Enantiopure Turbo Chirality Targets in Tri-Propeller Blades: Design, Asymmetric Synthesis, and Computational Analysis
Abstract
:1. Introduction
2. Results and Discussion
Computational Study
3. Materials and Methods
3.1. General Methods
3.2. Chemical Synthesis
3.2.1. General Procedure A for the Synthesis of Sulfonamides 1a, 1a’, 1b, 1c, and 1h
3.2.2. General Procedure B for the Synthesis of Sulfonamides 1e–1g
3.2.3. General Procedure for the Synthesis of Phosphine Oxides 2
3.3. General Procedure for the Synthesis of Products 4 and 5
4. Summary
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eliel, E.L.; Wilen, S.H. Stereochemistry of Organic Compounds; John Wiley & Sons: Hoboken, NJ, USA, 1994; ISBN 9780471016700. [Google Scholar]
- Wagner, I.; Musso, H. New Naturally Occurring Amino Acids. Angew. Chem. Int. Ed. Engl. 1983, 22, 816–828. [Google Scholar] [CrossRef]
- Williams, R.M. Synthesis of Optically Active [Alpha]-Amino Acids; Pergamon: Oxford, UK, 1989; ISBN 9780080359397. [Google Scholar]
- Nick Pace, C.; Martin Scholtz, J. A Helix Propensity Scale Based on Experimental Studies of Peptides and Proteins. Biophys. J. 1998, 75, 422–427. [Google Scholar] [CrossRef] [PubMed]
- Dunitz, J.D. Pauling’s Left-Handed α-Helix. Angew. Chem. Int. Ed Engl. 2001, 40, 4167–4173. [Google Scholar] [CrossRef]
- Wang, A.H.-J.; Fujii, S.; van Boom, J.H.; Rich, A. Right-Handed and Left-Handed Double-Helical DNA: Structural Studies. Cold Spring Harb. Symp. Quant. Biol. 1983, 47, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.A.; Jones, R.M. The Sulfonamide Group as a Structural Alert: A Distorted Story? Curr. Opin. Drug Discov. Dev. 2008, 11, 72–79. [Google Scholar] [PubMed]
- Tang, X.; Fang, M.; Cheng, R.; Niu, J.; Huang, X.; Xu, K.; Wang, G.; Sun, Y.; Liao, Z.; Zhang, Z.; et al. Transferrin Is Up-Regulated by Microbes and Acts as a Negative Regulator of Immunity to Induce Intestinal Immunotolerance. Research 2024, 7, 0301. [Google Scholar] [CrossRef]
- Hu, M.; Feng, H.-T.; Yuan, Y.-X.; Zheng, Y.-S.; Tang, B.Z. Chiral AIEgens—Chiral Recognition, CPL Materials and Other Chiral Applications. Coord. Chem. Rev. 2020, 416, 213329. [Google Scholar] [CrossRef]
- Bao, J.; Liu, N.; Tian, H.; Wang, Q.; Cui, T.; Jiang, W.; Zhang, S.; Cao, T. Chirality Enhancement Using Fabry–Pérot-like Cavity. Research 2020, 2020, 7873581. [Google Scholar] [CrossRef]
- Shen, Y.; Chen, C.-F. Helicenes: Synthesis and Applications. Chem. Rev. 2012, 112, 1463–1535. [Google Scholar] [CrossRef]
- Oki, O.; Kulkarni, C.; Yamagishi, H.; Meskers, S.C.J.; Lin, Z.-H.; Huang, J.-S.; Meijer, E.W.; Yamamoto, Y. Robust Angular Anisotropy of Circularly Polarized Luminescence from a Single Twisted-Bipolar Polymeric Microsphere. J. Am. Chem. Soc. 2021, 143, 8772–8779. [Google Scholar] [CrossRef]
- Liu, T.-T.; Yan, Z.-P.; Hu, J.-J.; Yuan, L.; Luo, X.-F.; Tu, Z.-L.; Zheng, Y.-X. Chiral Thermally Activated Delayed Fluorescence Emitters-Based Efficient Circularly Polarized Organic Light-Emitting Diodes Featuring Low Efficiency Roll-Off. ACS Appl. Mater. Interfaces 2021, 13, 56413–56419. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Sang, Y.; Wang, T.; Jiang, J.; Meng, Y.; Jiang, Y.; Okuro, K.; Aida, T.; Liu, M. Asymmetric Catalysis Mediated by a Mirror Symmetry-Broken Helical Nanoribbon. Nat. Commun. 2019, 10, 3976. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.-L. Privileged Chiral Ligands and Catalysts; John Wiley & Sons: Hoboken, NJ, USA, 2011; ISBN 9783527635214. [Google Scholar]
- Wagen, C.C.; McMinn, S.E.; Kwan, E.E.; Jacobsen, E.N. Screening for Generality in Asymmetric Catalysis. Nature 2022, 610, 680–686. [Google Scholar] [CrossRef] [PubMed]
