High Internal Phase Oil-in-Water Emulsions Stabilised by Cost-Effective Rhamnolipid/Alginate Biocomplexes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Rhamnolipid Biocomplex Synthesis
2.2. Interfacial Properties
2.3. Emulsifying Properties
2.4. Droplet Size
2.5. Rheological Properties
2.6. Biodegradation Potential
3. Materials and Methods
3.1. Materials
3.2. Interfacial Tension Measurements
3.3. Preparation of Emulsions
3.4. Emulsion Stability Measurements with Multiple Light Scattering
3.5. Emulsion Droplet Size Measurements
3.6. Microscopic Analysis
3.7. Rheological Measurements
3.8. Biodegradation Potential Assesment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mulligan, C.; Gibbs, B. Factors influencing the economics of biosurfactants. Surf. Sci. Ser. 1993, 48, 123–145. [Google Scholar]
- Alghazal, A.; Hamed, R.; Deleme, Z. Impact of Rhamnolipid on Skin Wound Regeneration in Rats. Al-Rafidain Dent. J. 2024, 24, 220–230. [Google Scholar] [CrossRef]
- Aziz, Z.A.A.; Setapar, S.H.M.; Khatoon, A.; Ahmad, A. The Potential Use of Biosurfactants in Cosmetics and Dermatological Products. Biosurf. Sustain. Future 2021, 18, 397–421. [Google Scholar] [CrossRef]
- Özdemir, G.; Sezgin, Ö.E. Keratin-rhamnolipids and keratin-sodium dodecyl sulfate interactions at the air/water interface. Colloids Surf. B 2006, 52, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Banat, I.M.; Samarah, N.; Murad, M.; Horne, R.; Banerjee, S. Biosurfactant production and use in oil tank clean-up. World J. Microbiol. Biotechnol. 1991, 7, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Bognolo, G. Biosurfactants as emulsifying agents for hydrocarbons. Colloids Surf. A 1999, 152, 41–52. [Google Scholar] [CrossRef]
- Batista, S.B.; Mounteer, A.H.; Amorim, F.R.; Tótola, M.R. Isolation and characterization of biosurfactant/bioemulsifier-producing bacteria from petroleum contaminated sites. Bioresour. Technol. 2006, 97, 868–875. [Google Scholar] [CrossRef]
- Iqbal, S.; Khalld, Z.M.; Malik, K.A. Enhanced biodegradation and emulsification of crude oil and hyperproduction of biosurfactants by a gamma ray-induced mutant of Pseudomonas aeruginosa. Lett. Appl. Microbiol. 1995, 21, 176–179. [Google Scholar] [CrossRef]
- McInerney, M.J.; Jenneman, G.E.; Knapp, R.M.; Donald, J. Biosurfactant and Enhanced Oil Recovery. U.S. Patent US4522261A, 11 June 1985. [Google Scholar]
- Ding, M.; Zhang, Y.; Liu, J.; Jia, W.; Hu, B.; Ren, S. Application of microbial enhanced oil recovery technology in water-based bitumen extraction from weathered oil sands. AIChE J. 2014, 60, 2985–2993. [Google Scholar] [CrossRef]
- Avila, R.; Abrao, A. The effect of cutting fluids on the machining of hardened AISI 4340 steel. J. Mater. Process. Technol. 2001, 119, 21–26. [Google Scholar] [CrossRef]
- Lawal, S.A.; Choudhury, I.A.; Nukman, Y. Application of vegetable oil-based metalworking fluids in machining ferrous metals—A review. Int. J. Mach. Tools Manuf. 2012, 52, 1–12. [Google Scholar] [CrossRef]
- Banat, I.M.; Makkar, R.S.; Cameotra, S.S. Potential commercial applications of microbial surfactants. Appl. Microbiol. Biotechnol. 2000, 53, 495. [Google Scholar] [CrossRef]
- Lourith, N.; Kanlayavattanakul, M. Natural surfactants used in cosmetics: Glycolipids. Int. J. Cosmet. Sci. 2009, 31, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Torrego-Solana, N.; García-Celma, M.J.; Garreta, A.; Marqués, A.M.; Diaz, P.; Manresa, A. Rhamnolipids obtained from a PHA-negative mutant of Pseudomonas aeruginosa 47T2 ΔaD: Composition and emulsifying behavior. JAOCS J. Am. Oil Chem. Soc. 2014, 91, 503–511. [Google Scholar] [CrossRef]
