Chemical Biology Meets Metabolomics: The Response of Barley Seedlings to 3,5-Dichloroanthranilic Acid, a Resistance Inducer
Abstract
:1. Introduction
2. Results
2.1. Visualisation of Reactive Oxygen Species (ROS) Production
2.2. LC-MS for Metabolite Separation and Detection
3. Discussion
4. Materials and Methods
4.1. Barley Cultivation and Preparation of 3,5-DCAA Solutions
4.2. Histochemical Evaluation of ROS Production
4.3. Treatment with 3,5-Dichloroanthranilic Acid, Metabolite Extraction, and Sample Preparation for Liquid Chromatography–Mass Spectrometry Analysis (LC–MS)
4.4. Mass Spectrometry-Based Sample Analyses: Ultra-High-Performance Liquid Chromatography–High-Definition Mass Spectrometry (UHPLC–HDMS)
4.5. Data Processing, Data Mining, and Metabolite Annotation of Discriminant Metabolites
4.6. Metabolite Annotation and Heatmap Analyses
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fróna, D.; Szenderák, J.; Harangi-Rákos, M. The challenge of feeding the world. Sustainability 2019, 11, 5816. [Google Scholar] [CrossRef]
- Walters, D.R.; Fountaine, J.M. Practical application of induced resistance to plant diseases: An appraisal of effectiveness under field conditions. J. Agric. Sci. 2009, 147, 523–535. [Google Scholar] [CrossRef]
- Gómez-Gómez, L.; Boller, T. Flagellin perception: A paradigm for innate immunity. Trends Plant Sci. 2002, 7, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Korra, T.; Thakur, R.; Arutselvan, R.; Kashyap, A.S.; Nehela, Y.; Chaplygin, V.; Minkinaand, T.; Keswani, C. Role of Plant Secondary Metabolites in Defence and Transcriptional Regulation in Response to Biotic Stress. Plant Stress 2023, 8, 100154. [Google Scholar]
- Conrath, U.; Beckers, G.J.; Langenbach, C.J.; Jaskiewicz, M.R. Priming for enhanced defence. Annu. Rev. Phytopathol. 2015, 53, 97–119. [Google Scholar] [CrossRef] [PubMed]
- Bektas, Y.; Eulgem, T. Synthetic plant defence elicitors. Front. Plant Sci. 2015, 5, 804. [Google Scholar] [CrossRef]
- Yu, Y.; Gui, Y.; Li, Z.; Jiang, C.; Guo, J.; Niu, D. Induced Systemic Resistance for Improving Plant Immunity by Beneficial Microbes. Plants 2022, 11, 386. [Google Scholar] [CrossRef]
- Thakur, M.; Sohal, B.S. Role of Elicitors in Inducing Resistance in Plants against Pathogen Infection: A Review. ISRN Biochem. 2013, 2013, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Conrath, U. Molecular Aspects of Defence Priming. Trends Plant Sci. 2011, 16, 524–531. [Google Scholar] [CrossRef]
- Hilker, M.; Schmülling, T. Stress Priming, Memory, and Signalling in Plants. Plant Cell Environ. 2019, 42, 753–761. [Google Scholar] [CrossRef]
- Sharma, A.; Vora, J.; Patel, D.; Sinha, S.; Jha, P.C.; Shrivastava, N. Identification of Natural Inhibitors against Prime Targets of SARS-CoV-2 Using Molecular Docking, Molecular Dynamics Simulation and MM-PBSA Approaches. J. Biomol. Struct. Dyn. 2020, 40, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Walters, D.R.; Ratsep, J.; Havis, N.D. Controlling Crop Diseases Using Induced Resistance: Challenges for the Future. J. Exp. Bot. 2013, 64, 1263–1280. [Google Scholar] [CrossRef] [PubMed]
