pigment. 2016, 134, 448–452. [Google Scholar] [CrossRef]
- Lambrecht, L.; Capablanca, L.; Bou-Belda, E.; Montava, I.; Díaz-García, P.; Gisbert-Payá, J. Enhancing Polyphenols and Tannins Concentration on Cotton Dyed with Red Tea. Sustainability 2023, 15, 3062. [Google Scholar] [CrossRef]
- Zhao, L.; Zhu, C.; Lin, Y.; Yang, C. Dyeing and Performance Testing of Chitosan-Modified Cotton Fabrics with Tea Polyphenols. Fibres Text. East. Eur. 2024, 32, 22–30. [Google Scholar] [CrossRef]
- Haque, M.A.; Mia, R.; Mahmud, S.T.; Bakar, M.A.; Ahmed, T.; Farsee, M.S.; Hossain, M.I. Sustainable dyeing and functionalization of wool fabrics with black rice extract. Resour. Environ. Sustain. 2022, 7, 100045. [Google Scholar] [CrossRef]
- Eskani, I.N.; Rahayuningsih, E.; Astuti, W.; Pidhatika, B. Low Temperature In Situ Synthesis of ZnO Nanoparticles from Electric Arc Furnace Dust (EAFD) Waste to Impart Antibacterial Properties on Natural Dye-Colored Batik Fabrics. Polymers 2023, 15, 746. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi-Kiakhani, M.; Hashemi, E.; Norouzi, M.-M.; Soleimani, P.; Babaahmadi, V. Green Synthesis of Silver Nanoparticles on Polyamide Fabrics Using Scrophularia Striata Boiss Extract: Characterization, Dyeing, and Antibacterial Properties. J. Ind. Eng. Chem. 2024; in press. [Google Scholar] [CrossRef]
- Gorjanc, M.; Mozetič, M.; Vesel, A.; Zaplotnik, R. Natural Dyeing and UV Protection of Plasma Treated Cotton. Eur. Phys. J. D 2018, 72, 41. [Google Scholar] [CrossRef]
- Textiles—Determination and Evaluation of Antioxidant Activity—DPPH and ABTS Methods. Available online: http://www.ccta.org.cn/xhzc/xhtz/202302/t20230220_4299260.html (accessed on 18 January 2025).
- Tong, T.; Liu, Y.J.; Kang, J.; Zhang, C.M.; Kang, S.G. Antioxidant Activity and Main Chemical Components of a Novel Fermented Tea. Molecules 2019, 24, 2917. [Google Scholar] [CrossRef] [PubMed]
- Ivanovska, A.; Milenković, J.; Lađarević, J.; Mihajlovski, K.; Dojčinović, B.; Ugrinović, V.; Bogojević, S.; Kostić, M. Harnessing the power of green and rooibos tea aqueous extracts for obtaining colored bioactive cotton and cotton/flax fabrics intended for disposable and reusable medical textiles. Cellulose 2024, 31, 9523–9542. [Google Scholar] [CrossRef]
- Adeel, S.; Azeem, M.; Habib, N.; Hussaan, M.; Kiran, A.; Haji, A.; Haddar, W. Sustainable application of microwave assisted extracted tea based tannin natural dye for chemical and bio-mordanted wool fabric. J. Nat. Fibers 2023, 20, 2136322. [Google Scholar] [CrossRef]
- Chen, C.; Li, M.; Wang, C.; Fu, S.; Yan, W.; Chen, C. Meta-Mordant Dyeing with Camellia sinensis (L.) O. Ktze Var. Waldensae (S.Y.Hu) Chang (Yellow-Bud Tea) Extract for Wool Fabrics Treated by UV Radiation. Fibers Polym. 2018, 19, 1255–1265. [Google Scholar] [CrossRef]
- Huang, Q.; Wang, Z.; Zhao, L.; Li, X.; Cai, H.; Yang, S.; Yin, M.; Xing, J. Environmental Dyeing and Functionalization of Silk Fabrics with Natural Dye Extracted from Lac. Molecules 2024, 29, 2358. [Google Scholar] [CrossRef] [PubMed]
- Pizzicato, B.; Pacifico, S.; Cayuela, D.; Mijas, G.; Riba-Moliner, M. Advancements in Sustainable Natural Dyes for Textile Applications: A Review. Molecules 2023, 28, 5954. [Google Scholar] [CrossRef]
Tea Type | Green Tea | White Tea | Yellow Tea | Oolong Tea | Black Tea | Dark Tea |
---|---|---|---|---|---|---|
Level of fermentation | Non-fermented tea | Slightly fermented tea (10–20% fermentation) | Slightly fermented tea (10–20% fermentation) | Semi-fermented tea (30–60% fermentation) | Fully fermented tea (80–90% fermentation) | Post-fermented tea (100% fermentation) |
Liquor color |
Level | pH Value of Dye Solution (A) | Dyeing Temperature (B)/°C | Dyeing Duration (C)/min |
---|---|---|---|
−1 | 5.5 | 70 | 60 |
0 | 7.5 | 80 | 70 |
1 | 9.5 | 90 | 80 |
Effect of pH Value on Color Tone | |||||
pH value | 3.5 | 5.5 | 7.5 | 9.5 | 11.5 |
Apparent color | |||||
Color tone | Yellow brown | Brown | Brown | Reddish brown | Reddish brown |
Effect of Dyeing Temperature on Color Tone | |||||