- Garhwal, S.; Dong, Y.; Mai, B.K.; Liu, P.; Buchwald, S.L. CuH-Catalyzed Regio- and Enantioselective Formal Hydroformylation of Vinyl Arenes. J. Am. Chem. Soc. 2024, 146, 13733–13740. [Google Scholar] [CrossRef]
- Tsai, C.-C.; Sandford, C.; Wu, T.; Chen, B.; Sigman, M.S.; Toste, F.D. Enantioselective Intramolecular Allylic Substitution via Synergistic Palladium/Chiral Phosphoric Acid Catalysis: Insight into Stereoinduction through Statistical Modeling. Angew. Chem. Int. Ed Engl. 2020, 59, 14647–14655. [Google Scholar] [CrossRef]
- Rouh, H.; Tang, Y.; Xu, T.; Yuan, Q.; Zhang, S.; Wang, J.-Y.; Jin, S.; Wang, Y.; Pan, J.; Wood, H.L.; et al. Aggregation-Induced Synthesis (AIS): Asymmetric Synthesis via Chiral Aggregates. Research 2022, 2022, 9865108. [Google Scholar] [CrossRef]
- Tang, Y.; Wang, Y.; Yuan, Q.; Zhang, S.; Wang, J.-Y.; Jin, S.; Xu, T.; Pan, J.; Surowiec, K.; Li, G. Aggregation-Induced Catalysis: Asymmetric Catalysis with Chiral Aggregates. Research 2023, 6, 0163. [Google Scholar] [CrossRef]
- Zhou, J.; Tang, Y. The Development and Application of Chiral Trisoxazolines in Asymmetric Catalysis and Molecular Recognition. Chem. Soc. Rev. 2005, 34, 664. [Google Scholar] [CrossRef]
- Cheng, J.K.; Xiang, S.-H.; Tan, B. Organocatalytic Enantioselective Synthesis of Axially Chiral Molecules: Development of Strategies and Skeletons. Acc. Chem. Res. 2022, 55, 2920–2937. [Google Scholar] [CrossRef]
- Gu, Q.-S.; Li, Z.-L.; Liu, X.-Y. Copper(I)-Catalyzed Asymmetric Reactions Involving Radicals. Acc. Chem. Res. 2020, 53, 170–181. [Google Scholar] [CrossRef]
- List, B.; Lerner, R.A.; Barbas, C.F. Proline-Catalyzed Direct Asymmetric Aldol Reactions. J. Am. Chem. Soc. 2000, 122, 2395–2396. [Google Scholar] [CrossRef]
- Han, J.T.; Tsuji, N.; Zhou, H.; Leutzsch, M.; List, B. Organocatalytic Asymmetric Synthesis of Si-Stereogenic Silacycles. Nat. Commun. 2024, 15, 5846. [Google Scholar] [CrossRef] [PubMed]
- Ahrendt, K.A.; Borths, C.J.; MacMillan, D.W.C. New Strategies for Organic Catalysis: The First Highly Enantioselective Organocatalytic Diels−Alder Reaction. J. Am. Chem. Soc. 2000, 122, 4243–4244. [Google Scholar] [CrossRef]
- de Jong, J.J.D.; Lucas, L.N.; Kellogg, R.M.; van Esch, J.H.; Feringa, B.L. Reversible Optical Transcription of Supramolecular Chirality into Molecular Chirality. Science 2004, 304, 278–281. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Neubauer, T.M.; Feringa, B.L. Dynamic Control of Chirality in Phosphine Ligands for Enantioselective Catalysis. Nat. Commun. 2015, 6, 6652. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Wang, W. Hydrogen-Bond-Mediated Asymmetric Catalysis. Chem. Asian J. 2008, 3, 516–532. [Google Scholar] [CrossRef]
- Itoh, J.; Fuchibe, K.; Akiyama, T. Chiral Phosphoric Acid Catalyzed Enantioselective Friedel-Crafts Alkylation of Indoles with Nitroalkenes: Cooperative Effect of 3 Å Molecular Sieves. Angew. Chem. Int. Ed Engl. 2008, 47, 4016–4018. [Google Scholar] [CrossRef]
- Hashimoto, T.; Maruoka, K. Recent Development and Application of Chiral Phase-Transfer Catalysts. Chem. Rev. 2007, 107, 5656–5682. [Google Scholar] [CrossRef]
- Tang, W.; Zhang, X. New Chiral Phosphorus Ligands for Enantioselective Hydrogenation. Chem. Rev. 2003, 103, 3029–3070. [Google Scholar] [CrossRef]
- The Nobel Prize in Chemistry 2001. Available online: https://www.nobelprize.org/prizes/chemistry/2001/summary/ (accessed on 28 January 2025).
- The Nobel Prize in Chemistry 2021. Available online: https://www.nobelprize.org/prizes/chemistry/2021/summary/%3E/ (accessed on 28 January 2025).