- Abdul Malik, N.A.; Kumar, I.S.; Nadarajah, K. Elicitor and Receptor Molecules: Orchestrators of Plant Defense and Immunity. Int. J. Mol. Sci. 2020, 21, 963. [Google Scholar] [CrossRef] [PubMed]
- Kombrink, E.; Kaiser, M. Editorial: When Chemistry Meets Biology—Generating Innovative Concepts, Methods and Tools for Scientific Discovery in the Plant Sciences. Front. Plant Sci. 2016, 7, 76. [Google Scholar] [CrossRef]
- Kinoshita, T.; McCourt, P.; Asami, T.; Torii, K.U. Plant Chemical Biology. Plant Cell Physiol. 2018, 59, 1483–1486. [Google Scholar] [CrossRef] [PubMed]
- Tugizimana, F.; Piater, L.; Dubery, I. Plant Metabolomics: A New Frontier in Phytochemical Analysis. S. Afr. J. Sci. 2013, 109, 11. [Google Scholar] [CrossRef]
- Hicks, G.R.; Raikhel, N.V. Plant Chemical Biology: Are We Meeting the Promise? Front. Plant Sci. 2014, 5, 455. [Google Scholar] [CrossRef]
- Hamany, C.Y.; Steenkamp, P.A.; Piater, L.A.; Tugizimana, F.; Dubery, I.A. Metabolic Reprogramming of Barley in Response to Foliar Application of Dichlorinated Functional Analogues of Salicylic Acid as Priming Agents and Inducers of Plant Defence. Metabolites 2023, 13, 666. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Wang, W. Recent Advances in Synthetic Chemical Inducers of Plant Immunity. Front. Plant Sci. 2018, 9, 1613. [Google Scholar] [CrossRef] [PubMed]
- Horsley, R.D.; Franckowiak, J.D.; Schwarz, P.B. Barley. In Handbook of Plant Breeding, Vol. 3, Cereals; Carena, M.J., Ed.; Springer: New York, NY, USA, 2009; pp. 227–250. [Google Scholar] [CrossRef]
- El-Hashash, E.F.; El-Absy, K.M. Barley (Hordeum vulgare L.) breeding. Adv. Plant Breed. Strateg. Cereals 2019, 5, 1–45. [Google Scholar]
- Clare, S.J.; Wyatt, N.A.; Brueggeman, R.S.; Friesen, T.L. Research advances in the Pyrenophora teres–barley interaction. Mol. Plant Pathol. 2020, 21, 272–288. [Google Scholar] [CrossRef]
- Hamany Djande, C.Y. Metabolomic Profiling of Secondary Metabolites of Barley (Hordeum vulgare) Cultivars with the Focus on Plant-Protective Phenolics and Defence-Related Metabolites. Ph.D. Thesis, University of Johannesburg, Johannesburg, South Africa, 2022. Available online: https://hdl.handle.net/10210/504193 (accessed on 1 November 2024).
- Knoth, C.; Salus, M.S.; Girke, T.; Eulgem, T. The Synthetic Elicitor 3,5-Dichloroanthranilic Acid Induces NPR1-Dependent and NPR1-Independent Mechanisms of Disease Resistance in Arabidopsis. Plant Physiol. 2009, 150, 333–347. [Google Scholar] [CrossRef] [PubMed]
- Hamany, C.Y.; Tugizimana, T.; Steenkamp, P.A.; Piater, L.A.; Dubery, I.A. Metabolomic reconfiguration in primed barley (Hordeum vulgare) plants in response to Pyrenophora teres f. teres infection. Metabolites 2023, 13, 997. [Google Scholar] [CrossRef] [PubMed]
- Thordal-Christensen, H.; Zhang, Z.; Wei, Y.; Collinge, D.B. Subcellular Localization of H2O2 in Plants. H2O2 Accumulation in Papillae and Hypersensitive Response during the Barley-Powdery Mildew Interaction. Plant J. 1997, 11, 1187–1194. [Google Scholar] [CrossRef]
- Liu, Z.; Friesen, T. DAB Staining and Visualization of Hydrogen Peroxide in Wheat Leaves. Bio-Protocol 2012, 2, e309. [Google Scholar] [CrossRef]
