Optimization of Ultrasonic-Enzyme Synergistic Extraction of Proanthocyanidins from Jujube: Purification, Characterization, and Bioactivity Study
Abstract
:1. Introduction
2. Results
2.1. Single Factor Test Results
2.1.1. Effects of Ethanol Concentration and Solid-to-Liquid Ratio
2.1.2. Effects of Ultrasound Time, Power, and Temperature
2.1.3. Effects of Enzyme Addition and pH
2.2. Response Surface Method (RSM)
2.2.1. Establishment of the Regression Model
2.2.2. Regression Equation and Variance Analysis
2.2.3. Interaction Analysis of the Response Surface
2.2.4. Verification Test
2.3. Adsorption and Desorption of AB-8 Macroporous Resin
2.3.1. Effect of Sample Concentration and Adsorption Time on the Adsorption Rate
2.3.2. Effect of the Loading Flow Rate on the Adsorption Rate
2.3.3. Effect of Loading Volume and Sample pH on the Adsorption Rate
2.3.4. Effect of Different Elution Conditions on the Desorption Effects
2.4. Antioxidant In Vitro
2.4.1. Effects of Different Maturity on Antioxidant Activity
2.4.2. Effect of Resin Purification on Antioxidant Activity
2.4.3. Effect of Different Polymerization Degrees on Antioxidant Activity
2.5. In Vitro Glucose-Lowering Activity
2.5.1. Effects of Different Maturity and Resin Purification on Hypoglycemic Activity
2.5.2. Effect of Different Polymerization Degrees on Hypoglycemic Activity
2.6. FT-IR
2.7. SEM
2.8. HPLC-M S/MS Analysis
3. Materials and Methods
3.1. Reagents and Instruments
3.2. Sample Pretreatment
3.3. Single-Factor and Response Surface Test
3.3.1. Standard Curve Drawing of Proanthocyanidins
3.3.2. Single Factor Test
3.3.3. Response Surface Experiment
3.4. Optimization Tests for MPC Purification by Macroporous Resins
3.4.1. Static Adsorption and Desorption Experiments
3.4.2. Dynamic Adsorption and Desorption Experiments
3.5. In Vitro Antioxidant Capacity
3.5.1. DPPH Free Radical Scavenging Ability
3.5.2. Resonance of Hydroxyl Radical by Salicylic Acid
3.5.3. Reducing Force Determination
3.5.4. Superoxide Anion
3.6. Glucose-Lowering Activity
3.6.1. Determination of the Ability to Inhibit α-Glucosidase Activity
3.6.2. Determination of the Ability to Inhibit α-Amylase Activity
3.7. Structural Characterization
3.7.1. Fourier Infrared Spectrum Detection (FT-IR)
3.7.2. Electron Microscope Scanning (SEM)
3.7.3. UPLC-Q-TOF-MS Identified the OPC Components
3.8. Data Processing and Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Upanan, S.; Yodkeeree, S.; Thippraphan, P.; Punfa, W.; Wongpoomchai, R.; Limtrakul, P. The Proanthocyanidin-Rich Fraction Obtained from Red Rice Germ and Bran Extract Induces HepG2 Hepatocellular Carcinoma Cell Apoptosis. Molecules 2019, 24, 813. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Chen, P.; Li, X.; Shen, S.; Li, K. Persimmon Proanthocyanidins with Different Degrees of Polymerization Possess Distinct Activities in Models of High Fat Diet Induced Obesity. Nutrients 2022, 14, 3718. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Liao, H.; Dai, Y.; Qi, Y.; Zou, Z. Characterization and Anti-Ultraviolet Radiation Activity of Proanthocyanidin-Rich Extracts from Cinnamomum camphora by Ultrasonic-Assisted Method. Molecules 2024, 29, 796. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.; Tan, B.; Sun, X. Elucidation of Interaction between Whey Proteins and Proanthocyanidins and Its Protective Effects on Proanthocyanidins during In-Vitro Digestion and Storage. Molecules 2021, 26, 5468. [Google Scholar] [CrossRef] [PubMed]
