Mechanochemistry to Form Substituted Imidazoles, Imidazolium Salts and NHC–Gold Complexes with Fluorine-Containing Groups
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Substituted Imidazoles 1 to 4
2.2. Synthesis of Imidazolium Salts
Aging
2.3. Synthesis of Neutral Complexes of Type NHCAuCl
2.4. Synthesis of Cationic Complexes of Type AubisNHC:
3. Materials and Methods
- Synthesis of Imidazoles 1 to 4
- 1H NMR (300 MHz, CDCl3) δ 7.58 (s, 1H, H2), 7.43–7.30 (m, 3H, H9-H11), 7.21–7.15 (m, 2H, H8, H12), 7.11 (t, J = 1.1 Hz, 1H, H5), 6.92 (t, J = 1.3 Hz, 1H, H4), 5.14 (s, 2H, H6). 13C NMR (75 MHz, CDCl3) δ 137.5 (1C, C2), 136.2 (1C, C7), 129.8 (1C, C4), 129.0 (2C, C9, C11), 128.3 (1C, C10), 127.3 (2C, C8, C12), 119.3 (1C, C5), 50.8 (1C, C6).
- 1H NMR (400 MHz, CDCl3) δ 8.61 (ddd, J = 4.9, 1.8, 0.9 Hz, 1H, H11), 7.68 (td, J = 7.7, 1.8 Hz, 1H, H9), 7.63 (t, J = 1.1 Hz, 1H, H2), 7.28–7.23 (m, 1H, H10), 7.14 (t, J = 1.1 Hz, 1H, H5), 7.01 (t, J = 1.3 Hz, 1H, H4), 6.97 (dt, J = 7.9, 0.8 Hz, 1H, H8), 5.27 (s, 2H, H6). 13C NMR (75 MHz, CDCl3) δ 156.2 (1C, C7), 149.7 (1C, C11), 137.7 (1C, C2), 137.3 (1C, C9), 130.0 (1C, C8), 123.0 (1C, C10), 121.2 (1C, C4), 119.5 (1C, C5), 52.5 (1C, C6).
- 1H NMR (300 MHz, CDCl3) δ 8.52 (ddd, J = 4.9, 1.9, 0.9 Hz, 1H, H10), 8.38 (s, 1H, H2), 7.85 (td, J = 8.2, 1.8 Hz, 1H, H8), 7.68 (s, 1H, H5), 7.39 (dt, J = 8.2, 1.0 Hz, 1H, H7), 7.28–7.24 (m, 1H, H9), 7.23 (s, 1H, H4).
- 1H NMR (300 MHz, CDCl3) δ 7.54 (s, 1H, H5), 7.04 (s, 1H, H4), 6.98 (t, J = 1.2 Hz, 1H, H2), 4.03 (t, J = 6.2 Hz, 2H, H6), 2.65 (t, J = 6.7 Hz, 2H, H7), 2.42 (t, J = 5.3 Hz, 4H, H9,13), 1.59 (p, J = 5.7 Hz, 4H, H10,12), 1.50–1.39 (m, 2H, H11). 13C NMR (75 MHz, CDCl3) δ 137.4 (1C, C2), 129.2 (1C, C4), 119.2 (1C, C5), 59.5 (1C, C7), 54.7 (2C, C9,13), 44.9 (1C, C6), 26.0 (2C, C10,12), 24.2 (1C, C11).
- Synthesis of Imidazolium Salts 5 to 12
- 1H NMR (400 MHz, CDCl3) δ 11.58 (t, J = 1.7 Hz, 1H, H2), 7.89–7.80 (m, 3H, H4,7,11), 7.67–7.57 (m, 3H, H5,8,10), 7.40–7.30 (m, 3H, H16,17,18), 7.24–7.14 (m, 2H, H15,19), 5.78 (s, 2H, H13). 13C NMR (75 MHz, CDCl3) δ 163.1 (d, J = 251.8 Hz, 1C, C9), 136.6 (1C, C2), 133.1 (1C, C14), 130.7 (d, J = 3.2 Hz, 1C, C6), 129.6 (1C, C17), 129.4 (2C, C16,18), 129.3 (2C, C15,19), 124.0 (d, J = 9.0 Hz, 2C, C7,11), 122.7 (1C, C5), 120.9 (1C, C4), 117.6 (d, J = 23.6 Hz, 2C, C8,10), 53.6 (1C, C13). 19F NMR (282 MHz, CDCl3) δ −109.36 (h, 1F). HMRS (ES+): Calc. for C16H14FN2 253.1147, found 253.1141.