- Zhao, P.; Li, Z.; He, J.; Liu, X.; Feng, X. Asymmetric Catalytic 1,3-Dipolar Cycloaddition of α-Diazoesters for Synthesis of 1-Pyrazoline-Based Spirochromanones and Beyond. Sci. China Chem. 2021, 64, 1355–1360. [Google Scholar] [CrossRef]
- Hu, X.; Tang, X.; Zhang, X.; Lin, L.; Feng, X. Catalytic Asymmetric Nakamura Reaction by Gold(I)/Chiral N,N’-Dioxide-Indium(III) or Nickel(II) Synergistic Catalysis. Nat. Commun. 2021, 12, 3012. [Google Scholar] [CrossRef]
- Wright, T.B.; Evans, P.A. Catalytic Enantioselective Alkylation of Prochiral Enolates. Chem. Rev. 2021, 121, 9196–9242. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Zhang, M.; Guan, Y.; Zhang, Y.; Hong, X.; Wei, C.; Zheng, P.; Wei, D.; Fu, Z.; Chi, Y.R.; et al. Desymmetrization of Cyclic 1,3-Diketones under N-Heterocyclic Carbene Organocatalysis: Access to Organofluorines with Multiple Stereogenic Centers. Research 2021, 2021, 9867915. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Huo, X.; Xiao, J.; Zhao, L.; Ma, S.; Zhang, W. Enantio- and Diastereodivergent Construction of 1,3-Nonadjacent Stereocenters Bearing Axial and Central Chirality through Synergistic Pd/Cu Catalysis. J. Am. Chem. Soc. 2021, 143, 12622–12632. [Google Scholar] [CrossRef] [PubMed]
- Ping, Y.; Li, Y.; Zhu, J.; Kong, W. Construction of Quaternary Stereocenters by Palladium-catalyzed Carbopalladation-initiated Cascade Reactions. Angew. Chem. Int. Ed Engl. 2019, 58, 1562–1573. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Ge, S.; Sun, J. SPHENOL, A New Chiral Framework for Asymmetric Synthesis. J. Am. Chem. Soc. 2021, 143, 12445–12449. [Google Scholar] [CrossRef]
- Zhang, R.; Wu, Z.; Yang, S.; Ma, D. Asymmetric Palladium-catalyzed Dearomative Intramolecular N-alkylation Reaction: Enantioselective Total Synthesis of (−)-spiroquinazoline. Adv. Synth. Catal. 2023, 365, 1983–1988. [Google Scholar] [CrossRef]
- Cui, X.; Xu, X.; Lu, H.; Zhu, S.; Wojtas, L.; Zhang, X.P. Enantioselective Cyclopropenation of Alkynes with Acceptor/Acceptor-Substituted Diazo Reagents via Co(II)-Based Metalloradical Catalysis. J. Am. Chem. Soc. 2011, 133, 3304–3307. [Google Scholar] [CrossRef]
- Zhang, S.; Li, L.; Li, D.; Zhou, Y.-Y.; Tang, Y. Catalytic Regio- and Enantioselective Boracarboxylation of Arylalkenes with CO2 and Diboron. J. Am. Chem. Soc. 2024, 146, 2888–2894. [Google Scholar] [CrossRef]
- Curto, J.M.; Dickstein, J.S.; Berritt, S.; Kozlowski, M.C. Asymmetric Synthesis of α-Allyl-α-Aryl α-Amino Acids by Tandem Alkylation/π-Allylation of α-Iminoesters. Org. Lett. 2014, 16, 1948–1951. [Google Scholar] [CrossRef]
- Guo, W.; Wu, B.; Zhou, X.; Chen, P.; Wang, X.; Zhou, Y.-G.; Liu, Y.; Li, C. Formal Asymmetric Catalytic Thiolation with a Bifunctional Catalyst at a Water–Oil Interface: Synthesis of Benzyl Thiols. Angew. Chem. Int. Ed Engl. 2015, 54, 4522–4526. [Google Scholar] [CrossRef] [PubMed]
- Li, C.-J.; Wei, C.; Li, Z. The Development of A3-Coupling (Aldehyde-Alkyne-Amine) and AA3-Coupling (Asymmetric Aldehyde-Alkyne-Amine). Synlett 2004, 2004, 1472–1483. [Google Scholar] [CrossRef]
- Liu, D.; Li, B.; Chen, J.; Gridnev, I.D.; Yan, D.; Zhang, W. Ni-Catalyzed Asymmetric Hydrogenation of N-Aryl Imino Esters for the Efficient Synthesis of Chiral α-Aryl Glycines. Nat. Commun. 2020, 11, 5935. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.-M.; Wang, Y.-N.; Wang, B.-C.; Chen, X.-W.; Lu, L.-Q.; Xiao, W.-J. Synergetic Iridium and Amine Catalysis Enables Asymmetric [4+2] Cycloadditions of Vinyl Aminoalcohols with Carbonyls. Nat. Commun. 2019, 10, 2716. [Google Scholar] [CrossRef]
- Tan, X.; Wang, Q.; Sun, J. Electricity-Driven Asymmetric Bromocyclization Enabled by Chiral Phosphate Anion Phase-Transfer Catalysis. Nat. Commun. 2023, 14, 357. [Google Scholar] [CrossRef]
- Li, L.; Li, Y.; Fu, N.; Zhang, L.; Luo, S. Catalytic Asymmetric Electrochemical A-arylation of Cyclic Β-ketocarbonyls with Anodic Benzyne Intermediates. Angew. Chem. Int. Ed Engl. 2020, 59, 14347–14351. [Google Scholar] [CrossRef]