- Kumar, D.; Yusuf, M.; Singh, P.; Sardar, M.; Sarin, N.B. Histochemical Detection of Superoxide and H2O2 Accumulation in Brassica juncea Seedlings. Bio-Protocol 2014, 4, e1108. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Borhannuddin Bhuyan, M.H.M.; Zulfiqar, F.; Raza, A.; Mohsin, S.M.; Al Mahmud, J.; Fujita, M.; Fotopoulos, V. Reactive Oxygen Species and Antioxidant Defense in Plants under Abiotic Stress: Revisiting the Crucial Role of a Universal Defense Regulator. Antioxidants 2020, 9, 681. [Google Scholar] [CrossRef] [PubMed]
- Stockwell, B.R. Chemical Genetics: Ligand-Based Discovery of Gene Function. Nat. Rev. Genet. 2000, 1, 116–125. [Google Scholar] [CrossRef] [PubMed]
- Knoth, C.; Eulgem, T. High-Throughput Screening of Small-Molecule Libraries for Inducers of Plant Defence Responses. Methods Mol. Biol. 2014, 1056, 45–49. [Google Scholar] [PubMed]
- Conrath, U.; Chen, Z.; Ricigliano, J.R.; Klessig, D.F. Two Inducers of Plant Defense Responses, 2,6-Dichloroisonicotinec Acid and Salicylic Acid, Inhibit Catalase Activity in Tobacco. Proc. Natl. Acad. Sci. USA 1995, 92, 7143–7147. [Google Scholar] [CrossRef]
- Silverman, F.P.; Petracek, P.D.; Heiman, D.F.; Fledderman, C.M.; Warrior, P. Salicylate Activity. 3. Structure Relationship to Systemic Acquired Resistance. J. Agric. Food Chem. 2005, 53, 9775–9780. [Google Scholar] [CrossRef]
- Zeiss, D.R.; Steenkamp, P.A.; Piater, L.A.; Dubery, I.A. Altered Metabolomic States Elicited by Flg22 and FlgII-28 in Solanum lycopersicum: Intracellular Perturbations and Metabolite Defenses. BMC Plant Biol. 2021, 21, 429. [Google Scholar] [CrossRef] [PubMed]
- Meena, M.; Yadav, G.; Sonigra, P.; Nagda, A.; Mehta, T.; Swapnil, P.; Harish; Marwal, A. Role of elicitors to initiate the induction of systemic resistance in plants to biotic stress. Plant Stress 2022, 5, 100103. [Google Scholar] [CrossRef]
- Marzi, D.; Brunetti, P.; Saini, S.S.; Yadav, G.; Puglia, G.D.; Ioio, R.D. Role of Transcriptional Regulation in Auxin-Mediated Response to Abiotic Stresses. Front. Genet. 2024, 15, 1394091. [Google Scholar] [CrossRef] [PubMed]
- Mhlongo, M.I.; Piater, L.A.; Steenkamp, P.A.; Labuschagne, N.; Dubery, I.A. Metabolic Profiling of PGPR-Treated Tomato Plants Reveal Priming-Related Adaptations of Secondary Metabolites and Aromatic Amino Acids. Metabolites 2020, 10, 210. [Google Scholar] [CrossRef] [PubMed]
- Fraser, C.M.; Chapple, C. The Phenylpropanoid Pathway in Arabidopsis. Arab. Book 2011, 9, e0152. [Google Scholar] [CrossRef]
- Dong, N.; Lin, H. Contribution of Phenylpropanoid Metabolism to Plant Development and Plant–Environment Interactions. J. Integr. Plant Biol. 2021, 63, 180–209. [Google Scholar] [CrossRef]
- Bagal, U.R.; Leebens-Mack, J.H.; Lorenz, W.W.; Dean, J.F. The Phenylalanine Ammonia Lyase (PAL) Gene Family Shows a Gymnosperm-Specific Lineage. BMC Genom. 2012, 13, S1. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liu, C.-J. Multifaceted Regulations of Gateway Enzyme Phenylalanine Ammonia-Lyase in the Biosynthesis of Phenylpropanoids. Mol. Plant 2014, 8, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Heldt, H.-W.; Piechulla, B. Plant Biochemistry, 5th ed.; Academic Press: San Diego, CA, USA, 2021; e-book; ISBN 9780128227138. [Google Scholar]
