Effectively Enhanced Photocatalytic Performance of BP/BiOBr 2D/2D Z-Scheme Heterojunction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of BP/BiOBr Heterojunction
2.2. Characterization
2.3. Photocatalytic Activity
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bie, C.; Wang, L.; Yu, J. Challenges for photocatalytic overall water splitting. Chem 2022, 8, 1567–1574. [Google Scholar] [CrossRef]
- Lakhera, S.K.; Rajan, A.; Rugma, T.P.; Bernaurdshaw, N. A review on particulate photocatalytic hydrogen production system: Progress made in achieving high energy conversion efficiency and key challenges ahead. Renew. Sustain. Energy Rev. 2021, 152, 111694. [Google Scholar] [CrossRef]
- Yan, X.; Xia, M.; Liu, H.; Zhang, B.; Chang, C.; Wang, L.; Yang, G. An electron-hole rich dual-site nickel catalyst for efficient photocatalytic overall water splitting. Nat. Commun. 2023, 14, 1741. [Google Scholar] [CrossRef]
- Ali, S.A.; Ahmad, T. Treasure trove for efficient hydrogen evolution through water splitting using diverse perovskite photocatalysts. Mater. Today Chem. 2023, 29, 101387. [Google Scholar] [CrossRef]
- Saravanan, A.; Kumar, P.S.; Jeevanantham, S.; Anubha, M.; Jayashree, S. Degradation of toxic agrochemicals and pharmaceutical pollutants: Effective and alternative approaches toward photocatalysis. Environ. Pollut. 2022, 298, 118844. [Google Scholar] [CrossRef] [PubMed]
- Luo, D.; Yin, H.; Li, J.; Tian, B.; Li, H.; Li, Y.; Li, C.; Zhang, Y.; Chen, M.; Jing, Y. Construction of CoS@ZnIn2S4-Ce heterostructured cage for high-efficiently photocatalytic degradation of the contaminants produced by tobacco. Chem. Eng. J. 2023, 457, 141172. [Google Scholar] [CrossRef]
- Lu, Y.; Cai, Y.; Zhang, S.; Zhuang, L.; Hu, B.; Wang, S.; Chen, J.; Wang, X. Application of biochar-based photocatalysts for adsorption-(photo)degradation/reduction of environmental contaminants: Mechanism, challenges and perspective. Biochar 2022, 4, 45. [Google Scholar] [CrossRef]
- Chen, Y.; Guan, B.; Wu, X.; Guo, J.; Ma, Z.; Zhang, J.; Jiang, X.; Bao, S.; Cao, Y.; Yin, C.; et al. Research status, challenges and future prospects of renewable synthetic fuel catalysts for CO2 photocatalytic reduction conversion. Environ. Sci. Pollut. Res. 2023, 30, 11246–11271. [Google Scholar] [CrossRef] [PubMed]
- Belessiotis, G.V.; Kontos, A.G. Plasmonic silver (Ag)-based photocatalysts for H2 production and CO2 conversion: Review, analysis and perspectives. Renew. Energy 2022, 195, 497–515. [Google Scholar] [CrossRef]
- Wang, S.; Song, D.; Liao, L.; Li, M.; Li, Z.; Zhou, W. Surface and interface engineering of BiOCl nanomaterials and their photocatalytic applications. Adv. Colloid Interface Sci. 2024, 324, 103088. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.; Wang, X.; Hao, S.; Zhang, X.; Wang, X.; Ma, W.; Zhao, G.; Xu, X. Recent advances in the improvement of g-C3N4 based photocatalytic materials. Chin. Chem. Lett. 2021, 32, 13–20. [Google Scholar] [CrossRef]