- Li, F.; Tian, D.; Fan, Y.; Lee, R.; Lu, G.; Yin, Y.; Qiao, B.; Zhao, X.; Xiao, Z.; Jiang, Z. Chiral Acid-Catalysed Enantioselective C−H Functionalization of Toluene and Its Derivatives Driven by Visible Light. Nat. Commun. 2019, 10, 1774. [Google Scholar] [CrossRef]
- Shen, X.; Chen, X.; Chen, J.; Sun, Y.; Cheng, Z.; Lu, Z. Ligand-Promoted Cobalt-Catalyzed Radical Hydroamination of Alkenes. Nat. Commun. 2020, 11, 783. [Google Scholar] [CrossRef]
- Zhu, X.; Jian, W.; Huang, M.; Li, D.; Li, Y.; Zhang, X.; Bao, H. Asymmetric Radical Carboesterification of Dienes. Nat. Commun. 2021, 12, 6670. [Google Scholar] [CrossRef]
- Zhang, Y.-Q.; Chen, Y.-B.; Liu, J.-R.; Wu, S.-Q.; Fan, X.-Y.; Zhang, Z.-X.; Hong, X.; Ye, L.-W. Asymmetric Dearomatization Catalysed by Chiral Brønsted Acids via Activation of Ynamides. Nat. Chem. 2021, 13, 1093–1100. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, F.; McCann, S.D.; Wang, D.; Chen, P.; Stahl, S.S.; Liu, G. Enantioselective Cyanation of Benzylic C-H Bonds via Copper-Catalyzed Radical Relay. Science 2016, 353, 1014–1018. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Rui, K.-H.; Tang, X.-Y.; Xu, Q.; Shi, M. Rhodium/Silver Synergistic Catalysis in Highly Enantioselective Cycloisomerization/Cross Coupling of Keto-Vinylidenecyclopropanes with Terminal Alkynes. J. Am. Chem. Soc. 2017, 139, 5957–5964. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Lv, Y.; Shu, L.; Jin, Z.; Chi, Y.R.; Li, T. Access to Axially Chiral Aryl Aldehydes via Carbene-Catalyzed Nitrile Formation and Desymmetrization Reaction. Research 2024, 7, 0293. [Google Scholar] [CrossRef]
- Ge, Y.; Qin, C.; Bai, L.; Hao, J.; Liu, J.; Luan, X. A Dearomatization/Debromination Strategy for the [4+1] Spiroannulation of Bromophenols with α,Β-unsaturated Imines. Angew. Chem. Int. Ed Engl. 2020, 59, 18985–18989. [Google Scholar] [CrossRef]
- Reimann, S.; Adachi, S.; Subramanian, H.; Sibi, M.P. Enantioselective Enolate Protonations: Evaluation of Achiral Templates with Fluxional Brønsted Basic Substituents in Conjugate Addition of Malononitriles. Tetrahedron 2024, 152, 133833. [Google Scholar] [CrossRef]
- Wang, Y.-B.; Tan, B. Construction of Axially Chiral Compounds via Asymmetric Organocatalysis. Acc. Chem. Res. 2018, 51, 534–547. [Google Scholar] [CrossRef]
- Liao, G.; Yao, Q.-J.; Zhang, Z.-Z.; Wu, Y.-J.; Huang, D.-Y.; Shi, B.-F. Scalable, Stereocontrolled Formal Syntheses of (+)-isoschizandrin and (+)-steganone: Development and Applications of Palladium(II)-catalyzed Atroposelective C–H Alkynylation. Angew. Chem. Int. Ed Engl. 2018, 57, 3661–3665. [Google Scholar] [CrossRef]
- Liu, Y.; Li, W.; Zhang, J. Chiral Ligands Designed in China. Natl. Sci. Rev. 2017, 4, 326–358. [Google Scholar] [CrossRef]
- Ma, X.; Tan, M.; Li, L.; Zhong, Z.; Li, P.; Liang, J.; Song, Q. Ni-Catalysed Assembly of Axially Chiral Alkenes from Alkynyl Tetracoordinate Borons via 1,3-Metallate Shift. Nat. Chem. 2024, 16, 42–53. [Google Scholar] [CrossRef]
- Ma, C.; Sheng, F.-T.; Wang, H.-Q.; Deng, S.; Zhang, Y.-C.; Jiao, Y.; Tan, W.; Shi, F. Atroposelective Access to Oxindole-Based Axially Chiral Styrenes via the Strategy of Catalytic Kinetic Resolution. J. Am. Chem. Soc. 2020, 142, 15686–15696. [Google Scholar] [CrossRef]
- Zhu, W.; Han, C.; Yang, G.; Huo, X.; Zhang, W. Pd/Cu-Cocatalyzed Enantio- and Diastereodivergent Wacker-Type Dicarbofunctionalization of Unactivated Alkenes. J. Am. Chem. Soc. 2024, 146, 26121–26130. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Liu, Y.; Xu, Q.; Wang, M.; Zhu, Q.; Yu, P.; Zhong, G.; Zeng, X. A Dynamic Kinetic Resolution Approach to Axially Chiral Diaryl Ethers by Catalytic Atroposelective Transfer Hydrogenation. Angew. Chem. Int. Ed Engl. 2023, 62, e202216534. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Ng, S.V.H.; Lovato, K.; Ong, J.-Y.; Poh, S.B.; Ng, X.Q.; Kürti, L.; Zhao, Y. Practical Access to Axially Chiral Sulfonamides and Biaryl Amino Phenols via Organocatalytic Atroposelective N-Alkylation. Nat. Commun. 2019, 10, 3061. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.-M.; Chen, P.; Li, W.; Niu, Y.; Zhao, X.-L.; Zhang, J. A New Type of Chiral Sulfinamide Monophosphine Ligands: Stereodivergent Synthesis and Application in Enantioselective Gold(I)-catalyzed Cycloaddition Reactions. Angew. Chem. Int. Ed Engl. 2014, 53, 4350–4354. [Google Scholar] [CrossRef]
