Recent Developments in Stereoselective Reactions of Sulfoxonium Ylides
Abstract
:1. Introduction
2. Special Characteristics of Sulfoxonium Ylides
3. Synthesis of Sulfoxonium Ylides
4. Reactions of Sulfoxonium Ylides
4.1. Epoxidation
4.2. Aziridination
4.3. Cyclopropanation
4.4. Olefination
4.5. Insertion Reactions
4.6. Miscellaneous Stereoselective Reactions of Sulfoxonium Ylides
5. Conclusions
Funding
Conflicts of Interest
References
- Ingold, C.K.; Jessop, J.A. XCV.—Influence of Poles and Polar Linkings on the Course Pursued by Elimination Reactions. Part IX. Isolation of a Substance Believed to Contain a Semipolar Double Linking with Participating Carbon. J. Chem. Soc. 1930, 713–714. [Google Scholar] [CrossRef]
- Johnson, A.W.; LaCount, R.B. The Chemistry of Ylids. VI. Dimethylsulfonium Fluorenylide—A Synthesis of Epoxides. J. Am. Chem. Soc. 1961, 83, 417–423. [Google Scholar] [CrossRef]
- Corey, E.J.; Chaykovsky, M. Dimethylsulfoxonium Methylide. J. Am. Chem. Soc. 1962, 84, 867–868. [Google Scholar] [CrossRef]
- Corey, E.J.; Chaykovsky, M. Dimethylsulfonium Methylide, A Reagent for Selective Oxirane Synthesis from Aldehydes and Ketones. J. Am. Chem. Soc. 1962, 84, 3782–3783. [Google Scholar] [CrossRef]
- Corey, E.J.; Chaykovsky, M. Dimethyloxosulfonium Methylide ((CH3)2SOCH2) and Dimethylsulfonium Methylide ((CH3)2SCH2). Formation and Application to Organic Synthesis. J. Am. Chem. Soc. 1965, 87, 1353–1364. [Google Scholar] [CrossRef]
- Caiuby, C.A.D.; Furniel, L.G.; Burtoloso, A.C.B. Asymmetric Transformations from Sulfoxonium Ylides. Chem. Sci. 2022, 13, 1192–1209. [Google Scholar] [CrossRef] [PubMed]
- Bisag, G.D.; Ruggieri, S.; Fochi, M.; Bernardi, L. Sulfoxonium Ylides: Simple Compounds with Chameleonic Reactivity. Org. Biomol. Chem. 2020, 18, 8793. [Google Scholar] [CrossRef]
- Li, A.H.; Dai, L.X.; Aggarwal, V.K. Asymmetic Ylide Reactions: Epoxidation, Cyclopropanation, Aziridination, Olefination and Rearrangment. Chem. Rev. 1997, 97, 2341–2372. [Google Scholar] [CrossRef] [PubMed]
- Hruby, V.J.; Johnson, A.W. The Decomposition of Sulfur Ylids to Carbenes. J. Am. Chem. Soc. 1962, 84, 3586–3587. [Google Scholar] [CrossRef]
- Johnson, C.R.; Janiga, E.R.; Haake, M. Chemistry of Sulfoxides and Related Compounds. X. Ylides from Salts of Sulfoximines. J. Am. Chem. Soc. 1968, 90, 3890–3891. [Google Scholar] [CrossRef]
- Block, E. Reactions of Organosulfur Compounds; Academic Press: New York, NY, USA, 1978; ISBN 0121070506. [Google Scholar]
- Trost, B.M.; Melvin, L.S., Jr. Sulfur Ylides: Emerging Synthetic Intermediates; Academic Press: New York, NY, USA, 1975; ISBN 0127010602. [Google Scholar]
- Von, E.; Doering, W.; Hoffmann, A.K. d-Orbital Resonance. III. Deuterium Exchange in Methyl “Onium” Salts and in Bicyclo [2.2.1]heptane-1-sulfonium Iodide. J. Am. Chem. Soc. 1955, 77, 521–526. [Google Scholar] [CrossRef]
- Von, E.; Doering, W.; Schreiber, K.C. d-Orbital Resonance. II. Comparative Reactivity of Vinyldimethylsulfonium and Vinyltrimethylammonium Ions. J. Am. Chem. Soc. 1955, 77, 514–520. [Google Scholar] [CrossRef]
