Facile Growing of Ni-MOFs on Ni Foam by Self-Dissociation Strategy for Electrochemical Energy Storage
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, W.; Li, W.; Li, S. Self-template activated carbons for aqueous supercapacitors. Sustain. Mater. Technol. 2023, 36, 00582. [Google Scholar] [CrossRef]
- Liang, Z.; Shen, J.; Xu, X.; Li, F.; Liu, J.; Yuan, B.; Yu, Y.; Zhu, M. Advances in the development of single-atom catalysts for high-energy-density lithium-sulfur batteries. Adv. Mater. 2022, 34, 2200102. [Google Scholar] [CrossRef]
- Zhang, L.; Qin, X.; Zhao, S.; Wang, A.; Luo, J.; Wang, Z.L.; Kang, F.; Lin, Z.; Li, B. Advanced matrixes for binder-free nanostructured electrodes in lithium-ion batteries. Adv. Mater. 2020, 32, 1908445. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Yuan, K.; Chen, Y. Wide voltage aqueous asymmetric supercapacitors: Advances, strategies, and challenges. Adv. Funct. Mater. 2022, 32, 2108107. [Google Scholar] [CrossRef]
- Shi, X.; Zheng, S.; Wu, Z.S.; Bao, X. Recent advances of graphene-based materials for high-performance and new-concept supercapacitors. J. Energy Chem. 2018, 27, 25–42. [Google Scholar] [CrossRef]
- Jiang, L.; Sheng, L.; Fan, Z. Biomass-derived carbon materials with structural diversities and their applications in energy storage. Sci. China Mater. 2018, 61, 133–158. [Google Scholar] [CrossRef]
- Chen, X.; Liu, Q.; Bai, T.; Wang, W.; He, F.; Ye, M. Nickel and cobalt sulfide-based nanostructured materials for electrochemical energy storage devices. Chem. Eng. J. 2021, 409, 127237. [Google Scholar] [CrossRef]
- Sreejesh, M.; Dhanush, S.; Rossignol, F.; Nagaraja, H.S. Microwave assisted synthesis of rGO/ZnO composites for non-enzymatic glucose sensing and supercapacitor applications. Ceram. Int. 2017, 43, 4895–4903. [Google Scholar] [CrossRef]
- Zhai, T.; Wan, L.; Sun, S.; Chen, Q.; Sun, J.; Xia, Q.; Xia, H. Phosphate ion functionalized Co3O4 ultrathin nanosheets with greatly improved surface reactivity for high performance pseudocapacitors. Adv. Mater. 2017, 29, 1604167. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Musharavati, F.; Zalenezhad, E.; Chen, X.; Hui, K.N.; Hui, K.S. Electrodeposited Ni-Co layered double hydroxides on titanium carbide as a binder-free electrode for supercapacitors. Electrochim. Acta. 2018, 261, 178–187. [Google Scholar] [CrossRef]
- Lee, D.; Mathur, S.; Kim, K.H. Bilayered NiZn(CO3)(OH)2-Ni2(CO3)(OH)2 nanocomposites as positive electrode for supercapacitors. Nano Energy 2021, 86, 106076. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, G.; Sun, S.; Xu, B.; Zhou, J.; Zhang, Y.; Yao, J. Decoration of carbon nanofibers with NiCo2S4 nanoparticles for flexible asymmetric supercapacitors. J. Alloys Compd. 2018, 731, 560–568. [Google Scholar] [CrossRef]
- Zhao, W.; Zheng, Y.; Cui, L.; Jia, D.; Wei, D.; Zheng, R.; Barrow, C.; Yang, W.; Liu, J. MOF derived Ni-Co-S nanosheets on electrochemically activated carbon cloth via an etching/ion exchange method for wearable hybrid supercapacitors. Chem. Eng. J. 2019, 371, 461–469. [Google Scholar] [CrossRef]