- Ishihara, A.; Kumeda, R.; Hayashi, N.; Yagi, Y.; Sakaguchi, N.; Kokubo, Y.; Ube, N.; Tebayashi, S.I.; Ueno, K. Induced Accumulation of Tyramine, Serotonin, and Related Amines in Response to Bipolaris sorokiniana Infection in Barley. Biosci. Biotechnol. Biochem. 2017, 81, 1090–1098. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Tak, Y.; Potkule, J.; Choyal, P.; Tomar, M.; Meena, N.L.; Kaur, C. Phenolics as Plant Protective Companion against Abiotic Stress. In Plant Phenolics in Sustainable Agriculture; Springer: Singapore, 2020; pp. 277–308. [Google Scholar] [CrossRef]
- Pratyusha, S. Phenolic Compounds in the Plant Development and Defense: An Overview. In Plant Stress Physiology—Perspectives in Agriculture; Hasanuzzaman, M., Nahar, K., Eds.; IntechOpen e-books: London, UK, 2022. [Google Scholar] [CrossRef]
- Martens, S.; Mithöfer, A. Flavones and Flavone Synthases. Phytochemistry 2005, 66, 2399–2407. [Google Scholar] [CrossRef] [PubMed]
- Benedet, J.A.; Umeda, H.; Shibamoto, T. Antioxidant Activity of Flavonoids Isolated from Young Green Barley Leaves toward Biological Lipid Samples. J. Agric. Food Chem. 2007, 55, 5499–5504. [Google Scholar] [CrossRef] [PubMed]
- Chagas, M.d.S.S.; Behrens, M.D.; Moragas-Tellis, C.J.; Penedo, G.X.M.; Silva, A.R.; Gonçalves-de-Albuquerque, C.F. Flavonols and Flavones as Potential Anti-Inflammatory, Antioxidant, and Antibacterial Compounds. Oxid. Med. Cell. Longev. 2022, e9966750. [Google Scholar] [CrossRef]
- Karpiński, T.; Adamczak, A.; Ożarowski, M. Antibacterial Activity of Apigenin, Luteolin, and Their C-Glucosides; 5th Int. Elec. Conf. Med. Chem., ECMC-5; Sciforum: Basel, Switzerland, 2019; pp. 1–9. [Google Scholar] [CrossRef]
- Balmer, A.; Pastor, V.; Glauser, G.; Mauch-Mani, B. Tricarboxylates induce defense priming against bacteria in Arabidopsis thaliana. Front. Plant Sci. 2018, 9, 1221. [Google Scholar] [CrossRef] [PubMed]
- Buswell, W.; Schwarzenbacher, R.E.; Luna, E.; Sellwood, M.A.; Chen, B.; Flors, V.; Pétriacq, P.; Ton, J. Chemical Priming of Immunity without Costs to Plant Growth. New Phytol. 2018, 218, 1205–1216. [Google Scholar] [CrossRef]
- Choi, I.; Son, H.; Baek, J.-H. Tricarboxylic Acid (TCA) Cycle Intermediates: Regulators of Immune Responses. Life 2021, 11, 69. [Google Scholar] [CrossRef]
- Pretorius, C.J.; Zeiss, D.R.; Dubery, I.A. The presence of oxygenated lipids in plant defence in response to biotic stress: A metabolomics appraisal. Plant Signal. Behav. 2021, 16, 1989215. [Google Scholar] [CrossRef] [PubMed]
- Santino, A.; Iannacone, R.; Hughes, R.; Casey, R.; Mita, G. Cloning and Characterisation of an Almond 9-Lipoxygenase Expressed Early during Seed Development. Plant Sci. 2004, 168, 699–706. [Google Scholar] [CrossRef]
- Savchenko, T.; Zastrijnaja, O.M.; Klimov, V.V. Oxylipins and Plant Abiotic Stress Resistance. Biochemistry 2014, 79, 362–375. [Google Scholar] [CrossRef]
- Dar, A.A.; Choudhury, A.R.; Kancharla, P.K.; Arumugam, N. The FAD2 Gene in Plants: Occurrence, Regulation, and Role. Front. Plant Sci. 2017, 8, 1789. [Google Scholar] [CrossRef]
- Singh, P.; Arif, Y.; Miszczuk, E.; Bajguz, A.; Hayat, S. Specific Roles of Lipoxygenases in Development and Responses to Stress in Plants. Plants 2022, 11, 979. [Google Scholar] [CrossRef]