- Mondal, M.; Chen, S.; Kerrigan, N.J. Recent Developments in Vinylsulfonium and Vinylsulfoxonium Salt Chemistry. Molecules 2018, 23, 738. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, K.A.R. Use of Outer d Orbitals in Bonding. Chem. Rev. 1969, 69, 157–178. [Google Scholar] [CrossRef]
- Lehn, J.-M.; Wipff, G. Stereoelectronic Properties, Stereospecificity, and Stabilization of α-Oxa and α-Thia Carbanion. J. Am. Chem. Soc. 1976, 98, 7498–7505. [Google Scholar] [CrossRef]
- Bernardi, F.; Csizmadia, I.G.; Mangini, A.; Schlegel, H.B.; Whangbo, M.H.; Wolfe, S. The Irrelevance of d-Orbital Conjugation. I. The α-Thiocarbanion. A Comparative Quantum Chemical Study of the Static and Dynamic Properties and Proton Affinities of Carbanions Adjacent to Oxygen and to Sulfur. J. Am. Chem. Soc. 1975, 97, 2209–2218. [Google Scholar] [CrossRef]
- Streitwieser, A., Jr.; Williams, J.E., Jr. Ab initio SCF-MO calculations of thiomethyl anion. Polarization in stabilization of carbanions. J. Am. Chem. Soc. 1975, 97, 191–192. [Google Scholar] [CrossRef]
- Hoffmann, R.; Howell, J.M.; Muetterties, E.L. Molecular Orbital Theory of Pentacoordinate Phosphorus. J. Am. Chem. Soc. 1972, 94, 3047–3058. [Google Scholar] [CrossRef]
- Zbang, X.-M.; Bordwell, F.G. Equilibrium Acidities and Homolytic Bond Dissociation Energies of the Acidic C-H Bonds in P-Substituted Tri-phenylphosphonium Cations. J. Am. Chem. Soc. 1994, 116, 968–972. [Google Scholar] [CrossRef]
- Dobado, J.A.; Martınez-Garcıa, H.; Molina, J.M.; Sundberg, M.R. Chemical Bonding in Hypervalent Molecules Revised. 3. Application of the Atoms in Molecules Theory to Y3X-CH2 (X = N, P, or As; Y = H or F) and H2X-CH2 (X = O, S, or Se) Ylides. J. Am. Chem. Soc. 2000, 122, 1144–1149. [Google Scholar] [CrossRef]
- Ripin, D.H.; Evans, D.A. pKa Values Compilation. Available online: https://organicchemistrydata.org/hansreich/resources/pka/#pka_water_compilation_evans (accessed on 10 August 2024).
- Aggarwal, V.K.; Harvey, J.N.; Robiette, R. On the Importance of Leaving Group Ability in Reactions of Ammonium, oxonium, Phosphonium and Sulfonium Ylides. Angew. Chem. Int. Ed. 2005, 44, 5468–5471. [Google Scholar] [CrossRef]
- Kuhn, R. Chemische Gesellschaft Marburg/Lahn. Angew. Chem. 1957, 69, 570–571. [Google Scholar] [CrossRef]
- Kuhn, R.; Trischmann, H. Trimethyl-sulfoxonium-Ion. Justus Liebigs Ann. Chem. 1958, 611, 117–121. [Google Scholar] [CrossRef]
- Vaitla, J.; Hopmann, K.H.; Bayer, A. Rhodium-Catalyzed Synthesis of Sulfur Ylides via in Situ Generated Iodonium Ylides. Org. Lett. 2017, 19, 6688–6691. [Google Scholar] [CrossRef] [PubMed]
- Talero, A.G.; Martins, B.S.; Burtoloso, A.C.B. Coupling of Sulfoxonium Ylides with Arynes: A Direct Synthesis of Pro-Chiral Aryl Ketosulfoxonium Ylides and Its Application in the Preparation of α-Aryl Ketones. Org. Lett. 2018, 20, 7206–7211. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Shi, K.; Zhu, H.; Jia, Z.-K.; Xia, X.-F.; Wang, D.; Zou, L.-H. Copper-Catalyzed Annulation or Homocoupling of Sulfoxonium Ylides: Synthesis of 2,3-Diaroylquinolines or α,α,β-Tricarbonyl Sulfoxonium Ylides. Org. Lett. 2020, 22, 1504–1509. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Szostak, M. Synthesis of Sulfoxonium Ylides from Amides by Selective N–C(O) Activation. Org. Lett. 2021, 23, 4818–4822. [Google Scholar] [CrossRef] [PubMed]