- 1H NMR (400 MHz, CDCl3): δ 11.53 (pseudot, J = 1.6 Hz, 1H, H2), 8.29 (t, J = 2.0 Hz, 1H, H4), 7.96 (d, J = 8.4 Hz, 2H, H7,11), 7.67 (t, J = 1.8 Hz, 1H, H5), 7.50–7.45 (d, J = 8.4 Hz, 2H, H8,10), 7.45–7.41 (m, 2H, H15,19), 7.11–7.04 (m, 3H, H16,17,18), 5.57 (s, 2H, H13). 13C NMR (101 MHz, CDCl3): δ 136.9 (1C, C6), 136.0 (1C, C2), 132.9 (1C, C14), 131.5 (q, J = 33.4 Hz, 1C, C9), 129.4 (1C, C17), 129.1 (2C, C16,18), 129.0 (2C, C15,19), 127.4 (q, J = 3.7 Hz, 2C, C8,10), 123.2 (1C, C5), 123.0 (q, J = 272.7 Hz, 1C, C12), 121.8 (2C, C7,11), 121.2 (1C, C4), 53.2 (1C, C13). 19F NMR (376 MHz, CDCl3): δ −63.04 (3F). HMRS (ES+): Calc. for C17H14F3N2 303.1112, found 303.1109.
- 1H NMR (400 MHz, CDCl3) δ 11.83 (s, 1H, H2), 7.94 (d, J = 8.5 Hz, 2H, H7,11), 7.70 (s, 1H, H4), 7.65–7.58 (m, 2H, H8,10), 7.47 (s, 1H, H5), 7.45–7.37 (m, 5H, H15,16,17,18,19), 5.80 (s, 2H, H13). 13C NMR (75 MHz, CDCl3) δ 150.0 (1C, C9), 137.1 (1C, C6), 132.8 (1C, C2), 132.7 (1C, C14), 129.7 (1C, C17), 129.5 (2C, C16,18), 129.4 (2C, C15,19), 123.6 (2C, C7,11), 122.8 (2C, C8,10), 122.7 (1C, C5), 120.6 (1C, C4), 120.2 (q, J = 259.3 Hz, 1C, C12), 53.9 (1C, C13). 19F NMR (282 MHz, CDCl3) δ −57.97 (3F). HMRS (ES+): Calc. For C17H14F3N2O, 319.1063, found 319.1058.
- 1H NMR (400 MHz, CDCl3) δ 11.62 (t, J = 1.6 Hz, 1H, H2), 8.00 (t, J = 1.9 Hz, 1H, H4), 7.91 (ddd, J = 8.2, 2.3, 0.9 Hz, 1H, H9), 7.81 (t, J = 1.8 Hz, 1H, H5), 7.69–7.60 (m, 3H, H11,15,19), 7.53 (t, J = 8.3 Hz, 1H, H10), 7.31–7.25 (m, 4H, H7,16,17,18), 5.77 (s, 2H, H13). 13C NMR (101 MHz, CDCl3) δ 150.0 (d, J = 2.1 Hz), 136.5 (1C, C8), 135.6 (1C, C6), 133.1 (1C, C2), 132.1 (1C, C14), 129.5 (1C, C10), 129.3 (1C, C17), 129.3 (2C, C16,18), 123.4 (2C, C15,19), 122.0 (1C, C5), 120.9 (1C, C11), 120.4 (1C, C4), 120.2 (q, J = 259.4 Hz, 1C, C12), 114.6 (1C, C9), 53.5 (1C, C7). 19F NMR (282 MHz, CDCl3) δ −57.86 (3F). HMRS (ES+): Calc. For C17H14F3N2O 319.1063, found 319.1058.
- 1H NMR (400 MHz, CDCl3) δ 10.78 (s, 1H), 7.58 (t, J = 1.6 Hz, 1H), 7.44–7.37 (m, 5H), 7.16 (t, J = 1.6 Hz, 1H), 5.57 (s, 2H), 4.55–4.39 (m, 2H), 2.89–2.72 (m, 2H), 2.46 (t, J = 5.3 Hz, 4H), 1.53 (m, 4H), 1.48–1.35 (m, 2H). 13C NMR (75 MHz, DMSO-d6): δ 137.7 (1C, C2), 135.0 (1C, benzyl), 129.4 (2C, benzyl), 129.2 (1C, benzyl), 128.9 (2C, benzyl), 123.3 (1C, C5), 123.2 (1C, C4), 54.6 (1C, C6), 52.8 (2C, C10), 52.5 (1C, C7), 43.5 (1C, C8), 22.4 (2C, C11), 21.7 (1C, C12).
