Preparation and Transformations of Acetophenone-Derived Enamino Ketones, BF2-β-Ketoiminates, and BF2-β-Diketonates
Abstract
:1. Introduction
2. Results
2.1. Synthesis of Model Enamino Ketones 4
2.2. Synthesis and Photochemical Reactions of BF2-β-Ketoiminates 5 and BF2-β-Diketonates 6
2.3. Other Transformations of Model Enamino Ketones 4
3. Structure Determination and Compound Characterization
4. Experimental
4.1. General Methods
4.2. General Procedure for the Synthesis of N,N-Dimethylenaminones 2a and 2b
4.2.1. (E)-3-(Dimethylamino)-1-phenylprop-2-en-1-one (2a)
4.2.2. (E)-1-(4-Chlorophenyl)-3-(dimethylamino)prop-2-en-1-one (2b)
4.3. General Procedures for the Synthesis of Enaminones 4a–h
- General Procedure A (G.P.A).
- General Procedure B (G.P.B).
4.3.1. (Z)-3-(methylamino)-1-phenylprop-2-en-1-one (4a)
4.3.2. (Z)-1-Phenyl-3-(phenylamino)prop-2-en-1-one (4b)
4.3.3. (Z)-4-[(3-Oxo-3-phenylprop-1-en-1-yl)amino]benzonitrile (4c)
4.3.4. (Z)-3-[(4-Methoxyphenyl)amino]-1-phenylprop-2-en-1-one (4d)
4.3.5. (Z)-3-(Allylamino)-1-(4-chlorophenyl)prop-2-en-1-one (4e)
4.3.6. (Z)-1-Phenyl-3-[(pyridin-2-yl)amino]prop-2-en-1-one (4f)
4.3.7. (E)-3-[Methyl(phenyl)amino]-1-phenylprop-2-en-1-one (4g)
4.3.8. (E)-1-(4-Chlorophenyl)-3-[methyl(phenyl)amino]prop-2-en-1-one (4h)
4.4. (Z)-1,3-Diphenyl-3-(phenylamino)prop-2-en-1-one (4i)
4.5. General Procedure for the Synthesis of β-Ketoiminate Complexes 5a–d
4.5.1. 2,2-Difluoro-3-methyl-6-phenyl-2H-1,3λ4,2λ4-oxazaborinine (5a)
4.5.2. 2,2-Difluoro-3,6-diphenyl-2H-1,3λ4,2λ4-oxazaborinine (5b)
4.5.3. 4-(2,2-Difluoro-6-phenyl-2H-1,3λ4,2λ4-oxazaborinin-3-yl)benzonitrile (5c)
4.5.4. 2,2-Difluoro-3,4,6-triphenyl-2H-1,3λ4,2λ4-oxazaborinine (5d)
4.6. General Procedure for the Synthesis of Boron Diketonato Complexes 6a–d
4.6.1. 2,2-Difluoro-4,6-diphenyl-2H-1,3λ3,2λ4-dioxaborinine (6a)
4.6.2. 2,2-Difluoro-4-methyl-6-phenyl-2H-1,3λ3,2λ4-dioxaborinine (6b)
4.6.3. 2,2-Difluoro-6-(4-methoxyphenyl)-4-methyl-2H-1,3λ3,2λ4-dioxaborinine (6c)
4.6.4. 2,2-Difluoro-4-methyl-5,6-dihydro-2H-2λ4,3λ3-naphtho[1,2-d][1,3,2]dioxaborinine (6d)
4.7. General Procedure for the Synthesis of 1,5-Diketones 7a–f
4.7.1. 2-(2-Benzoylcyclohexyl)-1-phenylethan-1-one (7a)
4.7.2. 2-(2-Benzoylcyclopentyl)-1-phenylethan-1-one (7b)
4.7.3. 1-(2-Benzoylcyclohexyl)propan-2-one (7c)
4.7.4. 1-[2-(4-Methoxybenzoyl)cyclohexyl]propan-2-one (7d)
4.7.5. 4-Acetyl-1,2,3,3a,4,5,6,11a-octahydro-11H-benzo[a]cyclopenta[d][8]annulen-11-one (7e)
4.7.6. 5-Acetyl-1,3,4,4a,5,6,7,12a-octahydrodibenzo[a,d][8]annulen-12(2H)-one (7f)
4.8. General Procedure for the Synthesis of Compounds 8a–d
4.8.1. tert-Butyl (E)-(3-oxo-3-phenylprop-1-en-1-yl)(phenyl)carbamate (8a)
4.8.2. tert-Butyl (E)-allyl(3-(4-chlorophenyl)-3-oxoprop-1-en-1-yl)carbamate (8b)
4.8.3. tert-Butyl (E)-(3-oxo-3-phenylprop-1-en-1-yl)(pyridin-2-yl)carbamate (8c)
4.8.4. tert-Butyl (E/Z)-(3-oxo-1,3-diphenylprop-1-en-1-yl)(phenyl)carbamate (8d)
4.9. Synthesis of (Z)-{2-Benzoyl-3-[(4-cyanophenyl)amino]acryloyl}sulfamoyl chloride (9)
4.10. Allylation of Enaminone 4b. Synthesis of Compounds 10–12