- Dhawa, U.; Tian, C.; Wdowik, T.; Oliveira, J.C.A.; Hao, J.; Ackermann, L. Enantioselective Pallada-electrocatalyzed C−H Activation by Transient Directing Groups: Expedient Access to Helicenes. Angew. Chem. Int. Ed Engl. 2020, 59, 13451–13457. [Google Scholar] [CrossRef]
- Jin, L.; Li, Y.; Mao, Y.; He, X.-B.; Lu, Z.; Zhang, Q.; Shi, B.-F. Chiral Dinitrogen Ligand Enabled Asymmetric Pd/Norbornene Cooperative Catalysis toward the Assembly of C-N Axially Chiral Scaffolds. Nat. Commun. 2024, 15, 4908. [Google Scholar] [CrossRef]
- Yang, K.; Mao, Y.; Zhang, Z.; Xu, J.; Wang, H.; He, Y.; Yu, P.; Song, Q. Construction of C-B Axial Chirality via Dynamic Kinetic Asymmetric Cross-Coupling Mediated by Tetracoordinate Boron. Nat. Commun. 2023, 14, 4438. [Google Scholar] [CrossRef]
- Zhang, P.-C.; Li, Y.-L.; He, J.; Wu, H.-H.; Li, Z.; Zhang, J. Simultaneous Construction of Axial and Planar Chirality by Gold/TY-Phos-Catalyzed Asymmetric Hydroarylation. Nat. Commun. 2021, 12, 4609. [Google Scholar] [CrossRef]
- Yang, G.; Guo, D.; Meng, D.; Wang, J. NHC-Catalyzed Atropoenantioselective Synthesis of Axially Chiral Biaryl Amino Alcohols via a Cooperative Strategy. Nat. Commun. 2019, 10, 3062. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, W.-W.; Zheng, C.; Gu, Q.; You, S.-L. Enantioselective Synthesis of Azoniahelicenes by Rh-Catalyzed C–H Annulation with Alkynes. J. Am. Chem. Soc. 2021, 143, 114–120. [Google Scholar] [CrossRef]
- Luo, H.-Y.; Li, Z.-H.; Zhu, D.; Yang, Q.; Cao, R.-F.; Ding, T.-M.; Chen, Z.-M. Chiral Selenide/Achiral Sulfonic Acid Cocatalyzed Atroposelective Sulfenylation of Biaryl Phenols via a Desymmetrization/Kinetic Resolution Sequence. J. Am. Chem. Soc. 2022, 144, 2943–2952. [Google Scholar] [CrossRef] [PubMed]
- Ji, W.; Wu, H.-H.; Zhang, J. Axially Chiral Biaryl Monophosphine Oxides Enabled by Palladium/WJ-Phos-Catalyzed Asymmetric Suzuki–Miyaura Cross-Coupling. ACS Catal. 2020, 10, 1548–1554. [Google Scholar] [CrossRef]
- Wang, S.; Li, J.; Miao, T.; Wu, W.; Li, Q.; Zhuang, Y.; Zhou, Z.; Qiu, L. Highly Efficient Synthesis of a Class of Novel Chiral-Bridged Atropisomeric Monophosphine Ligands via Simple Desymmetrization and Their Applications in Asymmetric Suzuki–Miyaura Coupling Reaction. Org. Lett. 2012, 14, 1966–1969. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Sun, J.; Gu, W.; Tang, W. Enantioselective Cross-Coupling for Axially Chiral Tetra-Ortho-Substituted Biaryls and Asymmetric Synthesis of Gossypol. J. Am. Chem. Soc. 2020, 142, 8036–8043. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Lu, J.; Cao, T.; Ma, J.; Chen, K.; Zhu, S. Enantioselective Rh(II)-Catalyzed Desymmetric Cycloisomerization of Diynes: Constructing Furan-Fused Dihydropiperidines with an Alkyne-Substituted Aza-Quaternary Stereocenter. J. Am. Chem. Soc. 2021, 143, 14916–14925. [Google Scholar] [CrossRef]
- Yu, H.-B.; Chen, Y.-G.; Tian, Y.; Xie, M.-S.; Guo, H.-M. Nickel(II)-Catalyzed Asymmetric Inverse-Electron-Demand Diels–Alder Reaction of 2-Pyrones with Styrenes and Indenes. ACS Catal. 2024, 14, 8930–8938. [Google Scholar] [CrossRef]
- Cao, Z.-Y.; Wang, X.; Tan, C.; Zhao, X.-L.; Zhou, J.; Ding, K. Highly Stereoselective Olefin Cyclopropanation of Diazooxindoles Catalyzed by a C2-Symmetric Spiroketal Bisphosphine/Au(I) Complex. J. Am. Chem. Soc. 2013, 135, 8197–8200. [Google Scholar] [CrossRef]
- Wei, S.-Q.; Li, Z.-H.; Wang, S.-H.; Chen, H.; Wang, X.-Y.; Gu, Y.-Z.; Zhang, Y.; Wang, H.; Ding, T.-M.; Zhang, S.-Y.; et al. Asymmetric Intramolecular Amination Catalyzed with cp*Ir-SPDO via Nitrene Transfer for Synthesis of Spiro-Quaternary Indolinone. J. Am. Chem. Soc. 2024, 146, 18841–18847. [Google Scholar] [CrossRef]