- Hamany Djande, C.Y.; Piater, L.A.; Steenkamp, P.A.; Tugizimana, F.; Dubery, I.A. A Metabolomics Approach and Chemometric Tools for Differentiation of Barley Cultivars and Biomarker Discovery. Metabolites 2021, 11, 578. [Google Scholar] [CrossRef]
- Hamany Djande, C.Y.; Dubery, I.A. Hordatines, dimerised hydroxycinnamoylagmatine conjugates of barley (Hordeum vulgare L.): An appraisal of the biosynthesis, chemistry, identification and bioactivities. Phytochem. Rev. 2024. [Google Scholar] [CrossRef]
- Tugizimana, F.; Mhlongo, M.I.; Piater, L.A.; Dubery, I.A. Metabolomics in plant priming research: The way forward? Int. J. Mol. Sci. 2018, 19, 1759. [Google Scholar] [CrossRef] [PubMed]
- Pretorius, C.J.; Steenkamp, P.A.; Tugizimana, F.; Piater, L.A.; Dubery, I.A. Metabolomic characterisation of discriminatory metabolites involved in halo blight disease in oat cultivars caused by Pseudomonas syringae pv. coronafaciens. Metabolites 2022, 12, 248. [Google Scholar] [CrossRef] [PubMed]
- Dubery, I.A.; Nephali, L.P.; Tugizimana, F.; Steenkamp, P.A. Data-Driven Characterization of Metabolome Reprogramming during Early Development of Sorghum Seedlings. Metabolites 2024, 14, 112. [Google Scholar] [CrossRef]
- Tugizimana, F.; Djami-Tchatchou, A.T.; Steenkamp, P.A.; Piater, L.A.; Dubery, I.A. Metabolomic analysis of defense-related reprogramming in Sorghum bicolor in response to Colletotrichum sublineolum infection reveals a functional metabolic web of phenylpropanoid and flavonoid pathways. Front. Plant Sci. 2019, 9, 1840. [Google Scholar] [CrossRef] [PubMed]
- Hilker, M.; Schwachtje, J.; Baier, M.; Balazadeh, S.; Bäurle, I.; Geiselhardt, S.; Hincha, D.K.; Kunze, R.; Mueller-Roeber, B.; Rillig, M.C.; et al. Priming and Memory of Stress Responses in Organisms Lacking a Nervous System. Biol. Rev. 2015, 91, 1118–1133. [Google Scholar] [CrossRef] [PubMed]
- Schwachtje, J.; Whitcomb, S.J.; Alexandre; Zuther, E.; Hincha, D.K.; Kopka, J. Induced, Imprinted, and Primed Responses to Changing Environments: Does Metabolism Store and Process Information? Front. Plant Sci. 2019, 10, 106. [Google Scholar] [CrossRef]
- De Kesel, J.; Conrath, U.; Flors, V.; Luna, E.; Mageroy, M.H.; Mauch-Mani, B.; Pastor, V.; Pozo, M.J.; Pieterse, C.M.J.; Ton, J.; et al. The Induced Resistance Lexicon: Do’s and Don’ts. Trends Plant Sci. 2021, 26, 685–691. [Google Scholar] [CrossRef] [PubMed]
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A Decimal Code for the Growth Stages of Cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- Gerber, I.B.; Zeidler, D.; Durner, J.; Dubery, I.A. Early perception responses of Nicotiana tabacum cells in response to lipopolysaccharides from Burkholderia cepacia. Planta 2004, 218, 647–657. [Google Scholar] [CrossRef] [PubMed]
- Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.-M.; Fiehn, O.; Goodacre, R.; Griffin, J.L.; et al. Proposed Minimum Reporting Standards for Chemical Analysis. Metabolomics 2007, 3, 211–221. [Google Scholar] [CrossRef]
- Dictionary of Natural Products. Available online: https://librarianresources.taylorandfrancis.com/product-info/digital-products/databases/chemnetbase/ (accessed on 24 January 2024).