- Desai, J.D.; Banat, I.M. Microbial production of surfactants and their commercial potential. Microbiol. Mol. Biol. Rev. 1997, 61, 47–64. [Google Scholar] [CrossRef] [PubMed]
- Miao, Y.; To, M.H.; Siddiqui, M.A.; Wang, H.; Lodens, S.; Chopra, S.S.; Kaur, G.; Roelants, S.L.K.W.; Lin, C.S.K. Sustainable biosurfactant production from secondary feedstock—Recent advances, process optimization and perspectives. Front. Chem. 2024, 12, 1327113. [Google Scholar] [CrossRef] [PubMed]
- Tahzibi, A.; Kamal, F.; Mazaheri Assadi, M. Improved production of rhamnolipids by a Pseudomonas aeruginosa mutant. Iran. Biomed. J. 2004, 8, 25–31. [Google Scholar]
- Noah, K.S.; Bruhn, D.F.; Bala, G.A. Surfactin Production from Potato Process Effluent by Bacillus subtilis in a Chemostat. Twenty-Sixth Symp. Biotechnol. Fuels Chem. 2005, 121–124, 465–473. [Google Scholar]
- Nitschke, M.; Pastore, G.M. Production and properties of a surfactant obtained from Bacillus subtilis grown on cassava wastewater. Bioresour. Technol. 2006, 97, 336–341. [Google Scholar] [CrossRef] [PubMed]
- Patel, R.M.; Desai, A.J. Biosurfactant production by Pseudomonas aeruginosa GS3 from molasses. Lett. Appl. Microbiol. 1997, 25, 91–94. [Google Scholar] [CrossRef]
- Bednarski, W.; Adamczak, M.; Tomasik, J.; Płaszczyk, M. Application of oil refinery waste in the biosynthesis of glycolipids by yeast. Bioresour. Technol. 2004, 95, 15–18. [Google Scholar] [CrossRef] [PubMed]
- Benincasa, M.; Contiero, J.; Manresa, M.A.; Moraes, I.O. Rhamnolipid production by Pseudomonas aeruginosa LBI growing on soapstock as the sole carbon source. J. Food Eng. 2002, 54, 283–288. [Google Scholar] [CrossRef]
- Nitschke, M.; Costa, S.G.; Haddad, R.G.; Gonçalves, L.A.; Eberlin, M.N.; Contiero, J. Oil wastes as unconventional substrates for rhamnolipid biosurfactant production by Pseudomonas aeruginosa LBI. Biotechnol. Prog. 2005, 21, 1562–1566. [Google Scholar] [CrossRef] [PubMed]
- Haba, E.; Espuny, M.J.; Busquets, M.; Manresa, A. Screening and production of rhamnolipids by Pseudomonas aeruginosa 47T2 NCIB 40044 from waste frying oils. J. Appl. Microbiol. 2000, 88, 379–387. [Google Scholar] [CrossRef] [PubMed]
- Deshpande, M.; Daniels, L. Evaluation of sophorolipid biosurfactant production by Candida bombicola using animal fat. Bioresour. Technol. 1995, 54, 143–150. [Google Scholar] [CrossRef]
- Daniel, H.-J.; Reuss, M.; Syldatk, C. Production of sophorolipids in high concentration from deproteinized whey and rapeseed oil in a two stage fed batch process using Candida bombicola ATCC 22214 and Cryptococcus curvatus ATCC 20509. Biotechnol. Lett. 1998, 20, 1153–1156. [Google Scholar] [CrossRef]
- Davila, A.-M.; Marchal, R.; Vandecasteele, J.-P. Sophorose lipid fermentation with differentiated substrate supply for growth and production phases. Appl. Microbiol. Biotechnol. 1997, 47, 496–501. [Google Scholar] [CrossRef]
- Zhou, Q.; Kosaric, N. Utilization of canola oil and lactose to produce biosurfactant with Candida bombicola. J. Am. Oil Chem. Soc. 1995, 72, 67–71. [Google Scholar] [CrossRef]
- Kłosowska-Chomiczewska, I.E.; Macierzanka, A.; Parchem, K.; Miłosz, P.; Bladowska, S.; Płaczkowska, I.; Jungnickel, C. Microbe cultivation guidelines to optimize rhamnolipid applications. Sci. Rep. 2024, 14, 8362. [Google Scholar] [CrossRef] [PubMed]