- 1H NMR (300 MHz, CDCl3) δ 11.13 (s, 1H, H2), 8.54 (dd, J = 4.8, 1.7 Hz, 1H, H11), 7.87–7.69 (m, 2H, H8,9), 7.59 (d, J = 1.8 Hz, 1H, H5), 7.48–7.36 (m, 5H, H15,16,17,18,19), 7.34–7.24 (m, 1H, H10), 7.15 (d, J = 1.8 Hz, 1H, H4), 5.77 (s, 2H, H6), 5.52 (s, 2H, H13).
- 1H NMR (400 MHz, CD3OD) δ 10.02 (t, J = 1.7 Hz, 1H, H2), 8.74 (dq, J = 5.2, 0.9 Hz, 1H, H18), 8.55–8.52 (m, 2H, H7, H11), 8.37 (t, J = 1.9 Hz, 1H, H5), 8.33–8.30 (m, 1H, H9), 8.20 (td, J = 7.8, 1.8 Hz, 1H, H16), 8.02 (t, J = 1.7 Hz, 1H, H4), 7.84 (dt, J = 7.9, 1.0 Hz, 1H, H15), 7.69 (ddd, J = 7.8, 5.2, 1.1 Hz, 1H, H17), 5.87 (s, 2H, H13). 13C NMR (101 MHz, CD3OD) δ 150.4 (s, 2C, C7, C11), 146.9 (s, 1C, C18), 142.0 (s, 1C, C2), 137.7 (s, 1C, C16), 136.5 (s, 1C, C14), 133.3 (q, J = 34.5 Hz, 2C, C8, C10), 125.5 (s, 1C, C5), 125.0 (s, 1C, C4), 124.0 (d, J = 4.3 Hz, C6), 123.6 (hept, J = 3.9 Hz, C9), 122.6 (q, J = 272.6 Hz, 2C, C12, C12′), 122.4 (d, J = 5.5 Hz, C17), 52.3 (s, 1C, C13). 19F NMR (282 MHz, CD3OD) δ −64.23 (6F). HMRS (ES+): Calc. For C17H12F6N3 372.0935, found 372.0942.
- Synthesis of gold complexes 13 to 19
- 1H NMR (400 MHz, CDCl3) δ 7.65–7.59 (m, 2H, H7,11), 7.43–7.36 (m, 5H, H15,16,17,18,19), 7.22–7.17 (m, 2H, H8,10), 7.16 (d, J = 2.0 Hz, 1H, H4), 7.04 (d, J = 2.0 Hz, 1H, H5), 5.48 (s, 2H, H13). 13C NMR (101 MHz, CDCl3) δ 171.0 (1C, C2), 162.6 (d, J = 250.3 Hz, 1C, C9), 135.0 (d, J = 3.3 Hz, 1C, C6), 134.6 (1C, C14), 129.2 (2C, C16,18), 129.0 (1C, C17), 128.3 (2C, C15,19), 126.8 (d, J = 8.8 Hz, 2C, C7,11), 122.2 (1C, C5), 120.9 (1C, C4), 116.7 (d, J = 23.1 Hz, 2C, C8,10), 55.7 (1C, C13). 19F NMR (376 MHz, DMSO-d6) δ −112.59. HMRS (ES+): Calc. For C18H16AuFN3 (M+ + CH3CN) 490.1000, found 490.0994.
- 1H NMR (400 MHz, CDCl3) δ 7.90–7.77 (m, 4H, H7,8,10,11), 7.47–7.38 (m, 5H, H15,16,17,18,19), 7.25 (d, J = 2.0 Hz, 1H, H4), 7.11 (d, J = 2.0 Hz, 1H, H5), 5.52 (s, 2H, H13). 13C NMR (101 MHz, CDCl3) δ 171.2 (1C, C2), 141.6 (1C, C6), 134.3 (1C, C14), 131.5 (q, J = 33.2 Hz, 1C, C9), 129.3 (2C, C16,18), 129.1 (1C, C17), 128.4 (2C, C15,19), 127.1 (q, J = 3.8 Hz, 2C, C8,10), 125.2 (2C, C7,11), 123.4 (q, J = 272.7 Hz, 1C, C12), 121.8 (1C, C5), 121.4 (1C, C4), 55.9 (1C, C13). 19F NMR (282 MHz, DMSO-d6) δ −61.03. HMRS (ES+): Calc. For C19H16AuF3N3 (M+ + CH3CN) 540.0962, found 540.0963.