- Gola, A.K.; Sharma, A.; Pandey, S.K. Synthesis of α-Carbonyl-α′-amide Sulfoxonium Ylides from Isocyanates with Complete Atom Economy. Org. Lett. 2023, 25, 1214–1217. [Google Scholar] [CrossRef]
- Yuan, Y.; Wu, X.-F. Direct Access to 1,1-Dicarbonyl Sulfoxonium Ylides from Aryl Halides or Triflates: Palladium-Catalyzed Carbonylation. Org. Lett. 2019, 21, 5310–5314. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Chen, B.; Zhang, Y.; Wu, X.F. Pd/C-Catalyzed Carbonylative Synthesis of α-Carbonyl-α′-Amide Sulfoxonium Ylides from Azides. J. Org. Chem. 2020, 85, 5733–5740. [Google Scholar] [CrossRef] [PubMed]
- Caiuby, C.A.D.; Vidal, L.; Burtoloso, A.C.B.; Aïssa, C. Cyclic Sulfoxonium Ylides: Synthesis and Chemospecific Reactivity in the Catalytic Alkylation of Indoles. ChemCatChem. 2023, 15, e202201643. [Google Scholar] [CrossRef]
- Janot, C.; Palamini, P.; Dobson, B.C.; Muir, J.; Aïssa, C. Palladium-Catalyzed Synthesis of Bis-Substituted Sulfoxonium Ylides. Org. Lett. 2019, 21, 296–299. [Google Scholar] [CrossRef] [PubMed]
- Janot, C.; Chagnoleau, J.B.; Halcovitch, N.R.; Muir, J.; Aïssa, C. Palladium-Catalyzed Synthesis of α-Carbonyl-α′-(hetero)aryl Sulfoxonium Ylides: Scope and Insight into the Mechanism. J. Org. Chem. 2020, 85, 1126–1137. [Google Scholar] [CrossRef] [PubMed]
- Munaretto, L.S.; dos Santos, C.Y.; Gallo, R.D.C.; Okada, C.Y., Jr.; Delfon, V.M.; Jurberg, I.D. Visible-Light-Mediated Strategies to Assemble Alkyl 2-Carboxylate-2,3,3-Trisubstituted β-Lactams and 5-Alkoxy-2,2,4-Trisubstituted Furan-3(2H)-ones Using Aryldiazoacetates and Aryldiazoketones. Org. Lett. 2021, 23, 9292–9296. [Google Scholar] [CrossRef]
- Khade, V.V.; Thube, A.S.; Warghude, P.K.; Bhat, R.G. DABCO Mediated One Pot Synthesis of Sulfoxonium Ylides under Blue LED. Tetrahedron Lett. 2021, 77, 153258. [Google Scholar] [CrossRef]
- Echemendía, R.; de Oliviera, K.T.; Burtoloso, A.C.B. Visible-Light-Promoted Synthesis of 1,3-Dicarbonyl Sulfoxonium Ylides. Org. Lett. 2022, 24, 6386–6390. [Google Scholar] [CrossRef] [PubMed]
- Mishra, U.K.; Patel, K.; Ramasastry, S.S.V. Synthesis of Cyclopropanoids via Substrate-Based Cyclization Pathways. Org. Lett. 2019, 21, 175–179. [Google Scholar] [CrossRef]
- Patel, K.; Mishra, U.K.; Mukhopadhyay, D.; Ramasastry, S.S.V. Beyond the Corey–Chaykovsky Reaction: Synthesis of Unusual Cyclopropanoids via Desymmetrization and Thereof. Chem. Asian. J. 2019, 14, 4568–4571. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.; Ansari, A.J.; Malik, N.; Ramasastry, S.S.V. An Interrupted Corey–Chaykovsky Reaction of Designed Azaarenium Salts: Synthesis of Complex Polycyclic Spiro- and Fused Cyclopropanoids. Chem. Sci. 2023, 14, 6963–6969. [Google Scholar] [CrossRef] [PubMed]
- Maurya, J.P.; Ramasastry, S.S.V. Interrupted Corey–Chaykovsky Reaction of Tethered Bis-Enones to Access 2,3-Epoxy-hexahydrofluoren-9-ones. Org. Lett. 2024, 26, 4571–4575. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, S. Ueber vinylamine. Ber. dtsch. chem. Ges. 1888, 21, 1049–1057. [Google Scholar] [CrossRef]