4.10.1. (E)-2-Allyl-1-phenyl-2-[(phenylimino)methyl]pent-4-en-1-one (10)
4.10.2. (E)-3-[Allyl(phenyl)amino]-1-phenylprop-2-en-1-one (11)
4.10.3. (E)-2-{[Allyl(phenyl)amino]methylene}-1-phenylpent-4-en-1-one (12)
4.11. Synthesis of 1-allyl-3,5-bis(4-chlorobenzoyl)-1,4-dihydropyridine (13)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Greenhill, J.V. Enaminones. Chem. Soc. Rev. 1977, 6, 277–294. [Google Scholar] [CrossRef]
- Stanovnik, B.; Svete, J. Synthesis of Heterocycles from Alkyl 3-(Dimethylamino)propenoates and Related Enaminones. Chem. Rev. 2004, 104, 2433–2480. [Google Scholar] [CrossRef] [PubMed]
- Šimůnek, P.; Maháček, V. The structure and tautomerism of azo coupled β-Enaminones. Dyes Pigment. 2010, 86, 187–205. [Google Scholar] [CrossRef]
- Chattopadhyay, A.K.; Hanessian, S. Cyclic enaminones. Part I: Stereocontrolled synthesis using diastereoselective and catalytic asymmetric methods. Chem. Commun. 2015, 51, 16437–16449. [Google Scholar] [CrossRef]
- Chattopadhyay, A.K.; Hanessian, S. Cyclic enaminones. Part II: Applications as versatile intermediates in alkaloid synthesis. Chem. Commun. 2015, 51, 16450–16467. [Google Scholar] [CrossRef]
- Huang, J.; Yu, F. Recent Advances in Organic Synthesis Based on N,N-Dimethyl Enaminones. Synthesis 2021, 53, 587–610. [Google Scholar] [CrossRef]
- Amaye, I.J.; Haywood, R.D.; Mandzo, E.M.; Wirick, J.J.; Jackson-Ayotunde, P.L. Enaminones as building blocks in drug development: Recent advances in their chemistry, synthesis, and biological properties. Tetrahedron 2021, 83, 131984. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, B.; Liu, Y.; Wan, J.-P. Recent Advances in Reactions Using Enaminone in Water or Aqueous Medium. Adv. Synth. Catal. 2022, 364, 1508–1521. [Google Scholar] [CrossRef]
- Siegel, M.G.; Winkler, J.D. Photochemistry of enamines and enaminones. In Enamines; Rappaport, Z., Ed.; Yohn Wiley & Sons: New York, NY, USA, 1994; Chapter 11; pp. 637–679. [Google Scholar] [CrossRef]
- Han, Y.; Zhou, L.; Wang, C.; Feng, S.; Ma, R.; Wan, J.-P. Recent advances in visible light-mediated chemical transformations of enaminones. Chin. Chem. Lett. 2024, 35, 108977. [Google Scholar] [CrossRef]
- Salaverri, N.; Alemán, J.; Marzo, L. Harnessing the Power of the De Mayo Reaction: Unveiling a Photochemical and Photocatalytic Masked [2+2] Methodology for Organic Synthesis. Adv. Synth. Catal. 2024, 366, 156–167. [Google Scholar] [CrossRef]
- Abd-alhamed, H.; Keshe, M.; Alabaas, R. The chemical organic reactions of β-diketones to prepare different β-diketone derivatives, their properties and its applications: A review. Results Chem. 2024, 12, 101860. [Google Scholar] [CrossRef]
- Israel, E.M.; Fyfe, J.W.B.; Watson, A.J.B. 11.07—Boron Complexes in Organic Synthesis. In Comprehensive Organometallic Chemistry IV, 4th ed.; Meyer, K., O’hare, D., Eds.; Elsevier: Oxford, UK, 2022; pp. 305–334. [Google Scholar] [CrossRef]
- Guieu, S.; Pinto, J.; Silva, V.L.M.; Rocha, J.; Silva, A.M.S. Synthesis, Post-Modification and Fluorescence Properties of Boron Diketonate Complexes. Eur. J. Org. Chem. 2015, 2015, 3423–3426. [Google Scholar] [CrossRef]