- Fuchedzhieva, N.; Karakashev, D.; Angelidaki, I. Anaerobic biodegradation of fluoranthene under methanogenic conditions in presence of surface-active compounds. J. Hazard. Mater. 2008, 153, 123–127. [Google Scholar] [CrossRef] [PubMed]
- Kłosowska-Chomiczewska, I.E.; Mędrzycka, K.; Hallmann, E.; Karpenko, E.; Pokynbroda, T.; Macierzanka, A.; Jungnickel, C. Rhamnolipid CMC prediction. J. Colloid Interface Sci. 2017, 488, 10–19. [Google Scholar] [CrossRef]
- Pokhmurs’kyi, V.; Karpenko, V.; Zin’, I.M.; Tymus’, M.B.; Veselivs’ka, H.H. Inhibiting Action of Biogenic Surfactants in Corrosive Media. Mater. Sci. 2014, 50, 448–453. [Google Scholar] [CrossRef]
- Remichkova, M.; Galabova, D.; Roeva, I.; Karpenko, E.; Shulga, A.; Galabov, A.S. Anti-Herpesvirus Activities of Pseudomonas sp. S-17 Rhamnolipid and its Complex with Alginate. Z. Naturforsch. C 2008, 63, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Müller, M.M.; Kügler, J.H.; Henkel, M.; Gerlitzki, M.; Hörmann, B.; Pöhnlein, M.; Syldatk, C.; Hausmann, R. Rhamnolipids—Next generation surfactants? J. Biotechnol. 2012, 162, 366–380. [Google Scholar] [CrossRef] [PubMed]
- Muthusamy, K.; Gopalakrishnan, S.; Ravi, T.K.; Sivachidambaram, P. Biosurfactants: Properties, commercial production and application. Curr. Sci. 2008, 94, 736–747. [Google Scholar]
- Pelekh-Bondaruk, I.R.; Vildanova, R.I.; Kobylinska, L.I.; Bila, Y.Y.; Bilous, S.B. Study of emulsion products stabilized with surfactants based on rhamnolipids Pseudomonas sp. PS-17. Int. J. Appl. Pharm. 2022, 14, 315–318. [Google Scholar] [CrossRef]
- George, S.; Jayachandran, K. Production and characterization of rhamnolipid biosurfactant from waste frying coconut oil using a novel Pseudomonas aeruginosa D. J. Appl. Microbiol. 2013, 114, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Mata-Sandoval, J.C.; Karns, J.; Torrents, A. High-performance liquid chromatography method for the characterization of rhamnolipid mixtures produced by Pseudomonas aeruginosa UG2 on corn oil. J. Chromatogr. A 1999, 864, 220–221. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, S.A.; Sassaki, G.L.; de Souza, L.M.; Meira, J.A.; de Araújo, J.M.; Mitchell, D.A.; Ramos, L.P.; Krieger, N. Molecular and structural characterization of the biosurfactant produced by Pseudomonas aeruginosa DAUPE 614. Chem. Phys. Lipids 2007, 147, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Saikia, R.R.; Deka, S.; Deka, M.; Banat, I.M. Isolation of biosurfactant-producing Pseudomonas aeruginosa RS29 from oil-contaminated soil and evaluation of different nitrogen sources in biosurfactant production. Ann. Microbiol. 2012, 62, 753–763. [Google Scholar] [CrossRef]
- Zhang, L.; Pemberton, J.E.; Maier, R.M. Effect of fatty acid substrate chain length on Pseudomonas aeruginosa ATCC 9027 monorhamnolipid yield and congener distribution. Process Biochem. 2014, 49, 989–995. [Google Scholar] [CrossRef]
- Lovaglio, R.B.; dos Santos, F.J.; Jafelicci, M.; Contiero, J. Rhamnolipid emulsifying activity and emulsion stability: pH rules. Colloids Surf. B Biointerfaces 2011, 85, 301–305. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.W.; Li, Y.; Ye, R.Q. Effect of alcohols on the phase behavior of microemulsions formed by a biosurfactant—Rhamnolipid. J. Dispersion Sci. Technol. 2005, 26, 455–461. [Google Scholar] [CrossRef]