- Thilakarathna, W.P.D.W.; Rupasinghe, H.P.V. Optimization of the Extraction of Proanthocyanidins from Grape Seeds Using Ultrasonication-Assisted Aqueous Ethanol and Evaluation of Anti-Steatosis Activity In Vitro. Molecules 2022, 27, 1363. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Cao, S.; Chen, X.; Chen, W.; Zheng, Y.; Yang, Z. Proanthocyanidin Synthesis in Chinese Bayberry (Myrica rubra Sieb. et Zucc.) Fruits. Front. Plant Sci. 2018, 9, 212. [Google Scholar] [CrossRef] [PubMed]
- Maffei, M.E.; Salata, C.; Gribaudo, G. Tackling the Future Pandemics: Broad-Spectrum Antiviral Agents (BSAAs) Based on A-Type Proanthocyanidins. Molecules 2022, 27, 8353. [Google Scholar] [CrossRef]
- Bindon, K.; Qi, S.; Kassara, S.; Nicolotti, L.; Jouin, A.; Beer, M. Apple Pomace Compositional Data Highlighting the Proportional Contribution of Polymeric Procyanidins. Molecules 2023, 28, 5494. [Google Scholar] [CrossRef] [PubMed]
- Nemes, A.; Szőllősi, E.; Stündl, L.; Biró, A.; Homoki, J.R.; Szarvas, M.M.; Balogh, P.; Cziáky, Z.; Remenyik, J. Determination of Flavonoid and Proanthocyanidin Profile of Hungarian Sour Cherry. Molecules 2018, 23, 3278. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Liu, F.; Ullah, N.; Wang, M. Isolation, purification, and antioxidant activities of polysaccharides from Ziziphus jujuba cv. Muzao. Int. J. Food Prop. 2018, 21, 1–11. [Google Scholar] [CrossRef]
- Liu, H.; Guo, X.; Wu, J.; Liu, H.; Deng, B.; Zhao, X. Determination of polyphenols in Chinese jujube using ultra-performance liquid chromatography–mass spectrometry. Open Chem. 2023, 21, 20220305. [Google Scholar] [CrossRef]
- Fu, L.; Xu, B.T.; Xu, X.R.; Gan, R.Y.; Zhang, Y.; Xia, E.Q.; Li, H.B. Antioxidant capacities and total phenolic contents of 62 fruits. Food Chem. 2011, 129, 345–350. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, X.; Vidyarthi, S.K.; Zhang, R. Active components and antioxidant activity of thirty-seven varieties of Chinese jujube fruits (Ziziphus jujuba Mill.). Int. J. Food Prop. 2021, 24, 1479–1494. [Google Scholar] [CrossRef]
- Huang, X.; Hou, Z. Label-free quantitative proteomics analysis of jujube (Ziziphus jujuba Mill.) during different growth stages. RSC Adv. 2021, 11, 22106–22119. [Google Scholar] [CrossRef] [PubMed]
- Reche, J.; Almansa, M.S.; Hernández, F.; Amorós, A.; Legua, P. Physicochemical and Antioxidant Capacity of Jujube (Ziziphus jujuba Mill.) at Different Maturation Stages. Agronomy 2021, 11, 132. [Google Scholar] [CrossRef]
- Hu, X.; Wang, J.; Li, H.; Ma, Z.; Ji, H.; Lan, W. Physicochemical properties and antioxidant activity of Yulingdang jujube (Ziziphus jujuba Mill.) fruit at different stages of maturity. CyTA J. Food 2023, 21, 522–529. [Google Scholar] [CrossRef]
- Shi, Q.; Zhang, Z.; Su, J.; Zhou, J.; Li, X. Comparative Analysis of Pigments, Phenolics, and Antioxidant Activity of Chinese Jujube (Ziziphus jujuba Mill.) during Fruit Development. Molecules 2018, 23, 1917. [Google Scholar] [CrossRef]
- Huang, A.N.; Yu, C.; Zhao, X.; Li, L.; Du, F.; Zheng, F. Study on ultrasonic assisted extraction and stability of procyanidins from lotus seed pot. Food Res. Dev. 2021, 42, 114–119. [Google Scholar] [CrossRef]
- Li, S.; Yang, Y.; Li, J.; Zhu, Z.; Lorenzo, J.M.; Barba, F.J. Increasing Yield and Antioxidative Performance of Litchi Pericarp Procyanidins in Baked Food by Ultrasound-Assisted Extraction Coupled with Enzymatic Treatment. Molecules 2018, 23, 2089. [Google Scholar] [CrossRef]