- Jin, X.; Cao, J.; Wang, H.; Lv, C.; Xie, H.; Su, F.; Li, X.; Sun, R.; Shi, S.; Dang, M.; et al. Realizing improved CO2 photoreduction in Z-scheme Bi4O5Br2/AgBr heterostructure. Appl. Surf. Sci. 2022, 598, 153758. [Google Scholar] [CrossRef]
- Akhsassi, B.; Ettahiri, Y.; Bakiz, B.; Taoufyq, A.; Villain, S.; Favotto, C.; Guinneton, F.; Gavarri, J.R.; Benlhachemi, A. Novel Z-scheme Bi3O4Cl/Bi24O31Cl10 2D/3D heterojunction for enhanced photocatalytic activity under visible light. Colloid. Surf. A 2023, 673, 131762. [Google Scholar] [CrossRef]
- Bi, R.; Liu, J.; Zhou, C.; Shen, Y.; Liu, Z.; Wang, Z. In situ synthesis of g-C3N4/TiO2 heterojunction by a concentrated absorption process for efficient photocatalytic degradation of tetracycline hydrochloride. Environ. Sci. Pollut. R. 2023, 30, 55044–55056. [Google Scholar] [CrossRef]
- Wang, L.; Bie, C.; Yu, J. Challenges of Z-scheme photocatalytic mechanisms. Trends Chem. 2022, 4, 973–983. [Google Scholar] [CrossRef]
- Liao, G.; Li, C.; Liu, S.-Y.; Fang, B.; Yang, H. Z-scheme systems: From fundamental principles to characterization, synthesis, and photocatalytic fuel-conversion applications. Phys. Rep. 2022, 983, 1–41. [Google Scholar] [CrossRef]
- Malefane, M.E.; Mafa, P.J.; Managa, M.; Nkambule, T.T.I.; Kuvarega, A.T. Understanding the Principles and Applications of Dual Z-Scheme Heterojunctions: How Far Can We Go? J. Phys. Chem. Lett. 2023, 14, 1029–1045. [Google Scholar] [CrossRef]
- Goren, A.Y.; Gungormus, E.; Vatanpour, V.; Yoon, Y.; Khataee, A. Recent Progress on Synthesis and Properties of Black Phosphorus and Phosphorene As New-Age Nanomaterials for Water Decontamination. ACS Appl. Mater. Interfaces 2024, 16, 20055–20078. [Google Scholar] [CrossRef]
- Chen, C.; Hu, J.; Yang, X.; Yang, T.; Qu, J.; Guo, C.; Li, C.M. Ambient-Stable Black Phosphorus-Based 2D/2D S-Scheme Heterojunction for Efficient Photocatalytic CO2 Reduction to Syngas. ACS Appl. Mater. Interfaces 2021, 13, 20162–20173. [Google Scholar] [CrossRef]
- Liu, F.; Shi, R.; Wang, Z.; Weng, Y.; Che, C.-M.; Chen, Y. Direct Z-Scheme Hetero-phase Junction of Black/Red Phosphorus for Photocatalytic Water Splitting. Angew. Chem. Int. Ed. 2019, 58, 11791–11795. [Google Scholar] [CrossRef]
- Sang, D.K.; Wang, H.; Guo, Z.; Xie, N.; Zhang, H. Recent Developments in Stability and Passivation Techniques of Phosphorene toward Next-Generation Device Applications. Adv. Funct. Mater. 2019, 29, 1903419. [Google Scholar] [CrossRef]
- Giri, R.K.; Mansingh, S.; Priyadarshini, N.; Panda, J.; Parida, K. A critical review on black phosphorus mediated Z-scheme heterojunctions: Properties, synthesis, and mechanistic insights towards solar H2 evolution. Catal. Sci. Technol. 2024, 14, 1428–1461. [Google Scholar] [CrossRef]
- Zheng, Y.; Chen, Y.; Gao, B.; Lin, B.; Wang, X. Phosphorene-Based Heterostructured Photocatalysts. Engineering 2021, 7, 991–1001. [Google Scholar] [CrossRef]