- Pornsunthorntawee, O.; Chavadej, S.; Rujiravanit, R. Solution properties and vesicle formation of rhamnolipid biosurfactants produced by Pseudomonas aeruginosa SP4. Colloids Surf. B Biointerfaces 2009, 72, 6–15. [Google Scholar] [CrossRef] [PubMed]
- Özdemir, G.; Peker, S.; Helvaci, S.S. Effect of pH on the surface and interfacial behavior of rhamnolipids R1 and R2. Colloids Surf. A Physicochem. Eng. Asp. 2004, 234, 135–143. [Google Scholar] [CrossRef]
- Simsek-Ege, F.A.; Bond, G.M.; Stringer, J. Polyelectrolye Complex Formation Between Alginate and Chitosan as a Function of pH. J. Appl. Polym. Sci. 2003, 88, 346–351. [Google Scholar] [CrossRef]
- Yang, J.; Chen, S.; Fang, Y. Viscosity study of interactions between sodium alginate and CTAB in dilute solutions at different pH values. Carbohydr. Polym. 2009, 75, 333–337. [Google Scholar] [CrossRef]
- Cameron, N.R.; Sherrington, D.C. High Internal Phase Emulsions (HIPEs)-Structure, Properties and Use in Polymer Preparation. In Biopolymers Liquid Crystalline Polymers Phase Emulsion; Springer: Berlin/Heidelberg, Germany, 1996; pp. 163–214. [Google Scholar]
- Pal, R. Shear viscosity behavior of emulsions of two immiscible liquids. J. Colloid Interface Sci. 2000, 225, 359–366. [Google Scholar] [CrossRef] [PubMed]
- Silva, V.F.; Batista, L.N.; De Robertis, E.; Castro, C.S.C.; Cunha, V.S.; Costa, M.A.S. Thermal and rheological behavior of ecofriendly metal cutting fluids. J. Therm. Anal. Calorim. 2016, 123, 973–980. [Google Scholar] [CrossRef]
- Mancini, F.; Montanari, L.; Peressini, D.; Fantozzi, P. Influence of Alginate Concentration and Molecular Weight on Functional Properties of Mayonnaise. LWT Food Sci. Technol. 2002, 35, 517–525. [Google Scholar] [CrossRef]
- Cofelice, M.; Cuomo, F.; Lopez, F. Rheological properties of alginate–essential oil nanodispersions. Colloids Interfaces 2018, 2, 48. [Google Scholar] [CrossRef]
- Eastoe, J.; Dalton, J.S. Dynamic surface tension and adsorption mechanisms of surfactants at the air-water interface. Adv. Colloid Interface Sci. 2000, 85, 103–144. [Google Scholar] [CrossRef]
- Abbasi, H.; Hamedi, M.M.; Lotfabad, T.B.; Zahiri, H.S.; Sharafi, H.; Masoomi, F.; Moosavi-Movahedi, A.A.; Ortiz, A.; Amanlou, M.; Noghabi, K.A. Biosurfactant-producing bacterium, Pseudomonas aeruginosa MA01 isolated from spoiled apples: Physicochemical and structural characteristics of isolated biosurfactant. J. Biosci. Bioeng. 2012, 113, 211–219. [Google Scholar] [CrossRef]
- Vajravelu, K.; Sreenadh, S.; Devaki, P.; Prasad, K.V. Mathematical model for a Herschel-Bulkley fluid flow in an elastic tube. Cent. Eur. J. Phys. 2011, 9, 1357–1365. [Google Scholar] [CrossRef]
- Pichot, R.; Spyropoulos, F.; Norton, I.T. O/W emulsions stabilised by both low molecular weight surfactants and colloidal particles: The effect of surfactant type and concentration. J. Colloid Interface Sci. 2010, 352, 128–135. [Google Scholar] [CrossRef]
- Ching, S.H.; Bansal, N.; Bhandari, B. Rheology of emulsion-filled alginate microgel suspensions. Food Res. Int. 2016, 80, 50–60. [Google Scholar] [CrossRef]
- Zhao, N.; Zhang, H.; Pan, H.; Xu, X.; Han, M.; Zhou, G. The interaction between sodium alginate and myofibrillar proteins: The rheological and emulsifying properties of their mixture. Int. J. Biol. Macromol. 2020, 161, 1545–1551. [Google Scholar] [CrossRef]
- OECD. OECD Guidelines for the Testing of Chemicals; OECD: Paris, France, 1992. [Google Scholar]