- Sun, L.; Wang, H.; Du, J.; Wang, T.; Yu, D. Ultrasonic-assisted extraction of grape seed procyanidins, preparation of liposomes, and evaluation of their antioxidant capacity. Ultrason. Sonochem. 2024, 105, 106856. [Google Scholar] [CrossRef]
- Chemat, F.; Rombaut, N.; Sicaire, A.G.; Meullemiestre, A.; Fabiano-Tixier, A.S.; Abert-Vian, M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochem. 2017, 34, 540–560. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Li, S.; He, J.; Thirumdas, R.; Montesano, D.; Barba, F.J. Enzyme-assisted extraction of polyphenol from edible lotus (Nelumbo nucifera) rhizome knot: Ultra-filtration performance and HPLC-MS 2 profile. Food Res. Int. 2018, 111, 291–298. [Google Scholar] [CrossRef] [PubMed]
- De Souza, V.B.; Holkem, A.T.; Thomazini, M.; Petta, T.; Tulini, F.L.; de Oliveira, C.A.; Genovese, M.I.; Rodrigues, C.E.; Trindade, C.S. Study of extraction kinetics and characterization of proanthocyanidin-rich extract from Ceylon cinnamon (Cinnamomum zeylanicum). J. Food Process. Preserv. 2021, 45, e15429. [Google Scholar] [CrossRef]
- Wang, Q.; Zhou, C.; Liu, K.; Mao, D.; Liang, Z. Optimization of extraction process of proanthocyanidins from Zijuan tea (Camellia sinensis var. kitmaura) by response surface design. J. Food Process. Preserv. 2022, 46, e16213. [Google Scholar] [CrossRef]
- Bai, R.; Cui, Y.; Luo, L.; Yuan, D.; Wei, Z.; Yu, W.; Sun, B. A semisynthetic approach for the simultaneous reaction of grape seed polymeric procyanidins with catechin and epicatechin to obtain oligomeric procyanidins in large scale. Food Chem. 2019, 278, 609–616. [Google Scholar] [CrossRef] [PubMed]
- Alrugaibah, M.; Yagiz, Y.; Gu, L. Use natural deep eutectic solvents as efficient green reagents to extract procyanidins and anthocyanins from cranberry pomace and predictive modeling by RSM and artificial neural networking. Sep. Purif. Technol. 2020, 255, 117720. [Google Scholar] [CrossRef]
- Jensen, W.A. Response Surface Methodology: Process and Product Optimization Using Designed Experiments 4th edition. J. Qual. Technol. 2017, 49, 186–188. [Google Scholar] [CrossRef]
- Tian, C.; Zhang, Z.; Wang, H.; Peng, Q.; Guo, Y.; Cui, C.; Liu, M. Response surface optimization and antioxidant activity of total proanthocyanidins fraction from Abutilon theophrasti Medic. leaves. Pak. J. Pharm. Sci. 2020, 33, 1511–1517. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Misrani, A.; Long, C.; He, Z.; Chen, K.; Yang, L. Pigment of Ceiba speciosa (A. St.-Hil.) Flowers: Separation, Extraction, Purification and Antioxidant Activity. Molecules 2022, 27, 3555. [Google Scholar] [CrossRef] [PubMed]
- Cao, D.; Bu, F.; Cheng, X.; Zhao, C.; Yin, Y.; Liu, P. Purification of phenolics from Plantago depressa by macroporous resin: Adsorption/desorption characteristics, chromatographic process development and UPLC-TQ-MS/MS quantitative analysis. LWT-Food Sci. Technol. 2024, 203, 116405. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, J.; Qin, L.; Wang, G.; Li, P.; Yu, A.; Liu, A.; Sun, R. Separation and Purification of Two Saponins from Paris polyphylla var. yunnanensis by a Macroporous Resin. Molecules 2022, 27, 6626. [Google Scholar] [CrossRef]
- Hou, M.; Zhang, L. Adsorption/desorption characteristics and chromatographic purification of polyphenols from Vernonia patula (Dryand.) Merr. using macroporous adsorption resin. Ind. Crops Prod. 2021, 170, 113729. [Google Scholar] [CrossRef]