- Gabriel, S. Ueber Vinylamin und Bromäthylamin.(II.). Ber. dtsch. chem. Ges. 1888, 21, 2664–2669. [Google Scholar] [CrossRef]
- Padwa, A. Comprehensive Heterocyclic Chemistry III; Ramsden, A., Scriven, E.F.V., Taylor, R.J.K., Eds.; Elsevier: Oxford, UK, 2008; Chapter 1; pp. 1–104. [Google Scholar]
- Singh, G.S.; D’hooghe, M.; Kimpe, N.D. Synthesis and Reactivity of C-Heteroatom-Substituted Aziridines. Chem. Rev. 2007, 107, 2080. [Google Scholar] [CrossRef]
- Sweeney, J.B. Chapter 4: Synthesis of Aziridines. In Aziridines and Epoxides in Organic Synthesis; Yudin, A., Ed.; Wiley-VCH: Weinheim, Germany, 2006; pp. 117–144. [Google Scholar]
- Aggarwal, V.K.; Badine, M.; Moorthie, V. Chapter 1: Asymmetric Synthesis of Epoxides and Aziridines from Aldehydes and Imines. In Aziridines and Epoxides in Organic Synthesis; Yudin, A., Ed.; Wiley-VCH: Weinheim, Germany, 2006; pp. 1–35. [Google Scholar]
- Zhou, P.; Chen, B.-C.; Davis, F.A. Chapter 3: Asymmetric Syntheses with Aziridinecarboxylate and Aziridinephosphonate Building Blocks. In Aziridines and Epoxides in Organic Synthesis; Yudin, A., Ed.; Wiley-VCH: Weinheim, Germany, 2006; pp. 73–115. [Google Scholar]
- Padwa, A.; Murphree, S. Chapter 4.1: Three-membered Ring Systems. In Progress in Heterocyclic Chemistry; Gribble, G.W., Gilchrist, T.L., Eds.; Elsevier Science: Oxford, UK, 2003; Volumes 12 and 15, pp. 57–99. [Google Scholar]
- Aggarwal, V.K.; Winn, C.L. Catalytic, Asymmetric Sulfur Ylide-Mediated Epoxidation of Carbonyl Compounds: Scope, Selectivity, and Applications in Synthesis. Acc. Chem. Res. 2004, 37, 611–620. [Google Scholar] [CrossRef] [PubMed]
- McGarrigle, E.M.; Myers, E.L.; Illa, O.; Shaw, M.A.; Riches, S.L.; Aggarwal, V.K. Chalcogenides as Organocatalysts. Chem. Rev. 2007, 107, 5841–5883. [Google Scholar] [CrossRef] [PubMed]
- Davis, R.L.; Stiller, J.; Naicker, T.; Jiang, H.; Jørgensen, K.A. Asymmetric Organocatalytic Epoxidations: Reactions, Scope, Mechanisms, and Applications. Angew. Chem. Int. Ed. 2014, 53, 7406–7426. [Google Scholar] [CrossRef] [PubMed]
- Pellissier, H. Recent Developments in Asymmetric Aziridination. Tetrahedron 2010, 66, 1509–1555. [Google Scholar] [CrossRef]
- Osborn, H.M.I.; Sweeney, J.B. The Asymmetric Synthesis of Aziridines. Tetrahedron Asymmetry 1997, 8, 1693–1715. [Google Scholar] [CrossRef]
- Muller, P.; Fruit, C. Enantioselective Catalytic Aziridinations and Asymmetric Nitrene Insertions into CH Bonds. Chem. Rev. 2003, 103, 2905–2920. [Google Scholar] [CrossRef] [PubMed]
- Mçssner, C.; Bolm, C. Transition Metals for Organic Synthesis, 2nd ed.; Beller, M., Bolm, C., Eds.; Wiley-VCH: Weinheim, Germany, 2004; pp. 389–402. [Google Scholar]
- Aggarwal, V.K.; McGarrigle, E.M.; Shaw, M.A. Chapter 2.6.: Epoxidation and Aziridination of Carbonyl Groups and Imines. In Science of Synthesis: Stereoselective Synthesis; Georg Thieme Verlag: Stuttgart, Germany, 2011; Volume 37, pp. 311–347. [Google Scholar]
- Muchalski, H.; Johnston, J.N. Transformations of Alkenes: Aziridination. In Science of Synthesis; Georg Thieme Verlag: Stuttgart, Germany, 2011; Volume 1, pp. 155–184. [Google Scholar]