- Zhang, W.; Ren, Y.-Y.; Zhang, L.-N.; Fan, X.; Fan, H.; Wu, Y.; Zhang, Y.; Kuang, G.-C. Borondifluoride β-diketonate complex as fluorescent organic nanoparticles: Aggregation-induced emission for cellular imaging. RSC Adv. 2016, 6, 101937–101940. [Google Scholar] [CrossRef]
- Kamada, K.; Namikawa, T.; Senatore, S.; Matthews, C.; Lenne, P.-F.; Maury, O.; Andraud, C.; Ponce-Vargas, M.; Le Guiennic, B.; Jacquemin, D.; et al. Boron Difluoride Curcuminoid Fluorophores with Enhanced Two-Photon Excited Fluorescence Emission and Versatile Living-Cell Imaging Properties. Chem. Eur. J. 2016, 22, 5219–5232. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, Y.-Z.; Cao, J.-H.; Yang, Q.-Z.; Wu, L.-Z.; Tung, C.-H.; Wu, D.-Y. Dicyanoboron diketonate dyes: Synthesis, photophysical properties and bioimaging. Dye. Pigment. 2015, 112, 162–169. [Google Scholar] [CrossRef]
- Tanaka, K.; Chujo, Y. Recent progress of optical functional nanomaterials based on organoboron complexes with β-diketonate, ketoiminate and diiminate. NPG Asia Mater. 2015, 7, e223. [Google Scholar] [CrossRef]
- Motverov, M.V.; Lugovik, K.I.; Vataru, G.V.; Minin, A.S.; Pozdina, V.A.; Slepukhin, P.A.; Benassi, E.; Belskaya, N.P. N,O-bidentate BF2-enaminone complexes: Synthesis, electronic structure, photophysical properties, and biological behaviour. Dye. Pigment. 2022, 208, 110848. [Google Scholar] [CrossRef]
- Yoshii, R.; Tanaka, K.; Yoshiki, C. Conjugated Polymers Based on Tautomeric Units: Regulation of Main-Chain Conjugation and Expression of Aggregation Induced Emission Property via Boron-Complexation. Macromolecules 2014, 47, 2268–2278. [Google Scholar] [CrossRef]
- Yang, D.; Liu, P.; Bai, T.; Kong, J. N,N-Dimethyl-Substituted Boron Ketoiminates for Multicolor Fluorescent Initiators and Polymers. Macromolecules 2020, 53, 3339–3348. [Google Scholar] [CrossRef]
- Zhang, X.; Xie, T.; Yang, L.; Sun, X.; Jiang, J.; Zhang, G. General Design Strategy for Aromatic Ketone-Based Single-Component Dual-Emissive Materials. ACS Appl. Mater. Interfaces 2014, 6, 2279–2284. [Google Scholar] [CrossRef]
- Macedo, F.P.; Gwengo, C.; Lindeman, S.V.; Smith, M.D.; Gardinier, J.R. β-Diketonate, β-Ketoiminate, and β-Diiminate Complexes of Difluoroboron. Eur. J. Inorg. Chem. 2008, 2008, 3200–3211. [Google Scholar] [CrossRef]
- Dohe, J.; Koβmann, J.; Müller, T.J.J. Diversity-oriented four-component synthesis of solid state luminescent difluoro oxazaborinines. Dyes Pigments 2018, 157, 198–217. [Google Scholar] [CrossRef]
- Tomažin, U.; Grošelj, U.; Počkaj, M.; Požgan, F.; Štefane, B.; Svete, J. Combinatorial Synthesis of Acacen-Type Ligands and Their Coordination Compounds. ACS Comb. Sci. 2017, 19, 386–396. [Google Scholar] [CrossRef] [PubMed]
- Ciber, L.; Požgan, F.; Brodnik, H.; Štefane, B.; Svete, J.; Grošelj, U. Synthesis and Catalytic Activity of Organocatalysts Based on Enaminone and Benzenediamine Hydrogen Bond Donors. Catalysts 2022, 12, 1132. [Google Scholar] [CrossRef]