- 1H (400 MHz, CDCl3) δ 7.77–7.71 (m, 2H, H7,11), 7.46–7.40 (m, 5H, H15,16,17,18,19), 7.40–7.35 (m, 2H, H8,10), 7.21 (d, J = 2.0 Hz, 1H, H4), 7.08 (d, J = 2.0 Hz, 1H, H5), 5.52 (s, 2H, H13). 13C NMR (101 MHz, CDCl3) δ 171.0 (1c, C2), 149.4 (1C, C9), 137.2 (1C, C6), 134.4 (1C, C14), 129.3 (2C, C16,18), 129.1 (1C, C17), 128.3 (2C, C15,19), 126.4 (2C, C7,11), 122.1 (2C, C8,10), 122.1(1C, C5), 121.6 (1C, C12), 121.1 (1C, C4), 55.8(1C, C13). 19F NMR (376 MHz, DMSO-d6) δ −56.85 (3F). HMRS (DCI-CH4+): Calc. For C17H13AuF3N2O 515.0635, found 515.0646.
- 1H NMR (400 MHz, CDCl3) δ 7.75 (ddd, J = 8.1, 2.1, 0.9 Hz, 1H, H11), 7.58 (t, J = 8.2 Hz, 1H, H10), 7.51–7.46 (m, 1H, H7), 7.46–7.36 (m, 5H, H15,16,17,18,19), 7.37 (ddt, J = 7.3, 2.2, 1.1 Hz, 1H, H9), 7.23 (d, J = 2.0 Hz, 1H, H4), 7.09 (d, J = 2.1 Hz, 1H, H-5), 5.51 (s, 2H, H13). 13C NMR (101 MHz, CDCl3) δ 171.1 (1C, C2), 149.6 (d, J = 2.0 Hz, 1C, C8), 140.0 (1C, C6), 134.4 (1C, C14), 131.1 (1C, C10), 129.3 (2C, C16,18), 129.1 (1C, C17), 128.4 (2C, C15,19), 123.3 (1C, C9), 122.0 (1C, C5), 121.5 (1C, C4), 121.2 (1C, C11), 120.3 (q, J = 258.8 Hz, 1C, C12), 117.6 (1C, C7), 55.8 (1C, C13). 19F NMR (376 MHz, DMSO-d6) δ −56.77 (3F). HMRS (DCI-CH4+): Calc. For C17H13AuF3N2O 515.0657, found 515.0646.
- 1H NMR (400 MHz, CDCl3) δ 8.73–8.55 (m, 1H), 8.19 (s, 2H), 8.02 (s, 1H), 7.85–7.74 (m, 1H), 7.63 (dt, J = 7.8, 1.2 Hz, 1H), 7.55 (s, 1H), 7.37–7.32 (m, 1H), 5.61 (d, J = 1.7 Hz, 2H). 13C NMR (101 MHz, CDCl3) δ 175.5 (s, 1C), 153.8 (s, 1C), 150.0 (s, 1C), 140.2 (s, 1C), 137.7 (s, 1C), 133.4 (q, J = 34.5 Hz, 1C), 125.3 (s, 1C), 123.9 (s, 1C), 123.5 (s, 1C), 123.1 (d, J = 8.8 Hz, 1C), 122.4 (d, J =272.37 Hz, 1C), 121.1 (s, 1C), 57.0 (s, 1C). 19F NMR (376 MHz, CDCl3) δ −62.93 (6F). HMRS (DCI-CH4+): Calc. For C18H12AuF6N2 567.0568, found 567.0570.
- 1H NMR (300 MHz, CDCl3) δ 7.42–7.29 (m, 6H, H4,16,17,18,19,20), 6.88 (d, J = 1.9 Hz, 1H, H5), 5.37 (s, 2H, H14), 4.55 (t, J = 6.7 Hz, 2H, H6), 3.09 (t, J = 6.7 Hz, 2H, H7), 2.77 (t, J = 5.6 Hz, 4H, H9,13), 1.85–1.72 (m, 4H, H10,12), 1.61–1.50 (m, 2H, H11). 13C NMR (101 MHz, CDCl3) δ 170.9 (1C, C2), 134.8 (1C, C15), 129.2 (2C, C17,19), 128.9 (1C, C18), 128.0 (2C, C16,20), 122.5 (1C, C5), 120.3 (1C, C4), 57.8 (1C, C6), 55.3 (1C, C7), 54.4 (1C, C14), 29.7 (2C, C9,13), 24.3 (2C, C10,12), 22.9 (1C, C11). HMRS (ES+): Calc. For C17H23AuN3+ 466.1556, found 466.1551.