- Ruan, X.; Zhan, L.; Gao, X.; Yan, L.; Zhang, H.; Zhu, Z.; Wang, Q.; Jiang, D. Separation and purification of flavonoid from Taxus remainder extracts free of taxoids using polystyrene and polyamide resin. J. Sep. Sci. 2013, 36, 1925–1934. [Google Scholar] [CrossRef]
- Guo, B.; Lv, K.; Hu, Y.; Du, J.; Lv, Y. Study on Optical Properties and Biological Activity of Proanthocyanidins at Different pH and Alkalinit. IOP Conf. Ser. Earth Environ. Sci. 2021, 706, 012040. [Google Scholar] [CrossRef]
- Li, H.; Lin, J.; Bai, B.; Bo, T.; He, Y.; Fan, S.; Zhang, J. Study on Purifification, Identifification and Antioxidant of Flavonoids Extracted from Perilla leaves. Molecules 2023, 28, 7273. [Google Scholar] [CrossRef]
- Nieto, J.A.; Santoyo, S.; Prodanov, M.; Reglero, G.; Jaime, L. Valorisation of Grape Stems as a Source of Phenolic Antioxidants by Using a Sustainable Extraction Methodology. Foods 2020, 9, 604. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.H.; Wang, X.D.; Zhang, Y.W.; Gao, X.; Yuan, J.Y.; Zhao, T.P.; Qin, Z.; Liu, H.M. Effect of temperature, pH, metal ions, and oil type on Chinese quince proanthocyanidins, thermal stability, antioxidant activity, and inhibition of heterocyclic amine formation during simulated frying. Food Control 2024, 161, 110406. [Google Scholar] [CrossRef]
- McCance, K.R.; Flanigan, P.M.; Quick, M.M.; Niemeyer, E.D. Influence of plant maturity on anthocyanin concentrations, phenolic composition, and antioxidant properties of 3 purple basil (Ocimum basilicum L.) cultivars. J. Food Compos. Anal. 2016, 53, 30–39. [Google Scholar] [CrossRef]
- Wang, Y.; Shao, Y.; Yang, X.; Su, J.; Li, Z.; Yang, Y.; Yuan, X.; Chen, C. The diversity of fruit ripening stages in Pyracantha fortuneana led to differences in phenolic compounds, antioxidant activity, and tyrosinase inhibitory activity. J. Food Sci. 2024, 89, 3469–3483. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Deng, Y.; Yang, Y.; Dong, H.; Li, L.; Chen, G. Comparison of different drying pretreatment combined with ultrasonic-assisted enzymolysis extraction of anthocyanins from Lycium ruthenicum murr. Ultrason. Sonochemistry 2024, 107, 106933. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Zhang, L.; Li, W.; Zhang, S.; Luo, L.; Wang, J.; Sun, B. In vitro evaluation of the anti-digestion and antioxidant effects of grape seed procyanidins according to their degrees of polymerization. J. Funct. Foods 2018, 49, 85–95. [Google Scholar] [CrossRef]
- Rajaei, A.; Salarbashi, D.; Asrari, N.; Fazly Bazzaz, B.S.; Aboutorabzade, S.M.; Shaddel, R. Antioxidant, antimicrobial, and cytotoxic activities of extracts from the seed and pulp of Jujube (Ziziphus jujuba) grown in Iran. Food Sci. Nutr. 2021, 9, 682–691. [Google Scholar] [CrossRef]
- Li, X.; Liu, J.; Chang, Q.; Zhou, Z.; Han, R.; Liang, Z. Antioxidant and Antidiabetic Activity of Proanthocyanidins from Fagopyrum dibotrys. Molecules 2021, 26, 2417. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Zhou, X.; He, X.; Ding, R.; Wang, R.; Wang, W.; Zhou, W. Extraction optimization of raspberry proanthocyanidins and determination of its antioxidant activities in vitro. Food Agric. Immunol. 2021, 32, 693–712. [Google Scholar] [CrossRef]