- Dai, L.-X.; Tu, T.; You, S.-L.; Deng, W.-P.; Hou, X.-L. Asymmetric Catalysis with Chiral Ferrocene Ligands. Acc. Chem. Res. 2003, 36, 659–667. [Google Scholar] [CrossRef]
- Fu, G.C. Enantioselective Nucleophilic Catalysis with “Planar-Chiral” Heterocycles. Acc. Chem. Res. 2000, 33, 412–420. [Google Scholar] [CrossRef]
- Wu, G.; Liu, Y.; Rouh, H.; Ma, L.; Tang, Y.; Zhang, S.; Zhou, P.; Wang, J.-Y.; Jin, S.; Unruh, D.; et al. Asymmetric Catalytic Approach to Multilayer 3D Chirality. Chemistry 2021, 27, 8013–8020. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Liu, Y.; Yang, Z.; Katakam, N.; Rouh, H.; Ahmed, S.; Unruh, D.; Surowiec, K.; Li, G. Multilayer 3D Chirality and Its Synthetic Assembly. Research 2019, 2019, 6717104. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Liu, Y.; Yang, Z.; Jiang, T.; Katakam, N.; Rouh, H.; Ma, L.; Tang, Y.; Ahmed, S.; Rahman, A.U.; et al. Enantioselective Assembly of Multi-Layer 3D Chirality. Natl. Sci. Rev. 2020, 7, 588–599. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wu, G.; Yang, Z.; Rouh, H.; Katakam, N.; Ahmed, S.; Unruh, D.; Cui, Z.; Lischka, H.; Li, G. Multi-Layer 3D Chirality: New Synthesis, AIE and Computational Studies. Sci. China Chem. 2020, 63, 692–698. [Google Scholar] [CrossRef]
- Jin, S.; Wang, J.-Y.; Tang, Y.; Rouh, H.; Zhang, S.; Xu, T.; Wang, Y.; Yuan, Q.; Chen, D.; Unruh, D.; et al. Central-to-Folding Chirality Control: Asymmetric Synthesis of Multilayer 3D Targets with Electron-Deficient Bridges. Front. Chem. 2022, 10, 860398. [Google Scholar] [CrossRef]
- Tang, Y.; Wu, G.; Jin, S.; Liu, Y.; Ma, L.; Zhang, S.; Rouh, H.; Ali, A.I.M.; Wang, J.-Y.; Xu, T.; et al. From Center-to-Multilayer Chirality: Asymmetric Synthesis of Multilayer Targets with Electron-Rich Bridges. J. Org. Chem. 2022, 87, 5976–5986. [Google Scholar] [CrossRef]
- Xu, T.; Wang, Y.; Jin, S.; Rahman, A.U.; Yan, X.; Yuan, Q.; Liu, H.; Wang, J.-Y.; Yan, W.; Jiao, Y.; et al. Amino Turbo Chirality and Its Asymmetric Control. Research 2024, 7, 0474. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, T.; Jin, S.; Wang, J.-Y.; Yuan, Q.; Liu, H.; Tang, Y.; Zhang, S.; Yan, W.; Jiao, Y.; et al. Cover Feature: Design and Asymmetric Control of Orientational Chirality by Using the Combination of C(Sp2)-C(Sp) Levers and Achiral N-protecting Group (Chem. Eur. J. 28/2024). Chemistry 2024, 30, e202401515. [Google Scholar] [CrossRef]
- Jin, S.; Xu, T.; Tang, Y.; Wang, J.-Y.; Wang, Y.; Pan, J.; Zhang, S.; Yuan, Q.; Rahman, A.U.; Aquino, A.J.A.; et al. A New Chiral Phenomenon of Orientational Chirality, Its Synthetic Control and Computational Study. Front. Chem. 2023, 10, 1110240. [Google Scholar] [CrossRef]
- Xu, T.; Wang, J.-Y.; Wang, Y.; Jin, S.; Tang, Y.; Zhang, S.; Yuan, Q.; Liu, H.; Yan, W.; Jiao, Y.; et al. C(Sp)-C(Sp) Lever-Based Targets of Orientational Chirality: Design and Asymmetric Synthesis. Molecules 2024, 29, 2274. [Google Scholar] [CrossRef]
- Jin, S.; Wang, Y.; Tang, Y.; Wang, J.-Y.; Xu, T.; Pan, J.; Zhang, S.; Yuan, Q.; Rahman, A.U.; McDonald, J.D.; et al. Orientational Chirality, Its Asymmetric Control, and Computational Study. Research 2022, 2022, 0012. [Google Scholar] [CrossRef] [PubMed]
- Shirakawa, S.; Liu, S.; Kaneko, S. Organocatalyzed Asymmetric Synthesis of Axially, Planar, and Helical Chiral Compounds. Chem. Asian J. 2016, 11, 330–341. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-Y.; Tang, Y.; Wu, G.-Z.; Zhang, S.; Rouh, H.; Jin, S.; Xu, T.; Wang, Y.; Unruh, D.; Surowiec, K.; et al. Asymmetric Catalytic Assembly of Triple-columned and Multilayered Chiral Folding Polymers Showing Aggregation-induced Emission (AIE). Chemistry 2022, 28, e202104102. [Google Scholar] [CrossRef]
- Tang, Y.; Jin, S.; Zhang, S.; Wu, G.-Z.; Wang, J.-Y.; Xu, T.; Wang, Y.; Unruh, D.; Surowiec, K.; Ma, Y.; et al. Multilayer 3D Chiral Folding Polymers and Their Asymmetric Catalytic Assembly. Research 2022, 2022, 9847949. [Google Scholar] [CrossRef]