- Kotnik, T.; Menart, S.; Adam, Ž.; Bitenc, J.; Ciber, L.; Grošelj, U.; Petek, N.; Štefane, B.; Svete, J.; Genorio, B. Synthesis and Redox Activity of Polyenaminones for Sustainable Energy Storage Applications. Polymers 2024, 16, 2700. [Google Scholar] [CrossRef]
- Štefane, B. Selective Addition of Organolithium Reagents to BF2-Chelates of β-Ketoesters. Org. Lett. 2010, 12, 2900–2903. [Google Scholar] [CrossRef]
- Itoh, K.; Okazaki, K.; Sera, A.; Chow, Y.L. The photoaddition of enaminoketonatoboron difluorides with trans-stilbene. Chem. Commun. 1992, 1608–1609. [Google Scholar] [CrossRef]
- Wu, P.L.; Chu, M.; Fowler, F.W. The 1-aza-Cope rearrangement. 1. J. Org. Chem. 1988, 53, 963–972. [Google Scholar] [CrossRef]
- Wu, P.L.; Fowler, F.W. The 1-aza-Cope rearrangement. 2. J. Org. Chem. 1988, 53, 5988–6005. [Google Scholar] [CrossRef]
- Overman, L.E.; Humphreys, P.G.; Welmaker, G.S. The Aza-Cope/Mannich Reaction. Organic Reactions 2011, 75, 747–820. [Google Scholar] [CrossRef]
- Benary, E. Über die Einwirkung von Ammoniak und Aminen auf einige aliphatische und aromatische Oxymethylen-ketone. Chem. Ber. 1930, 63, 1573–1577. [Google Scholar] [CrossRef]
- Rosa, F.A.; Machado, P.; Bonacorso, H.G.; Zanatta, N.; Martins, M.A.P. Reaction of β-dimethylaminovinyl ketones with hydroxylamine: A simple and useful method for synthesis of 3- and 5-substituted isoxazoles. J. Heterocycl. Chem. 2008, 45, 879–885. [Google Scholar] [CrossRef]
- Larina, N.A.; Lokshin, V.; Berthet, J.; Delbaere, S.; Vermeersch, G.; Khodorkovsky, V. Synthesis and photochromism of a series of new 2-unsubstituted 3-(2-benzylbenzoyl)quinolin-4(1H)-ones. Tetrahedron 2010, 66, 8291–8299. [Google Scholar] [CrossRef]
- Zhou, S.; Liu, D.-Y.; Wang, S.; Tian, J.-S.; Loh, T.-P. An efficient method for the synthesis of 2-pyridones via C–H bond functionalization. Chem. Commun. 2020, 56, 15020–15023. [Google Scholar] [CrossRef] [PubMed]
- Geng, H.; Zhang, X.; Chang, M.; Zhou, L.; Wu, W.; Zhang, X. Ruthenium-Catalyzed Asymmetric Hydrogenation of β-Keto- enamines: An Efficient Approach to Chiral γ-Amino Alcohols. Adv. Synth. Catal. 2011, 353, 3039–3043. [Google Scholar] [CrossRef]
- Hoffmann, S.; Hanh, N.T.; Mandl, K.; Brezesinski, G.; Günther, E. Vinamid-Mesogene–[4-n-Alkoxy-phenyl]-[β-(4-n-alkoxy-phenyl)amino-vinyl]-ketone. Z. Chem. 1986, 26, 103–104. [Google Scholar] [CrossRef]
- Haak, E. Ruthenium Complexes of Electronically Coupled Cyclopentadienone Ligands—Catalysts for Transformations of Propargyl Alcohols. Eur. J. Org. Chem. 2007, 2007, 2815–2824. [Google Scholar] [CrossRef]
- Suresh, S.; Das, S.; Waidha, K.; Maity, R.; Basu, B. Multi-Component Approach for Synthesis of Quinolinyl-1,4-dihydropyridines, Evaluation of Cytotoxicity against MCF7 and Molecular Docking Studies. ChemistrySelect 2020, 5, 10501–10510. [Google Scholar] [CrossRef]
- Yang, J.; Wang, C.; Xie, X.; Li, H.; Li, Y. Acid-Catalyzed Cascade Reactions of Enaminones with Aldehydes: C–H Functionalization To Afford 1,4-Dihydropyridines. Eur. J. Org. Chem. 2010, 2010, 4189–4193. [Google Scholar] [CrossRef]