- Sun, J.; Jiang, C.; Wu, Z.; Liu, Y.; Sun, S. A review on the progress of the photocatalytic removal of refractory pollutants from water by BiOBr-based nanocomposites. Chemosphere 2022, 308, 136107. [Google Scholar] [CrossRef] [PubMed]
- Imam, S.S.; Adnan, R.; Kaus, N.H.M. The photocatalytic potential of BiOBr for wastewater treatment: A mini-review. J. Environ. Chem. Eng. 2021, 9, 105404. [Google Scholar] [CrossRef]
- Meng, L.; Qu, Y.; Jing, L. Recent advances in BiOBr-based photocatalysts for environmental remediation. Chin. Chem. Lett. 2021, 32, 3265–3276. [Google Scholar] [CrossRef]
- Zhao, M.; Qian, H.; Niu, X.; Wang, W.; Guan, L.; Sha, J.; Wang, Y. Growth Mechanism and Enhanced Yield of Black Phosphorus Microribbons. Cryst. Growth Des. 2016, 16, 1096–1103. [Google Scholar] [CrossRef]
- Luo, F.; Wang, D.; Zhang, J.; Li, X.; Liu, D.; Li, H.; Lu, M.; Xie, X.; Huang, L.; Huang, W. Ultrafast Cathodic Exfoliation of Few-Layer Black Phosphorus in Aqueous Solution. ACS Appl. Nano Mater. 2019, 2, 3793–3801. [Google Scholar] [CrossRef]
- Liu, J.; Qin, W.; Wang, Y.; Xu, Q.; Xie, Y.; Chen, Y.; Dai, Y.; Zhang, W. NH2-UiO-66 modification BiOBr enhancement photoreduction CO2 to CO. Sep. Purif. Technol. 2024, 344, 127289. [Google Scholar] [CrossRef]
- Zhu, Y.; Wu, R.; Hui, J.; Zhang, Z.; Wei, S. Exposure to hypoxic Bi2MoO6 nanobelts with {001} crystal faces and face-dependent visible light driven photocatalytic activity. J. Alloys Compd. 2024, 1003, 175609. [Google Scholar] [CrossRef]
- Wang, S.; Ding, X.; Yang, N.; Zhan, G.; Zhang, X.; Dong, G.; Zhang, L.; Chen, H. Insight into the effect of bromine on facet-dependent surface oxygen vacancies construction and stabilization of Bi2MoO6 for efficient photocatalytic NO removal. Appl. Catal. B-Environ. 2020, 265, 118585. [Google Scholar] [CrossRef]
- Xian, T.; Sun, X.; Di, L.; Sun, C.; Li, H.; Ma, C.; Yang, H. Enhancing the piezo-photocatalytic tetracycline degradation activity of BiOBr by the decoration of AuPt alloy nanoparaticles: Degradation pathways and mechanism investigation. Appl. Surf. Sci. 2023, 638, 158136. [Google Scholar] [CrossRef]
- Ai, L.; Zha, M.; Cai, W.; Tan, C.; Guo, N.; Xu, M.; Leng, C.; Ma, Q.; Feng, L.; Zhou, B.; et al. Construction of freestanding BiOBr/CCFs composites: Enhanced carrier separation achieving efficient photocatalytic performance. Chem. Eng. Sci. 2024, 295, 120136. [Google Scholar] [CrossRef]
- Hu, J.; Chen, D.; Mo, Z.; Li, N.; Xu, Q.; Li, H.; He, J.; Xu, H.; Lu, J. Z-Scheme 2D/2D Heterojunction of Black Phosphorus/Monolayer Bi2WO6 Nanosheets with Enhanced Photocatalytic Activities. Angew. Chem. Int. Ed. 2019, 58, 2073–2077. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Cheng, B.; Zhang, L.; Yu, J. In situ Irradiated XPS Investigation on S-Scheme TiO2@ZnIn2S4 Photocatalyst for Efficient Photocatalytic CO2 Reduction. Small 2021, 17, 2103447. [Google Scholar] [CrossRef]