- ChemSpider. Available online: http://www.chemspider.com/ (accessed on 22 January 2024).
- PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov (accessed on 27 February 2024).
- Gorzolka, K.; Bednarz, H.; Niehaus, K. Detection and Localization of Novel Hordatine-like Compounds and Glycosylated Derivates of Hordatines by Imaging Mass Spectrometry of Barley Seeds. Planta 2014, 239, 1321–1335. [Google Scholar] [CrossRef] [PubMed]
- Piasecka, A.; Sawikowska, A.; Krajewski, P.; Kachlicki, P. Combined Mass Spectrometric and Chromatographic Methods for In-Depth Analysis of Phenolic Secondary Metabolites in Barley Leaves. J. Mass Spectrom. 2015, 50, 513–532. [Google Scholar] [CrossRef] [PubMed]
- Hamany, C.Y.; Steenkamp, P.A.; Piater, L.A.; Tugizimana, F.; Dubery, I.A. Hordatines and Associated Precursors Dominate Metabolite Profiles of Barley (Hordeum vulgare L.) Seedlings: A Metabolomics Study of Five Cultivars. Metabolites 2022, 12, 310. [Google Scholar] [CrossRef] [PubMed]
- MetaboAnalyst—Statistical, Functional and Integrative Analysis of Metabolomics Data. Available online: www.metaboanalyst.ca (accessed on 28 April 2024).
No | ESI * | Compound | Rt (min) | Mass (m/z) | 12 h | 24 h | 36 h |
---|---|---|---|---|---|---|---|
Organic acids | |||||||
1 | Neg | Isocitric acid | 0.91 | 191.0170 | Down | Down | |
2 | Neg | Malic acid | 0.96 | 133.0113 | Down | Down | |
3 | Neg | Citric acid | 1.14 | 191.0168 | Down | Down | Down |
Alkaloids | |||||||
4 | Pos | Hydroxytryptamine | 1.67 | 177.1035 | Up | ||
Amino acids and derivatives | |||||||
5 | Pos | Isoleucine | 1.29 | 132.1110 | Up | Up | |
6 | Pos | Phenylalanine | 1.65 | 166.0867 | Down | Down | |
7 | Pos | Tryptophan | 2.42 | 205.0966 | Down | ||
8 | Pos | Tyrosine | 2.43 | 188.0697 | Down | ||
9 | Neg | N-Acetylaspartylglutamic acid | 5.78 | 303.0885 | Down | ||
Fatty acids | |||||||
10 | Neg | Linolenic acid derivative I | 14.27 | 675.2672 | Up | ||
11 | Neg | 9,12,13-TriHODE | 16.55 | 327.2148 | Down | Down | |
12 | Neg | TriHOME | 17.29 | 329.2307 | Down | ||
13 | Neg | OPDA conjugate | 20.00 | 309.2041 | Down | ||
14 | Pos | Linolenoylglycerol isomer I | 21.01 | 353.2680 | Up | ||
15 | Pos | Linolenoylglycerol isomer II | 21.86 | 353.2656 | Up | ||
16 | Pos | Linolenoylglycerol isomer III | 22.10 | 353.2641 | Up | Up | Up |
17 | Neg | Hydroxylinoleic acid | 22.25 | 295.2254 | Down | Down | |
18 | Neg | Linolenic acid derivative II | 22.73 | 445.2349 | Up | ||
Phenolic acid derivatives | |||||||
19 | Neg | Coumaric acid derivative | 0.86 | 404.1007 | Down | Down | |
20 | Neg | 3-Feruloyquinic acid | 3.91 | 367.1000 | Up | Up | |
21 | Neg | Sinapic acid hexose | 5.16 | 385.1110 | Down | Down | |
22 | Pos | p-Coumaroylhydroxyagmatine | 2.54 | 293.1536 | Down | Down | Down |
23 | Pos | Feruloylagmatine isomer I | 3.11 | 307.1771 | Down | ||
24 | Pos | Feruloylhydroxyagmatine | 3.35 | 323.1702 | Down | Down | Down |