- Wu, W.; Wang, Z.; Shen, Q.; Liu, Q.; Chen, H. Fe-Catalyzed enaminone synthesis from ketones and amines. Org. Biomol. Chem. 2019, 17, 6753–6756. [Google Scholar] [CrossRef]
- Wan, J.-P.; Hu, D.; Liu, Y.; Li, L.; Wen, C. Copper-catalyzed intramolecular oxidative amination of enaminone C–H bond for the synthesis of imidazo [1,2-a]pyridines. Tetrahedron Lett. 2016, 57, 2880–2883. [Google Scholar] [CrossRef]
- Wang, F.; Sun, W.; Wang, Y.; Jiang, Y.; Loh, T.-P. Highly Site-Selective Metal-Free C–H Acyloxylation of Stable Enamines. Org. Lett. 2018, 20, 1256–1260. [Google Scholar] [CrossRef] [PubMed]
- Chu, J.-Y.H.; Murty, B.S.R.; Fedor, L. Nucleophilic substitution reactions of trans-3-methoxy-4’-substituted acrylophenones. J. Am. Chem. Soc. 1976, 98, 3632–3635. [Google Scholar] [CrossRef]
- Roberts, E.; Turner, E.E. CCXXXIX.—The factors controlling the formation of some derivatives of quinoline, and a new aspect of the problem of substitution in the quinoline series. J. Chem. Soc. 1927, 1832–1857. [Google Scholar] [CrossRef]
- Xie, C.; Feng, L.; Li, W.; Ma, X.; Liu, Y.; Ma, C. Efficient synthesis of pyrrolo [1,2-a]quinoxalines catalyzed by a Brønsted acid through cleavage of C–C bonds. Org. Biomol. Chem. 2016, 14, 8529–8535. [Google Scholar] [CrossRef]
- Palimkar, S.S.; More, V.S.; Srinivasan, K.V. Simple and Efficient One-Pot, Three-Component, Solvent-Free Synthesis of β-Enaminones via Sonogashira Coupling–Michael Addition Sequences. Synth. Commun. 2008, 38, 1456–1469. [Google Scholar] [CrossRef]
- Ono, K.; Yoshikawa, K.; Tsuji, Y.; Yamaguchi, H.; Uozumi, R.; Tomura, M.; Taga, K.; Saito, K. Synthesis and photoluminescence properties of BF2 complexes with 1,3-diketone ligands. Tetrahedron 2007, 63, 9354–9358. [Google Scholar] [CrossRef]
- Kumari, A.; Fernandes, R.A. BX3-Mediated Intermolecular Formation of Functionalized 3-Halo-1H-indenes via Cascade Halo-Nazarov-Type Cyclization. Synthesis 2020, 52, 2245–2258. [Google Scholar] [CrossRef]
- Kersten, L.; Roesner, S.; Hilt, G. Synthesis and Characterization of Polycarbonyl Compounds via their BF2-Adducts. Org. Lett. 2010, 12, 4920–4923. [Google Scholar] [CrossRef]
- Saho, S.R.; Sarkar, D.; Somu, P.; Paul, S.; Lönnecke, P. Unprecedented Rearrangement of β-Difluoroboryloxy Ethers: A Route to C-2 Alkyl-chromenones. Synlett 2022, 33, 1723–1728. [Google Scholar] [CrossRef]
- Wang, L.-C.; Jang, H.-Y.; Roh, Y.; Lynch, V.; Schultz, A.J.; Wang, X.; Krische, M.J. Diastereoselective Cycloreductions and Cycloadditions Catalyzed by Co(dpm)2-Silane (dpm = 2,2,6,6-tetramethylheptane-3,5-dionate): Mechanism and Partitioning of Hydrometallative versus Anion Radical Pathways. J. Am. Chem. Soc. 2002, 124, 9448–9453. [Google Scholar] [CrossRef] [PubMed]
- Baik, T.-G.; Luis, A.L.; Wang, L.-C.; Krische, M.J. Diastereoselective Cobalt-Catalyzed Aldol and Michael Cycloreductions. J. Am. Chem. Soc. 2001, 123, 5112–5113. [Google Scholar] [CrossRef] [PubMed]
- CrysAlis PRO; Agilent Technologies UK Ltd.: Oxfordshire, UK, 2011.