- Su, L.; Gong, D.; Yao, N.; Li, Y.; Li, Z.; Luo, W. Modification of the Intermediate Binding Energies on Ni/Ni3N Heterostructure for Enhanced Alkaline Hydrogen Oxidation Reaction. Adv. Funct. Mater. 2021, 31, 2106156. [Google Scholar] [CrossRef]
- Feng, J.; Cao, M.; Wang, L.; Ran, X.; Xiao, B.; Zhu, J.; Liu, Z.; Cui, X.; Feng, G.; Li, R. Ultra-thin DyFeO3/g-C3N4 p-n heterojunctions for highly efficient photo-Fenton removal of oxytetracycline and antibacterial activity. J. Alloys Compd. 2023, 939, 168789. [Google Scholar] [CrossRef]
- Feng, J.; Ran, X.; Wang, L.; Xiao, B.; Zhang, K.; Zhu, J.; Liu, Z.; Li, C.; Cui, X.; Li, R.; et al. Construction of Bi5O7I/Bi3O4Br heterojunction with abundant oxygen vacancies to enhance photocatalytic performance. J. Environ. Chem. Eng. 2024, 12, 114479. [Google Scholar] [CrossRef]
- Hao, J.; Zhang, Y.; Zhang, L.; Shen, J.; Meng, L.; Wang, X. Restructuring surface frustrated Lewis acid-base pairs of BiOBr through isomorphous Sn doping for boosting photocatalytic CO2 reduction. Chem. Eng. J. 2023, 464, 142536. [Google Scholar] [CrossRef]
- Zhang, M.; Yu, Z.; Zhang, Y.; Sun, L.; Cui, J.; Xiong, J.; Han, Y.; Lu, X. Photocatalytic conversion of 5-hydroxymethylfurfural to 2,5-diformylfuran by S-scheme black phosphorus/CdIn2S4 heterojunction. Catal. Sci. Technol. 2023, 13, 6640–6652. [Google Scholar] [CrossRef]
- Mitchell, E.; Law, A.; Godin, R. Experimental determination of charge carrier dynamics in carbon nitride heterojunctions. Chem. Commun. 2021, 57, 1550–1567. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Sun, M.; Sun, W.; Meng, X.; Huang, X.; Li, Z. Nitrogen-doped graphyne/BiOBr nanocomposites: In-situ sonochemical synthesis and boosted photocatalytic performance. Sep. Purif. Technol. 2022, 301, 122062. [Google Scholar] [CrossRef]
- Li, R.; Xie, F.; Liu, J.; Zhang, C.; Zhang, X.; Fan, C. Room-temperature hydrolysis fabrication of BiOBr/Bi12O17Br2 ZScheme photocatalyst with enhanced resorcinol degradation and NO removal activity. Chemosphere 2019, 235, 767–775. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Liu, X.; Tang, Y.; Zeng, Y.; Wang, L.; Zhang, S.; Cai, T.; Liu, Y.; Luo, S.; Pei, Y.; et al. Positioning cyanamide defects in g-C3N4: Engineering energy levels and active sites for superior photocatalytic hydrogen evolution. Appl. Catal. B Environ. 2018, 237, 24–31. [Google Scholar] [CrossRef]
- Moradian, S.; Badiei, A.; Ziarani, G.M.; Mohajer, F.; Varma, R.S.; Iravani, S. Black Phosphorus-based Photocatalysts: Synthesis, Properties, and Applications. Environ. Res. 2023, 237, 116910. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhang, Y.; Huang, H. Black phosphorus-based heterostructures for photocatalysis and photoelectrochemical water splitting. J. Energy Chem. 2022, 67, 745–779. [Google Scholar] [CrossRef]
- Zhang, K.; Chen, H.; Pei, W.; Dai, H.; Li, J.; Zhu, Y. Enhanced photocatalytic performance of Bi4O5Br2 with three-dimensionally ordered macroporous structure for phenol removal. Nano Res. 2023, 16, 8871–8881. [Google Scholar] [CrossRef]