- Wang, Y.; Gong, J.; Wang, X.; Li, W.-J.; Wang, X.-Q.; He, X.; Wang, W.; Yang, H.-B. Multistate Circularly Polarized Luminescence Switching through Stimuli-induced Co-conformation Regulations of Pyrene-functionalized Topologically Chiral [2]Catenane. Angew. Chem. Int. Ed Engl. 2022, 61, e202210542. [Google Scholar] [CrossRef]
- Tong, M.-Y.; Yang, X.-Y. Catalytic Enantioselective Synthesis of Inherently Chiral Molecules: Recent Advances. Eur. J. Org. Chem. 2023, 26, e202300738. [Google Scholar] [CrossRef]
- Foces-Foces, C.; Hernández Cano, F.; Martínez-Ripoll, M.; Faure, R.; Roussel, C.; Claramunt, R.M.; López, C.; Sanz, D.; Elguero, J. Complete Energy Profile of a Chiral Propeller Compound: Tris-(2′-Methylbenzimidazol-1′-Yl) Methane (TMBM). Chromatographic Resolution on Triacetyl Cellulose, x-Ray Structures of the Racemic and One Enantiomer, and Dynamic NMR Study. Tetrahedron Asymmetry 1990, 1, 65–86. [Google Scholar] [CrossRef]
- Benincori, T.; Celentano, G.; Pilati, T.; Ponti, A.; Rizzo, S.; Sannicolò, F. Configurationally Stable Molecular Propellers: First Resolution of Residual Enantiomers. Angew. Chem. Int. Ed Engl. 2006, 45, 6193–6196. [Google Scholar] [CrossRef]
- Rizzo, S.; Cirilli, R.; Pierini, R. Chirality in Absence of Rigid Stereogenic Elements: Steric and Electronic Effects on the Configurational Stability of C3 Symmetric Residual Tris-Aryl Phosphanes. Chirality. 2014, 26, 601–606. [Google Scholar] [CrossRef]
- Kuznetsovaa, A.A.; Chachkovb, D.V.; Belogorlovac, N.A.; Kuimovc, V.A.; Malyshevac, S.F.; Vereshchaginaa, Y.A. Polarity and Conformational Analysis of Tri(1-naphthyl)phosphine, Tri(2-naphthyl)phosphine and Their Chalcogenides. Russ. J. Org. Chem. 2021, 57, 1245–1255. [Google Scholar]
- Nie, S.-Z.; Davison, R.T.; Dong, V.M. Enantioselective Coupling of Dienes and Phosphine Oxides. J. Am. Chem. Soc. 2018, 140, 16450–16454. [Google Scholar] [CrossRef] [PubMed]
- Lemouzy, S.; Giordano, L.; Hérault, D.; Buono, G. Introducing Chirality at Phosphorus Atoms: An Update on the Recent Synthetic Strategies for the Preparation of Optically Pure P-stereogenic Molecules. Eur. J. Org. Chem. 2020, 2020, 3351–3366. [Google Scholar] [CrossRef]
- Xue, Q.; Huo, S.; Wang, T.; Wang, Z.; Li, J.; Zhu, M.; Zuo, W. Diastereoselective Synthesis of P-chirogenic and Atropisomeric 2,2′-bisphosphino-1,1′-binaphthyls Enabled by Internal Phosphine Oxide Directing Groups. Angew. Chem. Int. Ed Engl. 2020, 59, 8153–8159. [Google Scholar] [CrossRef]
- Xu, R.; Gao, Z.; Yu, Y.; Tang, Y.; Tian, D.; Chen, T.; Chen, Y.; Xu, G.; Shi, E.; Tang, W. A Facile and Practical Preparation of P-Chiral Phosphine Oxides. Chem. Commun. 2021, 57, 3335–3338. [Google Scholar] [CrossRef]
- Haynes, R.K.; Chan, H.W.; Cheung, M.K.; Chung, S.T.; Lam, W.L.; Tsang, H.W.; Voerste, A.; Williams, I.D. Stereoselective Preparation of 10α- and 10β-Aryl Derivatives of Dihydroartemisinin. Eur. J. Org. Chem. 2003, 2003, 2098–2114. [Google Scholar] [CrossRef]
- Jolliffe, J.D.; Armstrong, R.J.; Smith, M.D. Catalytic enantioselective synthesis of atropisomeric biaryls by a cation-directed O-alkylation. Nat. Chem. 2017, 9, 558–562. [Google Scholar] [CrossRef]
- Xu, M.-M.; You, X.-Y.; Zhang, Y.-Z.; Lu, Y.; Tan, K.; Yang, L.; Cai, Q. Enantioselective Synthesis of Axially Chiral Biaryls by Diels–Alder/Retro-Diels–Alder Reaction of 2-Pyrones with Alkynes. J. Am. Chem. Soc. 2021, 143, 8993–9001. [Google Scholar] [CrossRef]
- Yang, K.; Mao, Y.; Xu, J.; Wang, H.; He, Y.; Li, W.; Song, Q. Construction of Axially Chiral Arylborons via Atroposelective Miyaura Borylation. J. Am. Chem. Soc. 2021, 143, 10048–10053. [Google Scholar] [CrossRef]
- Davis, F.A.; Chen, B.-C. Asymmetric Synthesis of Amino Acids Using Sulfinimines (Thiooxime S-Oxides). Chem. Soc. Rev. 1998, 27, 13. [Google Scholar] [CrossRef]