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cristallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. A 2008, 64, 112–122. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Macrae, C.F.; Edgington, P.R.; McCabe, P.; Pidcock, E.; Shields, G.P.; Taylor, R.; Towler, M.; van de Streek, J. Mercury: Visualization and analysis of crystal structures. J. Appl. Crystallogr. 2006, 39, 453–457. [Google Scholar] [CrossRef]
- Spek, A.L. Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 2003, 36, 7–13. [Google Scholar] [CrossRef]
Transformation | Ar | R1 | R2 | Method | E or Z | Yield (%) |
---|---|---|---|---|---|---|
1a → 2a | Ph | Me | Me | - | E | 85 |
1b → 2b | 4-ClC6H4 | Me | Me | - | E | 62 |
2a+3a → 4a | Ph | Me | H | A | Z | 57 |
2a+3b → 4b | Ph | Ph | H | A | Z | 95 |
2a+3c → 4c | Ph | 4-NCC6H4 | H | A | Z | 84 |
2a+3d → 4d | Ph | 4-MeOC6H4 | H | A | Z | 18 |
2b+3e → 4e | 4-ClC6H4 | allyl | H | A | Z | 69 |
2b+3e → 4e | 4-ClC6H4 | allyl | H | B | Z | 81 |
2a+3f → 4f | Ph | 2-pyridyl | H | B | Z | 63 |
2a+3g → 4g | Ph | Ph | Me | B | E | 71 |
2b+3g → 4h | 4-ClC6H4 | Ph | Me | B | E | 45 |
1c+3b → 4i | - | - | - | C | Z | 77 |
Transformation | Ar | R1 | R2 | n | Yield (%) |
---|---|---|---|---|---|
4a → 5a | - | H | Me | - | 78 |
4b → 5b | - | H | Ph | - | 73 |
4c → 5c | - | H | 4-NCC6H4 | - | 88 |
4i → 5d | - | Ph | Ph | - | 92 |
1c → 6a | Ph | Ph | - | - | 85 |
1d → 6b | Ph | Me | - | - | 79 |
1d → 6c | 4-MeOC6H4 | Me | - | - | 70 |
1f → 6d | - | - | - | - | 82 |
6a → 7a | Ph | Ph | - | 2 | 18 |
6a → 7b | Ph | Ph | - | 1 | 22 |
6b → 7c | Ph | Me | - | 2 | 13 |
6c → 7d | 4-MeOC6H4 | Me | - | 2 | 9 |
6d → 7e | - | - | - | 1 | 28 |
6d → 7f | - | - | - | 2 | 30 |
Transformation | Ar | R1 | R2 | Solvent | Yield (%) |
---|---|---|---|---|---|
4b → 8a | Ph | Ph | H | MeCN | 92 |
4e → 8b | 4-ClC6H4 | allyl | H | MeCN | 100 |
4f → 8c | Ph | 2-pyridyl | H | MeCN | 100 |
4i → 8d | Ph | Ph | Ph | MeCN | 88 |
4c → 9 | 4-NCC6H4 | - | - | MeCN | 65 |
4c → 9 | 4-NCC6H4 | - | - | Et2O | 80 |
4c → 9 | 4-NCC6H4 | - | - | toluene | 81 |
4b → 10 | - | - | - | MeCN | 44 |
4b → 11 | - | - | - | MeCN | 40 |
4b → 12 | - | - | - | MeCN | 7 |
4e → 13 | 4-ClC6H4 | - | - | H2O-HCO2H | 22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brodnik, H.; Ciber, L.; Grošelj, U.; Petek, N.; Štefane, B.; Svete, J. Preparation and Transformations of Acetophenone-Derived Enamino Ketones, BF2-β-Ketoiminates, and BF2-β-Diketonates. Molecules 2025, 30, 601. https://doi.org/10.3390/molecules30030601
Brodnik H, Ciber L, Grošelj U, Petek N, Štefane B, Svete J. Preparation and Transformations of Acetophenone-Derived Enamino Ketones, BF2-β-Ketoiminates, and BF2-β-Diketonates. Molecules. 2025; 30(3):601. https://doi.org/10.3390/molecules30030601
Chicago/Turabian StyleBrodnik, Helena, Luka Ciber, Uroš Grošelj, Nejc Petek, Bogdan Štefane, and Jurij Svete. 2025. "Preparation and Transformations of Acetophenone-Derived Enamino Ketones, BF2-β-Ketoiminates, and BF2-β-Diketonates" Molecules 30, no. 3: 601. https://doi.org/10.3390/molecules30030601
APA StyleBrodnik, H., Ciber, L., Grošelj, U., Petek, N., Štefane, B., & Svete, J. (2025). Preparation and Transformations of Acetophenone-Derived Enamino Ketones, BF2-β-Ketoiminates, and BF2-β-Diketonates. Molecules, 30(3), 601. https://doi.org/10.3390/molecules30030601