25 | Pos | Coumaroylagmatine | 3.99 | 277.1609 | Down | Down | |
26 | Pos | Feruloylagmatine isomer II | 5.21 | 307.1715 | Down | Down | |
27 | Pos | Sinapoylagmatine | 6.07 | 337.1863 | Down | ||
Benzofurans (Hordatines) | |||||||
28 | Pos | Hordatine B hexose | 3.80 | 743.3729 | Up | Down | Up |
29 | Pos | Hordatine related compound | 3.89 | 177.0551 | Up | ||
30 | Pos | Hordatine A hexose | 4.14 | 713.3628 | Up | Down | Up |
31 | Pos | Hordatine A isomer I | 5.83 | 551.3078 | Down | Down | |
32 | Pos | Hordatine B isomer I | 7.30 | 291.1585 | Down | Down | |
33 | Neg | Hordatine A isomer II | 7.68 | 595.2989 | Down | ||
34 | Pos | Hordatine B isomer II | 7.88 | 291.1548 | Down | Down | |
Flavonoids | |||||||
35 | Pos | Isoorientin-7-O-glucoside/Lutonarin | 6.40 | 611.1589 | Up | Down | Up |
36 | Neg | Isovitexin 7,6″-di-O-glucoside | 8.17 | 755.2106 | Up | ||
37 | Pos | Isovitexin-7-O-glucoside/Saponarin | 8.31 | 595.1665 | Up | Up | |
38 | Pos | Isovitexin-7-O-rhamnosyl-glucoside | 8.81 | 741.2220 | Down | Down | |
39 | Pos | Isoscoparin-7-O-glucoside | 8.97 | 625.1743 | Up | Down | Up |
40 | Pos | Isovitexin 2″-O-glucoside | 9.81 | 595.1663 | Down | Up | |
41 | Pos | Apigenin 7-O-gentobioside | 9.95 | 565.1560 | Down | ||
42 | Neg | Isoorientin 7-O-[6″-sinapoyl]-glucoside | 10.54 | 815.2071 | Up | Up | |
43 | Pos | Isovitexin | 10.60 | 433.1110 | Up | Up | Up |
44 | Pos | Isoorientin 7-O-[6″-feruloyl]-glucoside | 10.87 | 787.2114 | Up | ||
45 | Neg | Isovitexin-7-O-[6″-sinapoyl]-glucoside | 11.44 | 799.2127 | Down | Down | |
46 | Neg | Isoscoparin-7-O-[6″-sinapoyl]-glucoside | 11.55 | 829.2247 | Up | Up | |
47 | Neg | Isovitexin 7-O-[6″-feruloyl]-glucoside | 11.85 | 769.2014 | Up | Down | Up |
48 | Neg | Apigenin derivative 1 | 11.92 | 665.2814 | Up | Up | |
49 | Neg | Apigenin derivative 2 | 12.04 | 665.2501 | Up |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamany Djande, C.Y.; Steenkamp, P.A.; Dubery, I.A. Chemical Biology Meets Metabolomics: The Response of Barley Seedlings to 3,5-Dichloroanthranilic Acid, a Resistance Inducer. Molecules 2025, 30, 545. https://doi.org/10.3390/molecules30030545
Hamany Djande CY, Steenkamp PA, Dubery IA. Chemical Biology Meets Metabolomics: The Response of Barley Seedlings to 3,5-Dichloroanthranilic Acid, a Resistance Inducer. Molecules. 2025; 30(3):545. https://doi.org/10.3390/molecules30030545
Chicago/Turabian StyleHamany Djande, Claude Y., Paul A. Steenkamp, and Ian A. Dubery. 2025. "Chemical Biology Meets Metabolomics: The Response of Barley Seedlings to 3,5-Dichloroanthranilic Acid, a Resistance Inducer" Molecules 30, no. 3: 545. https://doi.org/10.3390/molecules30030545
APA StyleHamany Djande, C. Y., Steenkamp, P. A., & Dubery, I. A. (2025). Chemical Biology Meets Metabolomics: The Response of Barley Seedlings to 3,5-Dichloroanthranilic Acid, a Resistance Inducer. Molecules, 30(3), 545. https://doi.org/10.3390/molecules30030545