- Zhang, X.; Tian, Y.; Lu, W.; Yang, S.; Qu, N.; Zhang, Q.; Lei, D.; Liu, A. Design of oxygen-doped Co3S4 hollow nanosheets by suppressed sulfurization for supercapacitors. Chemelectrochem 2021, 8, 3629–3636. [Google Scholar] [CrossRef]
- Yang, B.; Li, B.; Xiang, Z. Advanced MOF-based electrode materials for supercapacitors and electrocatalytic oxygen reduction. Nano Res. 2022, 16, 1338–1361. [Google Scholar] [CrossRef]
- Zheng, S.; Zhou, H.; Xue, H.; Braunstein, P.; Pang, H. Pillared-layer Ni-MOF nanosheets anchored on Ti3C2 MXene for enhanced electrochemical energy storage. J. Colloid Interface Sci. 2022, 614, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yang, S.; Lu, W.; Lei, D.; Tian, Y.; Guo, M.; Mi, P.; Qu, N.; Zhao, Y. MXenes induced formation of Ni-MOF microbelts for high-performance supercapacitors. J. Colloid Interface Sci. 2021, 592, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Du, W.; Bai, Y.L.; Xu, J.; Zhao, H.; Zhang, L.; Li, X.; Zhang, J. Advanced metal-organic frameworks (MOFs) and their derived electrode materials for supercapacitors. J. Power Sources 2018, 402, 281–295. [Google Scholar] [CrossRef]
- Gao, X.; Dong, Y.; Li, S.W.; Zhou, J.W.; Wang, L.; Wang, B. MOFs and COFs for Batteries and Supercapacitors. Electrochem. Energy Rev. 2020, 3, 81–126. [Google Scholar] [CrossRef]
- Liu, X.; Shi, C.; Zhai, C.; Cheng, M.; Liu, Q.; Wang, G. Cobalt-based layered metal-organic framework as an ultrahigh capacity supercapacitor electrode material. ACS Appl. Mater. Interfaces 2016, 8, 4585–4591. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Chen, D.; Quan, H.; Zou, R.; Wang, W.; Luo, X.; Guo, L. Fabrication of hierarchical porous metal-organic framework electrode for aqueous asymmetric supercapacitor. ACS Sustain. Chem. Eng. 2017, 5, 4144–4153. [Google Scholar] [CrossRef]
- Rong, H.R.; Song, P.; Gao, G.X.; Jiang, Q.Y.; Chen, X.J.; Su, L.X.; Liu, W.L.; Liu, Q. A three-dimensional Mn-based MOF as a high-performance supercapacitor electrode. Dalton Trans. 2023, 52, 1962–1969. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.W.; Sui, Y.W.; Wei, F.X.; Qi, J.Q.; Meng, Q.K.; He, Y.Z. Facile synthesis of cuboid Ni-MOF for high-performance supercapacitors. J. Mater. Sci. Lett. 2018, 53, 6807–6818. [Google Scholar] [CrossRef]
- Zhou, Y.J.; Mao, Z.M.; Wang, W.; Yang, Z.K.; Liu, X. In-Situ Fabrication of Graphene Oxide Hybrid Ni-Based Metal-Organic Framework (Ni-MOFs@GO) with Ultrahigh Capacitance as Electrochemical Pseudocapacitor Materials. ACS Appl. Mater. Interfaces 2016, 8, 28904–28916. [Google Scholar] [CrossRef] [PubMed]
- Rajkumar, S.; Elanthamilan, E.; Evangeline, J.N.I.; Sharmila, L.; Princy, M.J. Enhanced electrochemical behaviour of Co-MOF/PANI composite electrode for supercapacitors. Inorganica Chim. Acta 2020, 502, 119393. [Google Scholar]
- Pan, Y.; Han, Y.H.; Chen, Y.J.; Li, D.; Tian, Z.; Guo, L.; Wang, Y.Z. Benzoic acid-modified 2D Ni-MOF for high-performance supercapacitors. Electrochim. Acta 2022, 403, 139679. [Google Scholar] [CrossRef]
- Chu, X.; Meng, F.; Deng, T.; Lu, Y.; Bondarchuk, O.; Sui, M.; Feng, M.; Li, H.; Zhang, W. Mechanistic insight into bimetallic CoNi-MOF arrays with enhanced performance for supercapacitors. Nanoscale 2020, 12, 5669–5677. [Google Scholar] [CrossRef]