- Karila, D.; Dodd, R.H. Recent Progress in Iminoiodane-Mediated Aziridination of Olefins. Curr. Org. Chem. 2011, 15, 1509–1538. [Google Scholar] [CrossRef]
- Pellissier, H. Recent Developments in Asymmetric Aziridination. Adv. Synth. Catal. 2014, 356, 1899–1935. [Google Scholar] [CrossRef]
- Mondal, M.; Connolly, S.; Chen, S.; Mitra, S.; Kerrigan, N.J. Recent Developments in Stereoselective Reactions of Sulfonium Ylides. Organics 2022, 3, 320–363. [Google Scholar] [CrossRef]
- Yang, Y.; Huang, Y.; Qing, F.L. Asymmetric Synthesis of Trifluoromethylated Aziridines from CF3-Substituted N-tert-butanesulfinyl Ketimines. Tetrahedron Lett. 2013, 54, 3826–3830. [Google Scholar] [CrossRef]
- Marsini, M.A.; Reeves, J.T.; Desrosiers, J.-N.; Herbage, M.A.; Savoie, J.; Li, Z.; Fandrick, K.R.; Sader, C.A.; McKibben, B.; Gao, D.A.; et al. Diastereoselective Synthesis of α-Quaternary Aziridine-2-carboxylates via Aza-Corey–Chaykovsky Aziridination of N-tert-Butanesulfinyl Ketimino Esters. Org. Lett. 2015, 17, 5614–5617. [Google Scholar] [CrossRef] [PubMed]
- Zhai, P.; Fang, Y.; Li, W.; Lin, J.; Li, X. Three-Component Synthesis of Di-Keto Aziridines and Highly Functionalized Alkenes from Sulfoxonium Ylides, Nitrosoarenes, and Alkynes. J. Org. Chem. 2023, 88, 12194–12207. [Google Scholar] [CrossRef] [PubMed]
- Tangara, S.; Kanazawa, A.; Py, S. The Baldwin Rearrangement: Synthesis of 2-Acylaziridines. Eur. J. Org. Chem. 2017, 2017, 6357–6364. [Google Scholar] [CrossRef]
- Kakei, H.; Sone, T.; Sohtome, Y.; Matsunaga, S.; Shibasaki, M. Catalytic Asymmetric Cyclopropanation of Enones with Dimethyloxosulfonium Methylide Promoted by a La-Li3-(Biphenyldiolate)3 + NaI Complex. J. Am. Chem. Soc. 2007, 129, 13410–13411. [Google Scholar] [CrossRef]
- Lin, J.-W.; Kurniawan, Y.D.; Chang, W.-J.; Leu, W.-J.; Chan, S.-H.; Hou, D.-R. Asymmetric Synthesis of (–)-Brevipolide H through Cyclopropanation of the α,β-Unsaturated Ketone. Org. Lett. 2014, 16, 5328–5331. [Google Scholar] [CrossRef] [PubMed]
- Angamanthu, V.; Chang, W.-J.; Hou, D.-R. Anti-addition of Dimethylsulfoxonium Methylide to Acyclic α,β-Unsaturated Ketones and Its Application in Formal Synthesis of an Eicosanoid. ACS Omega 2017, 2, 4088–4099. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Cao, W.; Mei, H.; Hu, L.; Feng, X. Catalytic Asymmetric Synthesis of Chiral Spiro-cyclopropyl Oxindoles from 3-Alkenyl-oxindoles and Sulfoxonium Ylides. Adv. Synth. Catal. 2018, 360, 4089–4093. [Google Scholar] [CrossRef]
- Bisag, G.B.; Pecchini, P.; Mancinelli, M.; Fochi, M.; Bernardi, L. Sulfoxonium Ylides in Aminocatalysis: An Enantioselective Entry to Cyclopropane-Fused Chromanol Structures. Org. Lett. 2022, 24, 5468–5473. [Google Scholar] [CrossRef] [PubMed]
- Pian, J.; Chen, Q.; Luo, Y.; Zhao, Z.; Liu, J.; He, L.; Li, W.-S. Asymmetric Synthesis of Chiral Cyclopropanes from Sulfoxonium Ylides Catalyzed by a Chiral-at-Metal Rh(III) Complex. Org. Lett. 2022, 24, 5641–5645. [Google Scholar] [CrossRef] [PubMed]
- Hong, T.; Liu, Y.; Zhao, K.; Cheng, S.; Liu, Q.; Zhang, S.; Zhong, Y.; Li, X.; Zhao, Z. Synthesis of Cyclopropanes through Gold-Catalyzed [2 + 1] Cycloaddition of Allenamides with Sulfoxonium Ylides. Org. Biomol. Chem. 2023, 21, 3684–3690. [Google Scholar] [CrossRef]