- Benito, J.M.; Cambiella, A.; Lobo, A.; Gutiérrez, G.; Coca, J.; Pazos, C. Formulation, characterization and treatment of metalworking oil-in-water emulsions. Clean Technol. Environ. Policy 2010, 12, 31–41. [Google Scholar] [CrossRef]
- Biresaw, G.; Mittal, K.L. Surfactants in Tribology; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Karsa, D.; Adamson, J.; Hadfield, R. Low foam nonionic surfactants: Biodegradability and performance optimisation. Chim. Oggi 1992, 10, 39–45. [Google Scholar]
- Ang, C.C.; Abdul, A.S. A laboratory study of the biodegradation of an alcohol ethoxylate surfactant by native soil microbes. J. Hydrol. 1992, 138, 191–209. [Google Scholar] [CrossRef]
- Franzetti, A.; Di Gennaro, P.; Bestetti, G.; Lasagni, M.; Pitea, D.; Collina, E. Selection of surfactants for enhancing diesel hydrocarbons-contaminated media bioremediation. J. Hazard. Mater. 2008, 152, 1309–1316. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, J.; Gerike, B.; Bontinck, W.J. Evaluation of the toxicity of substances to be assessed for biodegradability. Chemosphere 1987, 16, 2259–2277. [Google Scholar] [CrossRef]
- Semenyuk, I.; Danylchenko, S.; Panas, I.; Kosakivska, I. Products of Pseudomonas sp. biosynthesis of strain PS-17. 1. Preparation and thermal characteristics. Chem. Chem. Technol. 2020, 14, 26–33. [Google Scholar] [CrossRef]
- Pokynbroda, T.; Kryvtsova, M.; Kosakivska, I.; Semenyuk, I. Isolation of surfactants synthesized by Pseudomonas bacteria and study of their properties. Innov. Biosyst. Bioeng. 2019, 3, 70–76. [Google Scholar] [CrossRef]
- Igliński, B.; Iglińska, A.; Kujawski, W.; Buczkowski, R.; Cichosz, M. Bioenergy in Poland. Renew. Sustain. Energy Rev. 2011, 15, 2999–3007. [Google Scholar] [CrossRef]
- Van Dam, J.; Faaij, A.P.C.; Lewandowski, I.; Van Zeebroeck, B. Options of biofuel trade from Central and Eastern to Western European countries. Biomass Bioenergy 2009, 33, 728–744. [Google Scholar] [CrossRef]
- Alander, J.; Andersson, A.; Lindstrom, C. Cosmetic emollients with high stability against photo-oxidation. Lipid Technol. 2006, 18, 226–228. [Google Scholar]
- Lodén, M.; Andersson, A.C. Effect of topically applied lipids on surfactant-irritated skin. Br. J. Dermatol. 1996, 134, 215–220. [Google Scholar] [CrossRef]
- Rabasco Alvarez, A.M.; González Rodríguez, M.L. Lipids in pharmaceutical and cosmetic preparations. Grasas Aceites 2000, 51, 74–96. [Google Scholar] [CrossRef]
- Shashidhara, Y.M.; Jayaram, S.R. Vegetable oils as a potential cutting fluid—An evolution. Tribol. Int. 2010, 43, 1073–1081. [Google Scholar] [CrossRef]
- Przybylski, R. Canola/Rapeseed Oil. In Vegetable Oils in Food Technology; Wiley: Hoboken, NJ, USA, 2011; pp. 107–136. [Google Scholar] [CrossRef]
- Macierzanka, A.; Szelag, H.; Szumała, P.; Pawłowicz, R.; Mackie, A.R.; Ridout, M.J. Effect of crystalline emulsifier composition on structural transformations of water-in-oil emulsions: Emulsification and quiescent conditions. Colloids Surf. A Physicochem. Eng. Aspects 2009, 334, 40–52. [Google Scholar] [CrossRef]
- Mwangi, W.W.; Ho, K.W.; Tey, B.T.; Chan, E.S. Effects of environmental factors on the physical stability of pickering-emulsions stabilized by chitosan particles. Food Hydrocoll. 2016, 60, 543–550. [Google Scholar] [CrossRef]
- Polish Committee for Standardization (PN). Water Quality—Evaluation in an Aqueous Medium of the “Ultimate” Aerobic Biodegradability of Organic Compounds—Method by Analysis of Biochemical Oxygen Demand (Closed Bottle Test); Polish Committee for Standardization (PN): Warszawa, Poland, 2002.