- Liu, X.J.; Zhang, X.L.; Liu, R.M.; Li, C.P.; Xu, C.Y.; Ding, H.H.; Xing, T.; Dai, Z.R.; Zhu, X.D. A Ni-doped Mn-MOF decorated on Ni-foam as an electrode for high-performance supercapacitors. J. Nanoparticle Res. 2022, 24, 23. [Google Scholar] [CrossRef]
- Wei, X.; Li, N.; Liu, N. Ultrathin NiFeZn-MOF nanosheets containing few metal oxide nanoparticles grown on nickel foam for efficient oxygen evolution reaction of electrocatalytic water splitting. Electrochim. Acta 2019, 318, 957–965. [Google Scholar] [CrossRef]
- Tang, P.P.; Lin, X.; Yin, H.; Zhang, D.X.; Wen, H.; Wang, J.J.; Wang, P. Hierarchically nanostructured nickel-cobalt alloy supported on nickel foam as a highly efficient electrocatalyst for hydrazine oxidation. ACS Sustain. Chem. Eng. 2020, 8, 16583–16590. [Google Scholar] [CrossRef]
- Zhang, X.; Qu, N.; Fan, Q.Y.; Yang, H. Surface functionalization of graphene oxide with DBU as electrode materials for supercapacitors. Mater. Res. Express 2019, 6, 085606. [Google Scholar] [CrossRef]
- Zhang, X.; Fan, Q.Y.; Liu, S.; Qu, N.; Yang, H.; Wang, M.; Yang, J. A facile fabrication of 1D/2D nanohybrids composed of NiCo-hydroxide nanowires and reduced graphene oxide for high-performance asymmetric supercapacitors. Inorg. Chem. Front. 2020, 7, 204–211. [Google Scholar] [CrossRef]
- Yue, L.; Chen, L.; Wang, X.; Lu, D.; Zhou, W.; Shen, D.; Yang, Q.; Xiao, S.; Li, Y. Ni/Co-MOF@aminated MXene hierarchical electrodes for high-stability supercapacitors. Chem. Eng. J. 2023, 451, 138687. [Google Scholar] [CrossRef]
- Zhang, X.; Qu, N.; Yang, S.X.; Fan, Q.Y.; Lei, D.; Liu, A.M.; Chen, X. Shape-controlled synthesis of Ni-based metal-organic frameworks with albizia flower-like spheres@nanosheets structure for high performance supercapacitors. J. Colloid Interface Sci. 2020, 575, 347–355. [Google Scholar] [CrossRef]
- Zhao, S.; Zeng, L.; Cheng, G.; Yu, L.; Zeng, H. Ni/Co-based metal-organic frameworks as electrode material for high performance supercapacitors. Chin. Chem. Lett. 2019, 30, 605–609. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Y.; Liu, N.; Yu, C.; Lee, S.J.; Zhou, S.; Fu, R.; Yang, J.; Guo, W.; Huang, H.; et al. Operando revealing dynamic reconstruction of NiCo carbonate hydroxide for high-rate energy storage. Joule 2020, 4, 673–687. [Google Scholar] [CrossRef]
- Zhang, X.; Lu, W.; Tian, Y.H.; Yang, S.X.; Zhang, Q.; Lei, D.; Zhao, Y.Y. Nanosheet-assembled NiCo-LDH hollow spheres as high-performance electrodes for supercapacitors. J. Colloid. Interface Sci. 2022, 606, 1120–1127. [Google Scholar] [CrossRef]
- Gao, S.; Sui, Y.; Wei, F.; Qi, J.; Meng, Q.; Ren, Y.; He, Y. Dandelion-like nickel/cobalt metal-organic framework based electrode materials for high performance supercapacitors. J. Colloid Interface Sci. 2018, 531, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Luo, Y.; Ma, J.; Li, B.; Xue, H.; Pang, H. Facile synthesis of vanadium metal-organic frameworks for high-performance supercapacitors. Small 2018, 14, 1801815. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Ban, X.H.; Wang, Q.; Cheng, K.; Zhu, K.; Ye, K.; Wang, G.L.; Cao, D.X.; Yan, J. Anionic P-substitution toward ternary Ni-S-P nanoparticles immobilized graphene with ultrahigh rate and long cycle life for hybrid supercapacitors. J. Mater. Chem. A 2019, 7, 24374–24388. [Google Scholar] [CrossRef]