- 1H NMR (400 MHz, CDCl3) δ 7.57–7.49 (m, 4H, H7,11), 7.36 (d, J = 2.0 Hz, 2H, H4), 7.35–7.32 (m, 6H, H16,17,18), 7.31 (d, J = 1.9 Hz, 2H, H5), 7.27–7.18 (m, 4H, H15,19), 7.06–6.98 (m, 4H, H8,10), 5.38 (s, 4H, H13).13C NMR (75 MHz, CDCl3) δ 182.2 (2C, C2), 162.5 (d, J = 250.4 Hz, 2C, C9), 135.2 (2C, C14), 135.0 (d, J = 3.0 Hz, 2C, C6), 129.1 (4C, C16,18), 128.7 (2C, C17), 127.6 (4C, C15,19), 126.8 (d, J = 8.9 Hz, 4C, C7,11), 123.2 (2C, C4), 123.0 (2C, C5), 116.5 (d, J = 23.2 Hz, 2C, C8,10), 54.9 (2C, C13). 19F NMR (282 MHz, CDCl3) δ −110.93 (hept, 2F). HMRS (ES+): Calc. For C32H26AuF2N4+ 701.1791, found 701.1777.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Anastas, P.T.; Warner, J.C. Green Chemistry: Theory and Practice; Oxford University Press: New York, NY, USA, 1998; p. 30. [Google Scholar]
- Baig, R.B.N.; Varma, R.S. Alternative Energy Input: Mechanochemical, Microwave and Ultrasound-Assisted Organic Synthesis. Chem. Soc. Rev. 2012, 41, 1559–1584. [Google Scholar] [CrossRef]
- Aleksanyan, D.V.; Kozlov, V.A. Mechanochemical tools in the synthesis of organometallic compounds. Mendeleev Commun. 2023, 33, 287–301. [Google Scholar] [CrossRef]
- Rosenberg, B.; VanCamp, L.; Trosko, J.E.; Mansour, V.H. Platinum compounds: A new class of potent antitumor agents. Nature 1969, 222, 385–386. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, B. Platinum complexes for the treatment of cancer. Interdiscipl. Sci. Rev. 1978, 3, 134–147. [Google Scholar] [CrossRef]
- Mertens, R.T.; Gukathasan, S.; Arojojoye, A.S.; Olelewe, C.; Awuah, S.G. Next Generation Gold Drugs and Probes: Chemistry and Biomedical Applications. Chem. Rev. 2023, 123, 6612–6667. [Google Scholar] [CrossRef] [PubMed]
- Arojojoye, A.S.; Awuah, S.G. Functional utility of gold complexes with phosphorus donor ligands in biological systems. Coord. Chem. Rev. 2025, 522, 216208. [Google Scholar] [CrossRef] [PubMed]
- Herrera, R.P.; Gimeno, M.C. Main Avenues in Gold Coordination Chemistry. Chem. Rev. 2021, 121, 8311–8363. [Google Scholar] [CrossRef]
- Nayak, S.; Gaonkar, S.L. Coinage Metal N-Heterocyclic Carbene Complexes: Recent Synthetic Strategies and Medicinal Applications. ChemMedChem 2021, 16, 1360–1390. [Google Scholar] [CrossRef] [PubMed]
- Mora, M.; Gimeno, M.C.; Visbal, R. Recent advances in gold-NHC complexes with biological properties. Chem. Soc. Rev. 2019, 48, 447–462. [Google Scholar] [CrossRef] [PubMed]
- Dominelli, B.; Correia, J.D.G.; Kuehn, F.E. Medicinal Applications of Gold(I/III)-Based Complexes Bearing N-Heterocyclic Carbene and Phosphine Ligands. J. Organomet. Chem. 2018, 866, 153–164. [Google Scholar] [CrossRef]
- Beillard, A.; Golliard, E.; Gillet, V.; Bantreil, X.; Métro, T.-X.; Martinez, J.; Lamaty, F. Expedient Mechanosynthesis of N,N-Dialkyl Imidazoliums and Silver(I)–Carbene Complexes in a Ball-Mill. Chem. Eur. J. 2015, 21, 17614–17617. [Google Scholar] [CrossRef]
- Beillard, A.; Bantreil, X.; Métro, T.-X.; Martinez, J.; Lamaty, F. Mechanochemistry for facilitated access to N,N-diaryl NHC metal complexes. New J. Chem. 2017, 41, 1057–1063. [Google Scholar] [CrossRef]