- Li, Z.; Chen, S.; Li, Z.; Sun, J.; Yang, J.; Wei, J.; Wang, S.; Song, H.; Hou, Y. Visible light driven antibiotics degradation using S-scheme Bi2WO6/CoIn2S4 heterojunction: Mechanism, degradation pathways and toxicity assessment. Chemosphere 2022, 303, 135113. [Google Scholar] [CrossRef] [PubMed]
- Chai, Q.; Dong, J.; Yu, X.; Zhang, X.; Li, J.; Guo, S.; Yang, Y. Photocatalytic activation of oxalic acid over FeOOH loaded FeWO4/WO3 heterojunction for high-efficient degradation of tetracycline. J. Environ. Chem. Eng. 2024, 12, 111728. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, Z.; Liu, C.; Wang, J.; Qiu, M.; Yan, G.; Zhang, K. Boosting Photocatalytic Overall Water Splitting on Direct Z-Scheme BiOBr/ZnIn2S4 Heterostructure by Atomic-Level Interfacial Charge Transport Modulation. ACS Appl. Energy Mater. 2022, 5, 15559–15565. [Google Scholar] [CrossRef]
- Wang, F.; Ma, N.; Zheng, L.; Zhang, L.; Bian, Z.; Wang, H. Interface engineering of p-p Z-scheme BiOBr/Bi12O17Br2 for sulfamethoxazole photocatalytic degradation. Chemosphere 2022, 307, 135666. [Google Scholar] [CrossRef] [PubMed]
- Oladipo, A.A.; Mustafa, F.S. Bismuth-based nanostructured photocatalysts for the remediation of antibiotics and organic dyes. Beilstein J. Nanotechnol. 2023, 14, 291–321. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Tian, C.; Mei, J.; Yang, S.; Wong, P.K. Faster electron injection and higher interface reactivity in g-C3N4/Fe2O3 nanohybrid for efficient photo-Fenton-like activity toward antibiotics degradation. Environ. Res. 2021, 195, 110842. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Guo, W.; Si, Q.; Jia, W.; Zheng, S.; Wang, H.; Zhao, Q.; Luo, H.; Jiang, J.; Ren, N. Atomically dispersed cobalt on carbon nitride for peroxymonosulfate activation: Switchable catalysis enabled by light irradiation. Chem. Eng. J. 2022, 446, 137277. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, J.; Ran, X.; Wang, L.; Xiao, B.; Zhu, J.; Liu, Z.; Li, C.; Li, R.; Feng, G.; Xu, K. Effectively Enhanced Photocatalytic Performance of BP/BiOBr 2D/2D Z-Scheme Heterojunction. Molecules 2025, 30, 538. https://doi.org/10.3390/molecules30030538
Feng J, Ran X, Wang L, Xiao B, Zhu J, Liu Z, Li C, Li R, Feng G, Xu K. Effectively Enhanced Photocatalytic Performance of BP/BiOBr 2D/2D Z-Scheme Heterojunction. Molecules. 2025; 30(3):538. https://doi.org/10.3390/molecules30030538
Chicago/Turabian StyleFeng, Jian, Xia Ran, Li Wang, Bo Xiao, Jinming Zhu, Zuoji Liu, Chaozhong Li, Rong Li, Guangwei Feng, and Ke Xu. 2025. "Effectively Enhanced Photocatalytic Performance of BP/BiOBr 2D/2D Z-Scheme Heterojunction" Molecules 30, no. 3: 538. https://doi.org/10.3390/molecules30030538
APA StyleFeng, J., Ran, X., Wang, L., Xiao, B., Zhu, J., Liu, Z., Li, C., Li, R., Feng, G., & Xu, K. (2025). Effectively Enhanced Photocatalytic Performance of BP/BiOBr 2D/2D Z-Scheme Heterojunction. Molecules, 30(3), 538. https://doi.org/10.3390/molecules30030538