- Peng, M.; Jiang, C.; Jing, H.; Du, X.; Fan, X.; Zhang, Y.; Wang, H. Comparison of different extraction methods on yield, purity, antioxidant, and antibacterial activities of proanthocyanidins from chokeberry (Aronia melanocarpa). J. Food Meas. Charact. 2022, 16, 2049–2059. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Y.; Zhang, M.; Wang, Q.; Xie, J. Ultrasonic-assisted extraction of swertisin from sour Jujube seed and comprehensive revelation of its antioxidant activity. J. Food Biochem. 2022, 46, e14433. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Gong, P.; Ma, H.; Xie, R.; Wei, J.; Xu, M. Ultrasound Treatment Degrades, Changes the Color, and Improves the Antioxidant Activity of the Anthocyanins in Red Radish. LWT 2022, 165, 113761. [Google Scholar] [CrossRef]
- Bao, Y.; Ren, X.; Zhu, Y.; Zhang, Y.; Peng, Z.; Zhou, G. Comparison of lipid radical scavenging capacity of spice extract in situ in roast beef with DPPH and peroxy radical scavenging capacities in vitro models. LWT-Food Sci. Technol. 2020, 130, 109626. [Google Scholar] [CrossRef]
- Jie, Z.; Liu, J.; Shu, M.; Ying, Y.; Yang, H. Detection strategies for superoxide anion: A review. Talanta 2022, 236, 122892. [Google Scholar] [CrossRef] [PubMed]
- Sanna, D.; Fadda, A. Role of the Hydroxyl Radical-Generating System in the Estimation of the Antioxidant Activity of Plant Extracts by Electron Paramagnetic Resonance (EPR). Molecules 2022, 27, 4560. [Google Scholar] [CrossRef] [PubMed]
- Jalili Safaryan, M.; Ganjloo, A.; Bimakr, M.; Zarringhalami, S. Optimization of Ultrasound-Assisted Extraction, Preliminary Characterization and In Vitro Antioxidant Activity of Polysaccharides from Green Pea Pods. Foods 2016, 5, 78. [Google Scholar] [CrossRef] [PubMed]
- Klavins, L.; Perkons, I.; Mezulis, M.; Viksna, A.; Klavins, M. Procyanidins from Cranberry Press Residues—Extraction Optimization, Purification and Characterization. Plants 2022, 11, 3517. [Google Scholar] [CrossRef]
- Arimboor, R.; Arumughan, C. Effect of Polymerization on Antioxidant and Xanthine Oxidase Inhibitory Potential of Sea Buckthorn (H. rhamnoides) Proanthocyanidins. J. Food Sci. 2012, 77, C1036–C1041. [Google Scholar] [CrossRef] [PubMed]
- Egea, J.; Fabregat, I.; Frapart, Y.M.; Ghezzi, P.; Gorlach, A.; Kietzmann, T.; Kubaichuk, K.; Knaus, U.G.; Lopez, M.G.; Olaso-Gonzalez, G. European contribution to the study of ROS: A summary of the fndings and prospects for the future from the COST action BM1203 (EU-ROS). Redox Biol. 2017, 13, 94–162. [Google Scholar] [CrossRef] [PubMed]
- Vaid, M.; Prasad, R.; Singh, T.; Katiyar, S.K. Dietary grape seed proanthocyanidins inactivate regulatory T cells by promoting NER-dependent DNA repair in dendritic cells in UVB-exposed skin. Oncotarget 2017, 8, 49625–49636. [Google Scholar] [CrossRef]
- Yang, L.Y.; Xian, D.H.; Xiong, X.; Lai, R.; Song, J.; Zhong, J.Q. Proanthocyanidins against Oxidative Stress: From Molecular Mechanisms to Clinical Applications. BioMed Res. Int. 2018, 11, 8584136. [Google Scholar] [CrossRef]
- Baron, G.; Altomare, A.; Della Vedova, L.; Gado, F.; Quagliano, O.; Roda, G.; Amato, A.D.; Lammi, C.; Macorano, A.; Vittorio, S.; et al. Unraveling the parahormetic mechanism underlying the health-protecting effects of grapeseed procyanidins. Redox Biol. 2024, 69, 102981. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Xiong, J.; Huang, S.; Li, X.; Zhang, Y.; Zhang, L.; Wang, F. Analytical Profiling of Proanthocyanidins from Acacia mearnsii Bark and In Vitro Assessment of Antioxidant and Antidiabetic Potential. Molecules 2018, 23, 2891. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Shen, J.; Zhu, X.; Ju, T.; Willing, B.P.W.; Wu, X.; Liu, R. Peanut skin procyanidins reduce intestinal glucose transport protein expression, regulate serum metabolites and ameliorate hyperglycemia in diabetic mice. Food Res. Int. 2023, 173, 113471. [Google Scholar] [CrossRef]