- Pisanò, G.; Cazin, C.S.J. Mechanochemical synthesis of Cu(I)-N-heterocyclic carbene complexes. Green Chem. 2020, 22, 5253. [Google Scholar] [CrossRef]
- Pisanò, G.; Cazin, C.S.J. General Mechanochemical Synthetic Protocol to Late Transition Metal−NHC (N-Heterocyclic Carbene) Complexes. ACS Sustain. Chem. Eng. 2021, 9, 9625–9631. [Google Scholar] [CrossRef]
- Stoppa, V.; Battistel, E.; Baron, M.; Sgarbossa, P.; Biffis, A.; Bottaro, G.; Armelao, L.; Tubaro, C. Dinuclear gold(I) Complexes with Bidentate NHC Ligands as Precursors for Alkynyl Complexes via Mechanochemistry. Molecules 2022, 27, 4317. [Google Scholar] [CrossRef]
- Ftouh, S.; Bourgeade-Delmas, S.; Belkadi, M.; Deraeve, C.; Hemmert, C.; Valentin, A.; Gornitzka, H. Synthesis, Characterization, and Antileishmanial Activity of Neutral Gold(I) Complexes with N-heterocyclic Carbene Ligands Bearing Sulfur-Containing Side Arms. Organometallics 2021, 40, 1466–1473. [Google Scholar] [CrossRef]
- Zhang, C.; Fortin, P.-Y.; Barnoin, G.; Qin, X.; Wang, X.; Fernandez Alvarez, A.; Bijani, C.; Maddelein, M.-L.; Hemmert, C.; Cuvillier, O.; et al. An Artemisinin-Derivative–(NHC)Gold(I) Hybrid with Enhanced Cytotoxicity through Inhibition of NRF2 Transcriptional Activity. Angew. Chem. Int. Ed. 2020, 59, 12062–12068. [Google Scholar] [CrossRef]
- Zhang, C.; Hemmert, C.; Gornitzka, H.; Cuvillier, O.; Zhang, M.; Sun, R.W.-Y. Cationic and Neutral N-Heterocyclic Carbene Gold(I) Complexes: Cytotoxicity, NCI-60 Screening, Cellular Uptake, Inhibition of Mammalian Thioredoxin Reductase, and Reactive Oxygen Species Formation. ChemMedChem 2018, 13, 1218–1229. [Google Scholar] [CrossRef] [PubMed]
- Gornitzka, H.; Valentin, A.; Bourgeade-Delmas, S.; Hemmert, C. Gold(I) Complexes with Fluorinated N-Heterocyclic Carbene Ligands and Use Thereof as Therapeutic Agents. Patent WO2022101588, 19 May 2022. [Google Scholar]
- Frutsaert, G.; Delon, L.; David, G.; Améduri, B.; Jones, D.J.; Glipa, X.; Rozière, J. Synthesis and Properties of New Fluorinated Polymers Bearing Pendant Imidazole Groups for Fuel Cell Membranes Operating Over a Broad Relative Humidity Range. J. Polym. Sci. Part A Polym. Chem. 2010, 48, 223–231. [Google Scholar] [CrossRef]
- Salami, S.A.; Safari, J.B.; Smith, V.J.; Krause, R.W.M. Mechanochemically-Assisted Passerini Reactions: A Practical and Convenient Method for the Synthesis of Novel α-Acyloxycarboxamide Derivatives. ChemistryOpen 2023, 12, e202200268. [Google Scholar] [CrossRef] [PubMed]
- Huskić, I.; Lennox, C.B.; Friščić, T. Accelerated ageing reactions: Towards simpler, solvent-free, low energy chemistry. Green Chem. 2020, 22, 5881–5901. [Google Scholar] [CrossRef]
- Caley, E.R.; Richards, J.F.C. Theophrastus on Stones, Introduction, Greek Text, English translation, and Commentary; Graduate School Monographs, The Ohio State University: Columbus, OH, USA, 1956. [Google Scholar]
- Owen, C.P.; Dhanani, S.; Patel, C.H.; Shahida, I.; Ahmeda, S. Synthesis and biochemical evaluation of a range of potent benzyl imidazole-based compounds as potential inhibitors of the enzyme complex 17a-hydroxylase/17,20-lyase (P45017a). Bioorg. Med. Chem. Lett. 2006, 16, 4011–4015. [Google Scholar] [CrossRef] [PubMed]