- Wang, J.W.; Ma, Y.X.; Kang, X.Y.; Yang, H.J.; Liu, B.L.; Li, S.S.; Zhang, X.D.; Ran, F. A novel moss-like 3D Ni-MOF for high performance supercapacitor electrode material. J. Solid State Chem. 2022, 309, 122994. [Google Scholar] [CrossRef]
- Du, P.C.; Dong, Y.N.; Liu, C.; Wei, W.L.; Liu, D.; Liu, P. Fabrication of hierarchical porous nickel based metal-organic framework (Ni-MOF) constructed with nanosheets as novel pseudo-capacitive material for asymmetric supercapacitor. J. Colloid Interface Sci. 2018, 518, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Wei, W.; Zhang, M.J.; Jiao, S.; Shi, Y.C.; Ding, S.J. Facile Surface Properties Engineering of High-Quality Graphene: Toward Advanced Ni-MOF Heterostructures for High-Performance Supercapacitor Electrode. ACS Appl. Energy Mater. 2019, 2, 2169. [Google Scholar] [CrossRef]
- Zheng, W.; Sun, S.; Xu, Y.; Yu, R.; Li, H. Sulfidation of Hierarchical NiAl-LDH/Ni-MOF Composite for High-Performance Supercapacitor. Chemelectrochem 2019, 6, 3375–3382. [Google Scholar] [CrossRef]
- Nanda, O.P.; Ravipati, M.; Durai, L.; Badhulika, S. Ni-Metal organic framework nanosheets and Ni3C/biomass porous carbon composite based long cycle life asymmetric supercapacitor. Mater. Res. Bull. 2023, 168, 112488. [Google Scholar] [CrossRef]
- Liang, R.; Du, Y.; Lin, J.; Chen, J.; Xiao, P. Facile-Synthesized Ni-Metal-Organic Framework/Nano Carbon Electrode Material for High-Performance Supercapacitors. Energy Fuels 2022, 36, 7115–7120. [Google Scholar] [CrossRef]
- Hang, X.X.; Yang, R.; Xue, Y.D.; Zheng, S.S.; Shan, Y.Y.; Du, M.; Zhao, J.W.; Pang, H. The introduction of cobalt element into nickel-organic framework for enhanced supercapacitive performance. Chin. Chem. Lett. 2023, 34, 107787. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Li, Y.; Song, S.; Tian, Y.; Feng, B.; Li, B.; Liu, Z.; Zhang, X. Facile Growing of Ni-MOFs on Ni Foam by Self-Dissociation Strategy for Electrochemical Energy Storage. Molecules 2025, 30, 513. https://doi.org/10.3390/molecules30030513
Li H, Li Y, Song S, Tian Y, Feng B, Li B, Liu Z, Zhang X. Facile Growing of Ni-MOFs on Ni Foam by Self-Dissociation Strategy for Electrochemical Energy Storage. Molecules. 2025; 30(3):513. https://doi.org/10.3390/molecules30030513
Chicago/Turabian StyleLi, Hongmei, Yang Li, Shuxian Song, Yuhan Tian, Bo Feng, Boru Li, Zhiqing Liu, and Xu Zhang. 2025. "Facile Growing of Ni-MOFs on Ni Foam by Self-Dissociation Strategy for Electrochemical Energy Storage" Molecules 30, no. 3: 513. https://doi.org/10.3390/molecules30030513
APA StyleLi, H., Li, Y., Song, S., Tian, Y., Feng, B., Li, B., Liu, Z., & Zhang, X. (2025). Facile Growing of Ni-MOFs on Ni Foam by Self-Dissociation Strategy for Electrochemical Energy Storage. Molecules, 30(3), 513. https://doi.org/10.3390/molecules30030513