- Wang, P.S.; Liu, X.; Zhang, Y. Biocompatible and biodegradable surfactants from orange peel for oil spill remediation. Molecules 2023, 28, 5794. [Google Scholar] [CrossRef]
- Kushnazarova, R.A.; Tursunov, O.; Sattarova, G.; Abdukodirov, A.; Kurbanova, T. New piperidinium surfactants with carbamate fragments as effective adjuvants in insecticide compositions based on imidacloprid. Pest Manag. Sci. 2024, 80, 5965. [Google Scholar] [CrossRef] [PubMed]
- Aris, Z.F.M.; Ahmad, N.; Salleh, H.M.; Hassan, M. Bio-based surfactants derived from pectin. Carbohydr. Polym. 2024, 324, 121428. [Google Scholar] [CrossRef] [PubMed]
- Mora-Gamboa, M.P.C.; López-Saiz, C.M.; Martínez-López, G.; Parra, R. Impact of antibiotics as waste, physical, chemical, and enzymatical degradation: Use of laccases. Molecules 2022, 27, 4436. [Google Scholar] [CrossRef] [PubMed]
- Alexy, R.; Kümpel, T.; Kümmerer, K. Assessment of degradation of 18 antibiotics in the closed bottle test. Chemosphere 2004, 57, 505–512. [Google Scholar] [CrossRef]
- Amsel, A.-K.; Müller, A.; Schuster, M.; Gärtner, S. Ready Biodegradability Data of Ionic Liquids, OECD 301D (Closed Bottle Test), V1; Medien-und Informationszentrum, Leuphana Universität Lüneburg: Lüneburg, Germany, 2024. [Google Scholar] [CrossRef]
- Azzouz, A.; Hayyan, M. Are deep eutectic solvents biodegradable? Process Saf. Environ. Prot. 2023, 176, 1021–1025. [Google Scholar] [CrossRef]
- Bading, M.; Müller, S.; Schmitt, T.; Fischer, M. Assessing the aquatic biodegradation potential of polymeric excipients for pharmaceutical formulation. Chemosphere 2024, 368, 143739. [Google Scholar] [CrossRef]
- Polish Committee for Standardization (PN). Water Quality—Guidance for the Preparation and Treatment of Poorly Water-Soluble Organic Compounds for the Subsequent Evaluation of Their Biodegradability in an Aqueous Medium; Polish Committee for Standardization (PN): Warsaw, Poland, 2001.
- Polish Committee for Standardization (PN). Water and Sewage, Determination of Dissolved Oxygen Content by Winkler Method; Polish Committee for Standardization (PN): Warsaw, Poland, 1972.