- Chiu, P.L.; Lai, C.-L.; Chang, C.-F.; Hu, C.-H.; Lee, H.M. Synthesis, Structural Characterization, Computational Study, and Catalytic Activity of Metal Complexes Based on Tetradentate Pyridine/N-Heterocyclic Carbene Ligand. Organometallics 2005, 24, 6169–6178. [Google Scholar] [CrossRef]
- Barbante, G.J.; Francis, P.S.; Hogan, C.F.; Kheradmand, P.R.; Wilson, D.J.D.; Barnard, P.J. Electrochemiluminescent Ruthenium(II) N-Heterocyclic Carbene Complexes: A Combined Experimental and Theoretical Study. Inorg. Chem. 2013, 52, 7448–7459. [Google Scholar] [CrossRef]
- Wang, R.; Xiao, J.-C.; Twamley, B.; Shreeve, J.M. Efficient Heck reactions catalyzed by a highly recyclable palladium(II) complex of a pyridyl-functionalized imidazolium-based ionic liquid. Org. Biomol. Chem. 2007, 5, 671–678. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, S.; Jin, G.-X. Preparation, Structure, and Olefin Polymerization Behavior of Functionalized Nickel(II) N-Heterocyclic Carbene Complexes. Organometallics 2004, 23, 6002–6007. [Google Scholar] [CrossRef]
Entry | Imidazole | Benzyl Chloride | Additional Base | Reaction Time and rpm | Conversion [%] | Yields [%] |
---|---|---|---|---|---|---|
1 | 1 eq. | 1 eq. | - | 4 × 45 (5′) 800 | 46 | 18 |
2 | 2 eq. | 1 eq. | - | 4 × 45 (5′) 800 | 74 | 39 |
3 | 2.5 eq. | 1 eq. | - | 4 × 45 (5′) 800 | 76 | 73 |
4 | 5 eq. | 1 eq. | - | 4 × 45 (5′) 800 | 99 | 99 |
5 | 5 eq. | 1 eq. | - | 4 × 45 (5′) 500 | 95 | 92 |
6 | 1 eq. | 1 eq. | 1 eq. K2CO3 | 4 × 45 (5′) 800 | 83 | 43 |
7 | 1 eq. | 1 eq. | 1.6 eq. NaOH | 4 × 45 (5′) 800 | 74 | 62 |
8 | 1 eq. | 1 eq. | 2 eq. KOH | 4 × 45 (5′) 800 | 93 | 76 |
Entry | Compound | Imidazole | Halogenated Reagent | Additional Base | Reaction Time and rpm | Yields [%] |
---|---|---|---|---|---|---|
9 | 2 | 5 eq. | 1 eq. PyCH2Br·HBr | 4 × 45 (5′) 800 | - | |
10 | 2 | 1 eq. | 1 eq. PyCH2Br·HBr | 2 eq. KOH | 4 × 45 (5′) 800 | 55 |
11 | 2 | 5 eq. | 1 eq. PyCH2Br·HBr | LAG THF | 4 × 45 (5′) 800 | 68 |
12 | 2 | 5 eq. | 1 eq. PyCH2Br·HBr | 1 eq. KOH, LAG THF | 4 × 45 (5′) 800 | 72 |
13 | 2 | 1 eq. | 1 eq. PyCH2Br·HBr | 4 eq. KOH, LAG THF | 4 × 45 (5′) 800 | 68 |
14 | 3 | 1 eq. | 1 eq. PyBr | 1 eq. KOH | 4 × 45 (5′) 800 | - |
15 | 3 | 1 eq. | 2 eq. PyBr | 2 eq. KOH | 4 × 45 (5′) 800 | - |
16 | 3 | 1 eq. | 1 eq. PyBr | 2 eq. K2CO3, 0.1 eq. CuSO4 | 4 × 45 (5′) 800 | - |
17 | 3 | 5 eq. | 1 eq. PyBr | 0.2 eq. Cu | 4 × 45 (5′) 800 | 50 |
18 | 3 | 5 eq. | 1 eq. PyBr | 1 eq. KOH + 0.2 eq. Cu | 4 × 45 (5′) 800 | 37 |
19 | 3 | 5 eq. | 1 eq. PyBr | 0.2 eq. Cu, LAG THF | 4 × 45 (5′) 25 (800) | 29 (27) |
20 | 4 | 5 eq. | 1 eq. PipEtCl·HCl | 4 × 45 (5′) 800 | 64 | |
21 | 4 | 5 eq. | 1 eq. PipEtCl·HCl | 1 eq. KOH | 4 × 45 (5′) 800 | 64 |
Entry | Imidazolium Salt | R′ | R″ | Equivalence Imidazole-R′:R″-X | rpm or Hz | Conversion [%] | Yield [%] |
---|---|---|---|---|---|---|---|
22 | 5 | p-F | Bn | 1:1.1 | 800 | 42 | 18 |
23 | 6 | p-CF3 | Bn | 1:1.1 | 800 | 69 | 60 |