- Yi, W.; Zhang, L.M.; Xiao, H.; Ye, X.Q.; Pan, H.B.; Chen, S.G. Revisiting dietary proanthocyanidins on blood glucose homeostasis from a multi-scale structural perspective. Curr. Res. Food Sci. 2024, 9, 100926. [Google Scholar] [CrossRef]
- Huneif, M.A.; Alqahtani, S.M.; Abdulwahab, A.; Almedhesh, S.A.; Mahnashi, M.H.; Riaz, M.; Ur-Rahman, N.; Jan, M.S.; Ullah, F.; Aasim, M. α-Glucosidase, α-Amylase and Antioxidant Evaluations of Isolated Bioactives from Wild Strawberry. Molecules 2022, 27, 3444. [Google Scholar] [CrossRef] [PubMed]
- Tao, W.; Pan, H.; Jiang, H.; Wang, M.; Ye, X.; Chen, S. Extraction and identification of proanthocyanidins from the leaves of persimmon and loquat. Food Chem. 2022, 372, 130780. [Google Scholar] [CrossRef]
- Feunaing, R.T.; Tamfu, A.N.; Gbaweng, A.J.Y.; Mekontso Magnibou, L.; Ntchapda, F.; Henoumont, C.; Laurent, S.; Talla, E.; Dinica, R.M. In Vitro Evaluation of α-amylase and α-glucosidase Inhibition of 2,3-Epoxyprocyanidin C1 and Other Constituents from Pterocarpus erinaceus Poir. Molecules 2023, 28, 126. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, D.; Qiao, J.; Ni, Y.; Liu, P.; Huang, D.; Huo, J. Structure, degree of polymerization, and starch hydrolase inhibition activities of bird cherry (Prunus padus) proanthocyanidins. Food Chem. 2022, 385, 132588. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, Y.; Okabe, M.; Natsume, M.; Ashida, H. Comparison of anti-hyperglycemic activities between low- and high-degree of polymerization procyanidin fractions from cacao liquor extract. J. Food Drug Anal. 2012, 20, 39. [Google Scholar] [CrossRef]
- Jie, X.; Raka, R.N.; Zhang, L.; Xiao, J.; Wu, H.; Ding, Z. Inhibition of Three Diabetes-Related Enzymes by Procyanidins from Lotus (Nelumbo nucifera Gaertn.) Seedpods. Plant Foods Hum. Nutr. 2022, 77, 390–398. [Google Scholar] [CrossRef]
- Zhong, H.; Xue, Y.; Lu, X.; Shao, Q.; Cao, Y.; Wu, Z.; Chen, G. The effects of different degrees of procyanidin polymerization on the nutrient absorption and digestive enzyme activity in mice. Molecules 2018, 23, 2916. [Google Scholar] [CrossRef]
- Wang, M.; Chen, J.; Ye, X.; Liu, D. In vitro inhibitory effects of Chinese bayberry (Myrica rubra Sieb. et Zucc.) leaves proanthocyanidins on pancreatic α-amylase and their interaction. Bioorganic Chem. 2020, 101, 104029. [Google Scholar] [CrossRef] [PubMed]
- Araujo, N.M.P.; Silva, E.K.; Arruda, H.S.; Morais, D.R.; Meireles, M.A.A.; Pereira, G.A.; Pastore, G.M. Recovering phenolic compounds from Eugenia calycina Cambess employing high-intensity ultrasound treatments: A comparison among its leaves, fruit pulp, and seed as promising sources of bioactive compounds. Sep. Purif. Technol. 2021, 272, 118920. [Google Scholar] [CrossRef]
- Putsakum, G.; Tzima, K.; Tiwari, B.K.; O’Donnell, C.P.; Rai, D.K. Effects of thermosonication on ascorbic acid, polyphenols and antioxidant activity in blackberry juice. Int. J. Food Sci. Technol. 2023, 58, 2304–2311. [Google Scholar] [CrossRef]