- Lim, H.; Kassim, A.; Huang, N.; Yarmo, M.A. Palm-based nonionic surfactants as emulsifiers for high internal phase emulsions. J. Surfactants Deterg. 2009, 12, 355–362. [Google Scholar] [CrossRef]
- Pons, R.; Ravey, J.C.; Sauvage, S.; Stébé, M.J.; Erra, P.; Solans, C. Structural studies on gel emulsions. Colloids Surf. A Physicochem. Eng. Aspects 1993, 76, 171–177. [Google Scholar] [CrossRef]
- Princen, H.M. Highly concentrated emulsions. I. Cylindrical systems. J. Colloid Interface Sci. 1979, 71, 55–66. [Google Scholar] [CrossRef]
- Babak, V.G.; Stébé, M.J. Highly concentrated emulsions: Physicochemical principles of formulation. J. Dispersion Sci. Technol. 2002, 23, 1–22. [Google Scholar] [CrossRef]
- Depree, J.A.; Savage, G.P. Physical and flavour stability of mayonnaise. Trends Food Sci. Technol. 2001, 12, 157–163. [Google Scholar] [CrossRef]
- Fujita, N.; Kimura, Y. Plate-out efficiency related to oil-in-water emulsions supply conditions on cold rolling strip. Proc. Inst. Mech. Eng. Part J. 2013, 227, 413–422. [Google Scholar] [CrossRef]
- Zhu, D.; Biresaw, G.; Clark, S.J.; Kasun, T.J. Elastohydrodynamic Lubrication With O/W Emulsions. ASME J. Tribol. 1994, 116, 310–320. [Google Scholar] [CrossRef]
- Soares da Silva, R.D.C.F.; de Almeida, D.G.; Brasileiro, P.P.F.; Rufino, R.D.; de Luna, J.M.; Sarubbo, L.A. Production, formulation and cost estimation of a commercial biosurfactant. Biodegradation 2019, 30, 191–201. [Google Scholar] [CrossRef] [PubMed]
RL:Alginate Ratio (w/w) | Alginate Share in Mixture | cmc RL | cmc | σ at cmc |
---|---|---|---|---|
% | mg/L | mg/L | mN/m | |
1:0 | 0 | 72.4 | 72.4 | 26.8 |
1.3:1 | 43 | 52.7 | 80.5 | 26.5 |
1:1 | 50 | 48.0 | 87.6 | 26.5 |
Biosurfactant | Consistency Index k, mPa∙s | Flow Index n | Yield Stress τo, Pa | Confidence of Fit, % |
---|---|---|---|---|
RLBC | 6 359 | 0.488 | 11.50 | 99.1 |
RLs | 6 803 | 0.431 | 7.72 | 99.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kłosowska-Chomiczewska, I.E.; Burakowska, G.; Żmuda-Trzebiatowska, P.; Soukup, A.; Rok-Czapiewska, I.; Hallmann, E.; Pokynbroda, T.; Karpenko, O.; Mędrzycka, K.; Macierzanka, A. High Internal Phase Oil-in-Water Emulsions Stabilised by Cost-Effective Rhamnolipid/Alginate Biocomplexes. Molecules 2025, 30, 595. https://doi.org/10.3390/molecules30030595
Kłosowska-Chomiczewska IE, Burakowska G, Żmuda-Trzebiatowska P, Soukup A, Rok-Czapiewska I, Hallmann E, Pokynbroda T, Karpenko O, Mędrzycka K, Macierzanka A. High Internal Phase Oil-in-Water Emulsions Stabilised by Cost-Effective Rhamnolipid/Alginate Biocomplexes. Molecules. 2025; 30(3):595. https://doi.org/10.3390/molecules30030595
Chicago/Turabian StyleKłosowska-Chomiczewska, Ilona E., Gabriela Burakowska, Paulina Żmuda-Trzebiatowska, Aleksandra Soukup, Iwona Rok-Czapiewska, Elżbieta Hallmann, Tetiana Pokynbroda, Olena Karpenko, Krystyna Mędrzycka, and Adam Macierzanka. 2025. "High Internal Phase Oil-in-Water Emulsions Stabilised by Cost-Effective Rhamnolipid/Alginate Biocomplexes" Molecules 30, no. 3: 595. https://doi.org/10.3390/molecules30030595
APA StyleKłosowska-Chomiczewska, I. E., Burakowska, G., Żmuda-Trzebiatowska, P., Soukup, A., Rok-Czapiewska, I., Hallmann, E., Pokynbroda, T., Karpenko, O., Mędrzycka, K., & Macierzanka, A. (2025). High Internal Phase Oil-in-Water Emulsions Stabilised by Cost-Effective Rhamnolipid/Alginate Biocomplexes. Molecules, 30(3), 595. https://doi.org/10.3390/molecules30030595