24 | 6 | p-CF3 | Bn | 1:1.1 | 300 | 35 | 26 |
25 | 7 | p-OCF3 | Bn | 1:1.1 | 800 | 46 | 46 |
26 | 8 | m-OCF3 | Bn | 1:1.1 | 25 | 42 | 41 |
27 | 8 | m-OCF3 | Bn | 1:1.1 | 10 | 7 | 13 |
28 | 9 | Bis-CF3 | Bn | 1:1.1 | 25 | 0 | - |
29 | 9 | Bis-CF3 | Bn | 1:1.1 | 800 | 0 | - |
30 | 9 | Bis-CF3 | Bn | 1:1.1 | 800 with alumina | 0 | - |
31 | 9 | Bis-CF3 | Bn | 1:10 | 800 | 5 | - |
32 | 10 | PipEt | Bn | 1:1.1 | 25 | 74 | 67 |
33 | 11 | PyCH2 | Bn | 1:1.1 | 25 | 43 | 81 |
34 | 12 | Bis-CF3 | PyCH2 | 1:1 | 800 | 70 | 72 |
Entry | Imidazolium Salt | R′ | R″ | Equivalence Imidazole-R′:R″-X | rpm or Hz | Conversion * [%] | Yields [%] |
---|---|---|---|---|---|---|---|
35 | 6 | p-CF3 | Bn | 1:1.1 | 300 with aging | 11 (68) | 44 |
36 | 8 | m-OCF3 | Bn | 1:1.1 | 25 with aging | 20 (90) | 54 |
37 | 8 | m-OCF3 | Bn | 1:1.1 | 10 with aging | 2 (90) | 48 |
Entry | Complex | R′ | R″ | Base Reaction Time | Au(SMe2)Cl Reaction Time | NHCAuCl Yield [%] |
---|---|---|---|---|---|---|
38 | 13 | p-F | Bn | 0.5 eq. Ag2O 30′ | 1.1 eq. 1 h | 63 |
39 | 14 | p-CF3 | Bn | 0.5 eq. Ag2O 30′ | 1.1 eq. 1 h | 41 |
40 | 15 | p-OCF3 | Bn | 0.5 eq. Ag2O 30′ | 1.1 eq. 1 h | 6 |
41 | 16 | m-OCF3 | Bn | 0.5 eq. Ag2O 30′ | 1.1 eq. 1 h | 50 |
42 | 17 | Bis-CF3 | Bn | 0.5 eq. Ag2O 30′ | 1.1 eq. 1 h | 54 |
43 | 18 | PipEt | Bn | 0.5 eq. Ag2O 2 h | 1.1 eq. 1 h | 83 |
44 | 13 | p-F | Bn | 0.5 eq. Ag2O 2 h | 1.2 eq. 1 h with 20 Hz | 38 |
Entry | Complex | R′ | R″ | Base, Reaction Time | Au(SMe2)Cl, Reaction Time | [AubisNHC]X Yields [%] |
---|---|---|---|---|---|---|
45 | 19 | p-F | Bn | 0.5 eq Ag2O, 30′ | 0.5 eq., 1 h | 84 |
46 | 19 | p-F | Bn | 0.6 eq. K2CO3, 30′ | 0.5 eq., 1 h | 36 |
47 | 19 | p-F | Bn | 1.2 eq. K2CO3, 1 h | 0.5 eq., 2 h | 43 |
48 | 19 | p-F | Bn | 1 eq. K2CO3, 30′ | 0.5 eq. 1 h | 73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salis, C.; Mohammedi, S.; Turazza, L.; Blandin, Y.; Garnier, M.; Hemmert, C.; Baltas, M.; Gornitzka, H. Mechanochemistry to Form Substituted Imidazoles, Imidazolium Salts and NHC–Gold Complexes with Fluorine-Containing Groups. Molecules 2025, 30, 522. https://doi.org/10.3390/molecules30030522
Salis C, Mohammedi S, Turazza L, Blandin Y, Garnier M, Hemmert C, Baltas M, Gornitzka H. Mechanochemistry to Form Substituted Imidazoles, Imidazolium Salts and NHC–Gold Complexes with Fluorine-Containing Groups. Molecules. 2025; 30(3):522. https://doi.org/10.3390/molecules30030522
Chicago/Turabian StyleSalis, Chloé, Sabrina Mohammedi, Lucia Turazza, Yuna Blandin, Maritie Garnier, Catherine Hemmert, Michel Baltas, and Heinz Gornitzka. 2025. "Mechanochemistry to Form Substituted Imidazoles, Imidazolium Salts and NHC–Gold Complexes with Fluorine-Containing Groups" Molecules 30, no. 3: 522. https://doi.org/10.3390/molecules30030522
APA StyleSalis, C., Mohammedi, S., Turazza, L., Blandin, Y., Garnier, M., Hemmert, C., Baltas, M., & Gornitzka, H. (2025). Mechanochemistry to Form Substituted Imidazoles, Imidazolium Salts and NHC–Gold Complexes with Fluorine-Containing Groups. Molecules, 30(3), 522. https://doi.org/10.3390/molecules30030522