- Jia, L.; Wang, L.; Zhang, X.; Zhang, Q.; Lei, P.; Chang, Y.; Han, L.; Chai, X.; Yang, W.; Wang, Y.; et al. Investigation of oligomeric proanthocyanidins extracted from Rhodiolae Crenulatae Radix et Rhizomes using deep eutectic solvents and identified via data-dependent-acquisition mass-spectroscopy. J. Pharm. Anal. 2024, 14, 101002. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Gu, P.; Jiang, Q.; Cheng, X.; Fan, J.; Bai, Y. Instant and Multifunctional Nanofibers Loaded with Proanthocyanidins and Hyaluronic Acid for Skincare Applications. Biomedicines 2024, 12, 1584. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Qiu, H.; Liu, Y.; Liu, Y.; Weng, L.; Zhong, W.; Meng, F. Exploring the potential of ume-derived proanthocyanidins: Novel applications for blueberry preservation. Front. Microbiol. 2023, 14, 1265993. [Google Scholar] [CrossRef] [PubMed]
- Pieniazek, F.; Messina, V. Scanning electron microscopy combined with image processing technique: Microstructure and texture analysis of legumes and vegetables for instant meal. Microsc. Res. Tech. 2016, 79, 267–275. [Google Scholar] [CrossRef]
- Rajakumari, R.; Volova, T.; Oluwafemi, O.S.; Rajesh Kumar, S.; Thomas, S.; Kalarikkal, N. Grape seed extract-soluplus dispersion and its antioxidant activity. Drug Dev. Ind. Pharm. 2020, 46, 1219–1229. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Bie, M.; Zhou, W.; Xie, B.; Sun, Z. Interaction between carboxymethyl pachyman and lotus seedpod oligomeric procyanidins with superior synergistic antibacterial activity. Carbohydr. Polym. 2019, 212, 11–20. [Google Scholar] [CrossRef]
- Gao, W.; Yu, T.; Li, G.; Shu, W.; Jin, Y.; Zhang, M.; Yu, X. Antioxidant Activity and Anti-Apoptotic Effect of the Small Molecule Procyanidin B1 in Early Mouse Embryonic Development Produced by Somatic Cell Nuclear Transfer. Molecules 2021, 26, 6150. [Google Scholar] [CrossRef]
- Findik, B.T.; Yildiz, H.; Birisci, E.; Yiğitkan, S.; Koseoglu Yilmaz, P.; Ertaş, A. An Investigation of the Ace Inhibitory Activity, Antioxidant Capacity, and Phytochemical Constituents of Polar and Non-Polar Extracts of Ziziphus jujuba Fruit: Statistical Screening the Main Components Responsible for Bioactivity. GidA 2024, 49, 554–566. [Google Scholar] [CrossRef]
- Xue, X.; Zhao, A.; Wang, Y.; Ren, H.; Du, J.; Li, D.; Li, Y. Composition and content of phenolic acids and flavonoids among the different varieties, development stages, and tissues of Chinese Jujube (Ziziphus jujuba Mill.). PLoS ONE 2021, 16, e0254058. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Su, D.; Hou, F.; Liu, L.; Huang, F.; Dong, L.; Deng, Y.; Zhang, Y.; Wei, Z.; Zhang, M. Optimized ultra-high-pressure-assisted extraction of procyanidins from lychee pericarp improves the antioxidant activity of extracts. Biosci. Biotechnol. Biochem. 2017, 81, 1576–1585. [Google Scholar] [CrossRef] [PubMed]
- Fan, M.; Yan, Y.; Waleed, A.A.; Qian, H.; Li, Y.; Rao, Z.; Wang, L. Germination-induced changes in anthocyanins and proanthocyanidins: A pathway to boost bioactive compounds in red rice. Food Chem. 2024, 433, 137283. [Google Scholar] [CrossRef]
- Xie, C.; Wang, K.; Liu, X.; Liu, G.; Hu, Z.; Zhao, L. Characterization and bioactivity of A-type procyanidins from litchi fruitlets at different degrees of development. Food Chem. 2023, 405, 134855. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Johnson-Cicalese, J.; Singh, A.P.; Vorsa, N. Characterization and quantification of flavonoids and organic acids over fruit development in American cranberry (Vaccinium macrocarpon) cultivars using HPLC and APCI-MS/MS. Plant Sci. 2017, 262, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Cheng, Z.; Luo, M. The dynamic variations of flavonoid metabolites in flower buds for Zingiber mioga at different developmental stages. J. Food Compos. Anal. 2023, 123, 105537. [Google Scholar] [CrossRef]