- Robak, M.T.; Herbage, M.A.; Ellman, J.A. Synthesis and Applications of Tert-Butanesulfinamide. Chem. Rev. 2010, 110, 3600–3740. [Google Scholar] [CrossRef]
- Becke, A.D. Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. Phys. Rev. A Gen. Phys. 1988, 38, 3098–3100. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B Condens. Matter 1988, 37, 785–789. [Google Scholar] [CrossRef] [PubMed]
- Becke, A.D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Becke, A.D. A New Mixing of Hartree–Fock and Local Density-Functional Theories. J. Chem. Phys. 1993, 98, 1372–1377. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef]
- Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef]
- Kästner, J.; Sherwood, P. Superlinearly Converging Dimer Method for Transition State Search. J. Chem. Phys. 2008, 128, 014106. [Google Scholar] [CrossRef]
- Balasubramani, S.G.; Chen, G.P.; Coriani, S.; Diedenhofen, M.; Frank, M.S.; Franzke, Y.J.; Furche, F.; Grotjahn, R.; Harding, M.E.; Hättig, C.; et al. TURBOMOLE: Modular Program Suite for Ab Initio Quantum-Chemical and Condensed-Matter Simulations. J. Chem. Phys. 2020, 152, 184107. [Google Scholar] [CrossRef]
- Kästner, J.; Carr, J.M.; Keal, T.W.; Thiel, W.; Wander, A.; Sherwood, P. DL-FIND: An Open-Source Geometry Optimizer for Atomistic Simulations. J. Phys. Chem. A 2009, 113, 11856–11865. [Google Scholar] [CrossRef]
- Metz, S.; Kästner, J.; Sokol, A.A.; Keal, T.W.; Sherwood, P. ChemShell—A Modular Software Package for QM/MM Simulations: ChemShell. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2014, 4, 101–110. [Google Scholar] [CrossRef]
- Garrido-Castro, A.F.; Salaverri, N.; Maestro, M.C.; Alemán, J. Intramolecular Homolytic Substitution Enabled by Photoredox Catalysis: Sulfur, Phosphorus, and Silicon Heterocycle Synthesis from Aryl Halides. Org. Lett. 2019, 21, 5295–5300. [Google Scholar] [CrossRef] [PubMed]
- Pierre-Marc, L.; Christophe, M.; Christian, P. Structure Revision of Medermycin/Lactoquinomycin A and of Related C-8 Glycosylated Naphthoquinones. Org. Lett. 2002, 4, 2711–2714. [Google Scholar] [CrossRef]
- Chen, L.-Y.; Li, J. Skeletal Editing of Dibenzolactones to Fluorenes via Ni- or Pd-Catalyzed Decarboxylation. J. Org. Chem. 2023, 88, 10252–10256. [Google Scholar] [CrossRef]
- Isenegger, P.G.; Bächle, F.; Pfaltz, A. Asymmetric Morita–Baylis–Hillman Reaction: Catalyst Development and Mechanistic Insights Based on Mass Spectrometric Back-Reaction Screening. Chem. Eur. J. 2016, 22, 17595. [Google Scholar] [CrossRef]
- Hatano, M.; Gouzu, R.; Mizuno, T.; Abe, H.; Yamada, T.; Ishihara, K. Catalytic Enantioselective Alkyl And Aryl Addition To Aldehydes and Ketones with Organozinc Reagents Derived from Alkyl Grignard Reagents or Arylboronic Acids. Catal. Sci. Technol. 2011, 1, 1149–1158. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Xu, T.; Pandey, A.; Jin, S.; Yan, J.X.; Yuan, Q.; Zhang, S.; Wang, J.-Y.; Liang, R.; Li, G. Enantiopure Turbo Chirality Targets in Tri-Propeller Blades: Design, Asymmetric Synthesis, and Computational Analysis. Molecules 2025, 30, 603. https://doi.org/10.3390/molecules30030603
Wang Y, Xu T, Pandey A, Jin S, Yan JX, Yuan Q, Zhang S, Wang J-Y, Liang R, Li G. Enantiopure Turbo Chirality Targets in Tri-Propeller Blades: Design, Asymmetric Synthesis, and Computational Analysis. Molecules. 2025; 30(3):603. https://doi.org/10.3390/molecules30030603
Chicago/Turabian StyleWang, Yu, Ting Xu, Ankit Pandey, Shengzhou Jin, Jasmine X. Yan, Qingkai Yuan, Sai Zhang, Jia-Yin Wang, Ruibin Liang, and Guigen Li. 2025. "Enantiopure Turbo Chirality Targets in Tri-Propeller Blades: Design, Asymmetric Synthesis, and Computational Analysis" Molecules 30, no. 3: 603. https://doi.org/10.3390/molecules30030603
APA StyleWang, Y., Xu, T., Pandey, A., Jin, S., Yan, J. X., Yuan, Q., Zhang, S., Wang, J.-Y., Liang, R., & Li, G. (2025). Enantiopure Turbo Chirality Targets in Tri-Propeller Blades: Design, Asymmetric Synthesis, and Computational Analysis. Molecules, 30(3), 603. https://doi.org/10.3390/molecules30030603