Temperature (°C) | 70 | 80 | 90 | 100 | 110 |
Apparent color | |||||
Color tone | Brown | Brown | Brown | Brown | Brown |
Effect of Dyeing Time on Color Tone | |||||
Apparent color | |||||
Color tone | Brown | Brown | Brown | Brown | Brown |
Number | A—pH Value of Dye Solution | B—Dyeing Temperature (°C) | C—Dyeing Duration (min) | K/S Value |
---|---|---|---|---|
1 | 5.5 | 70 | 70 | 0.4152 |
2 | 9.5 | 70 | 70 | 0.5736 |
3 | 5.5 | 90 | 70 | 0.4604 |
4 | 9.5 | 90 | 70 | 0.5599 |
5 | 5.5 | 80 | 60 | 0.3680 |
6 | 9.5 | 80 | 60 | 0.3977 |
7 | 5.5 | 80 | 80 | 0.4601 |
8 | 9.5 | 80 | 80 | 0.6326 |
9 | 7.5 | 70 | 60 | 0.6086 |
10 | 7.5 | 90 | 60 | 0.6300 |
11 | 7.5 | 70 | 80 | 0.7466 |
12 | 7.5 | 90 | 80 | 0.7880 |
13 | 7.5 | 80 | 70 | 0.6270 |
14 | 7.5 | 80 | 70 | 0.6311 |
15 | 7.5 | 80 | 70 | 0.6177 |
16 | 7.5 | 80 | 70 | 0.6660 |
17 | 7.5 | 80 | 70 | 0.6569 |
Source | Sum of Squares of Deviations | Freedom Degree | Average Square | F-Value | p-Value | Significance |
---|---|---|---|---|---|---|
Model | 0.23 | 9 | 0.025 | 76.13 | <0.0001 | ** |
A—pH value of dye solution | 0.026 | 1 | 0.026 | 79.25 | <0.0001 | ** |
B—dyeing temperature | 0.001112 | 1 | 0.001112 | 3.33 | 0.1108 | |
C—dyeing duration | 0.049 | 1 | 0.049 | 145.31 | <0.0001 | ** |
AB | 0.000867 | 1 | 0.000867 | 2.6 | 0.1511 | |
AC | 0.005098 | 1 | 0.005098 | 15.27 | 0.0058 | ** |
BC | 0.0001 | 1 | 0.0001 | 0.3 | 0.6012 | |
A2 | 0.14 | 1 | 0.14 | 422.71 | <0.0001 | ** |
B2 | 0.008762 | 1 | 0.008762 | 26.24 | 0.0014 | ** |
C2 | 0.000266 | 1 | 0.000266 | 0.8 | 0.402 | |
Residual | 0.002337 | 7 | 0.000334 | |||
Lack of fit | 0.00063 | 3 | 0.00021 | 0.49 | 0.7065 | ns |
Pure error | 0.001707 | 4 | 0.000427 | |||
Total | 0.23 | 16 | ||||
R2 = 0.9899; Adj R2 = 0.9769; Pre R2 = 0.9448 |
Sample | Apparent Color | K/S Value | L* | a* | b* | C* | h° |
---|---|---|---|---|---|---|---|
Undyed | 0.12 | 94.98 | −0.68 | 0.25 | 0.72 | 159.8 | |
Dyed | 0.83 | 75.21 | 10.65 | 13.61 | 17.28 | 51.9 | |
Chitosan-treated + dyed | 1.20 | 70.40 | 11.14 | 14.36 | 18.17 | 52.1 |
Sample | Rubbing Fastness | Washing Fastness | Perspiration Fastness | Light Fastness | |||
---|---|---|---|---|---|---|---|
Dry | Wet | Fading | Staining | Acid Staining | Alkaline Staining | ||
Dyed | 4~5 | 4~5 | 4 | 4~5 | 4~5 | 4~5 | 3~4 |
Chitosan-treated + dyed | 4~5 | 4~5 | 4 | 4~5 | 4~5 | 4~5 | 4 |
Sample | Photograph | Antibacterial Rate |
---|---|---|
Dyed | 71.89% | |
Chitosan-treated + dyed | 90.40% |
Sample | Transmittance | UPF | |
---|---|---|---|
T(UVA) | T(UVB) | ||
Undyed (control) | 14.83% | 15.46% | 6.22 |
Dyed | 8.68% | 6.84% | 13.51 |
Chitosan-treated + dyed | 4.11% | 3.82% | 25.34 |
Sample | Free-Radical Scavenging Rate | Antioxidant Property |
---|---|---|
Undyed (control) | 2.6% | The sample does not have antioxidant properties |
Dyed | 84.7% | The sample has extremely strong antioxidant properties |
Chitosan-treated + dyed | 90.2% | The sample has extremely strong antioxidant properties |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, H.; Yang, C.; Song, H.-y. Eco-Friendly Dyeing and Functional Finishing of Organic Cotton Using Optimized Oolong Tea Stems (Agricultural Waste) Through Response Surface Methodology. Molecules 2025, 30, 509. https://doi.org/10.3390/molecules30030509
Xu H, Yang C, Song H-y. Eco-Friendly Dyeing and Functional Finishing of Organic Cotton Using Optimized Oolong Tea Stems (Agricultural Waste) Through Response Surface Methodology. Molecules. 2025; 30(3):509. https://doi.org/10.3390/molecules30030509
Chicago/Turabian StyleXu, Huiya, Chen Yang, and Ha-young Song. 2025. "Eco-Friendly Dyeing and Functional Finishing of Organic Cotton Using Optimized Oolong Tea Stems (Agricultural Waste) Through Response Surface Methodology" Molecules 30, no. 3: 509. https://doi.org/10.3390/molecules30030509
APA StyleXu, H., Yang, C., & Song, H.-y. (2025). Eco-Friendly Dyeing and Functional Finishing of Organic Cotton Using Optimized Oolong Tea Stems (Agricultural Waste) Through Response Surface Methodology. Molecules, 30(3), 509. https://doi.org/10.3390/molecules30030509