- Kaur, C.; Sharma, S.; Navprem, S. Phenolics and enzymes of phenol metabolism in ‘Seedless’ and ‘Calcuttia’ cultivars of litchi grown in North India. Acta Aliment. 2018, 47, 453–461. [Google Scholar] [CrossRef]
- Li, Z.; Xu, Y.; Liu, Y.; Kong, M.; Wang, J.; Li, Y.; Zhao, Y. Study on the extraction, purification, stability, free radical scavenging kinetics, polymerization degree and characterization of proanthocyanidins from Pinus koraiensis seed scales. Food Chem. 2024, 454, 139776. [Google Scholar] [CrossRef]
- Martins, G.R.; Guedes, D.; Marques de Paula, U.L.; de Oliveira, M.d.S.P.; Lutterbach, M.T.S.; Reznik, L.Y.; Sérvulo, E.F.C.; Alviano, C.S.; Ribeiro da Silva, A.J.; Alviano, D.S. Açaí (Euterpe oleracea Mart.) Seed Extracts from Different Varieties: A Source of Proanthocyanidins and Eco-Friendly Corrosion Inhibition Activity. Molecules 2021, 26, 3433. [Google Scholar] [CrossRef] [PubMed]
- Machado, T.O.X.; de A. C. Kodel, H.; dos Santos, F.A.; dos Santos Lima, M.; Costa, A.S.G.; Oliveira, M.B.P.P.; Dariva, C.; Estevam, C.D.S.; Fathi, F.; Souto, E.B. Cellulase-assisted extraction followed by pressurized liquid extraction for enhanced recovery of phenolic compounds from ‘BRS Violeta’ grape pomace. Sep. Purif. Technol. 2025, 354, 129218. [Google Scholar] [CrossRef]
- Zhang, Y.; Gui, M.; Fan, W.; Gao, L.; Bu, X. Response surface methodology optimization on extraction and antioxidant activity evaluation of antioxidant peptide from enzymatic hydrolysates of sturgeon bone. LWT-Food Sci. Technol. 2024, 198, 116042. [Google Scholar] [CrossRef]
Run Order | Level of Factors | MPC Yield % | ||
---|---|---|---|---|
A (Temperature, °C) | B (Liquid to Material Ratio) | C (Enzyme Addition, %) | ||
1 | 60 | 30 | 0.5 | 1.79 ± 0.08 |
2 | 60 | 40 | 1 | 2.04 ± 0.05 |
3 | 60 | 30 | 1.5 | 1.45 ± 0.04 |
4 | 60 | 40 | 1 | 2.00 ± 0.02 |
5 | 60 | 40 | 1 | 1.97 ± 0.07 |
6 | 60 | 50 | 1.5 | 1.84 ± 0.05 |
7 | 70 | 40 | 1.5 | 1.99 ± 0.05 |
8 | 60 | 40 | 1 | 2.10 ± 0.05 |
9 | 70 | 30 | 1 | 1.60 ± 0.03 |
10 | 50 | 50 | 1 | 1.35 ± 0.04 |
11 | 60 | 50 | 0.5 | 1.59 ± 0.04 |
12 | 50 | 40 | 0.5 | 1.50 ± 0.02 |
13 | 70 | 40 | 0.5 | 1.87 ± 0.06 |
14 | 50 | 30 | 1 | 1.56 ± 0.04 |
15 | 70 | 50 | 1 | 1.66 ± 0.07 |
16 | 60 | 40 | 1 | 1.91 ± 0.04 |
17 | 50 | 40 | 1.5 | 1.61 ± 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Q.; Ye, Z.; Yang, C. Optimization of Ultrasonic-Enzyme Synergistic Extraction of Proanthocyanidins from Jujube: Purification, Characterization, and Bioactivity Study. Molecules 2025, 30, 619. https://doi.org/10.3390/molecules30030619
Lu Q, Ye Z, Yang C. Optimization of Ultrasonic-Enzyme Synergistic Extraction of Proanthocyanidins from Jujube: Purification, Characterization, and Bioactivity Study. Molecules. 2025; 30(3):619. https://doi.org/10.3390/molecules30030619
Chicago/Turabian StyleLu, Qiaoshuang, Zheng Ye, and Chun Yang. 2025. "Optimization of Ultrasonic-Enzyme Synergistic Extraction of Proanthocyanidins from Jujube: Purification, Characterization, and Bioactivity Study" Molecules 30, no. 3: 619. https://doi.org/10.3390/molecules30030619
APA StyleLu, Q., Ye, Z., & Yang, C. (2025). Optimization of Ultrasonic-Enzyme Synergistic Extraction of Proanthocyanidins from Jujube: Purification, Characterization, and Bioactivity Study. Molecules, 30(3), 619. https://doi.org/10.3390/molecules30030619