- Deshwal, S.; Gopalakrishnan, D.K.; Purohit, A.; Karmakar, T.; Vaitla, J. Diastereoselective Cyclopropanation of α,β-Unsaturated Carbonyl Compounds with Vinyl Sulfoxonium Ylides. Org. Biomol. Chem. 2024, 22, 6294–6307. [Google Scholar] [CrossRef] [PubMed]
- Heravi, M.M.; Zadsirjan, V.; Daraie, M.; Ghanbarian, M. Applications of Wittig Reaction in the Total Synthesis of Natural Macrolides. ChemistrySelect 2020, 5, 9654–9690. [Google Scholar] [CrossRef]
- Byrne, P.A.; Gilheany, D.G. Unequivocal Experimental Evidence for a Unified Lithium Salt-Free Wittig Reaction Mechanism for All Phosphonium Ylide Types: Reactions with β-Heteroatom-Substituted Aldehydes Are Consistently Selective for cis-Oxaphosphetane-Derived Products. J. Am. Chem. Soc. 2012, 134, 9225–9239. [Google Scholar] [CrossRef] [PubMed]
- Peterson, D.J. Carbonyl Olefination Reaction using Silyl-Substituted Organometallic Compounds. J. Org. Chem. 1968, 33, 780–784. [Google Scholar] [CrossRef]
- Baudin, J.B.; Hareau, G.; Julia, S.A.; Ruel, O. A Direct Synthesis of Olefins by Reaction of Carbonyl Compounds with Lithio Derivatives of 2-[alkyl- or (2′-alkenyl)- or benzyl-sulfonyl]-benzothiazoles. Tetrahedron Lett. 1991, 32, 1175–1178. [Google Scholar] [CrossRef]
- Tebbe, F.N.; Parshall, G.W.; Reddy, G.S. Olefin Homologation with Titanium Methylene Compounds. J. Am. Chem. Soc. 1978, 100, 3611–3613. [Google Scholar] [CrossRef]
- Horner, L.; Hoffmann, H.; Wippel, H.G. Phosphororganische Verbindungen, XII. Phosphinoxyde als olefinierungsreagenzien. Chem. Ber. 1958, 91, 61–63. [Google Scholar] [CrossRef]
- Niyomchon, S.; Oppedisano, A.; Aillard, P.; Maulide, N. A Three-Membered Ring Approach to Carbonyl Olefination. Nat. Commun. 2017, 8, 1091. [Google Scholar] [CrossRef] [PubMed]
- Neuhaus, J.D.; Bauer, A.; Pinto, A.; Maulide, N. A Catalytic Cross-Olefination of Diazo Compounds with Sulfoxonium Ylides. Angew. Chem. Int. Ed. 2018, 57, 16215–16218. [Google Scholar] [CrossRef]
- Gopalakrishnan, D.K.; Bhardwaj, S.; Kumar, S.; Karmakar, T.; Vaitla, J. Carbene-mediated Stereoselective Olefination of Vinyl Sulfoxonium Ylides with Diazo Compounds and Acetals. Chem. Commun. 2024, 60, 3846–3849. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Wu, Z.; Yao, B.; Li, J.; Wu, Z.; Jiang, H. Pd-Catalyzed Sequential Formation of C–C Bonds: A New Strategy for the Synthesis of (E)-α,β-Unsaturated Carbonyl Compounds from Sulfoxonium Ylides and 1-Iodo-2-((2-methylallyl)oxy)benzene Compounds. J. Org. Chem. 2021, 86, 11545–11556. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Gao, Y.; Su, L.; Wu, H.; Tian, H.; Zeng, M.; Xu, C.; Zhu, X.; Liao, K. High-Throughput Experimentation and Machine Learning-Assisted Optimization of Iridium-Catalyzed Cross-Dimerization of Sulfoxonium Ylides. Angew. Chem. 2023, 135, e202313638. [Google Scholar] [CrossRef]
- Camara, V.S.; da Silva, A.L.; da Luz, L.C.; Rodembusch, F.S.; Santiago, P.H.O.; Ellena, J.; Burtoloso, A.C.B. Unveiling a Strategy for Ring Opening of Epoxides: Synthesis of 2-Hydroxyindolinylidenes Using α-Ester Sulfoxonium Ylides. Org. Lett. 2024, 26, 1034–1039. [Google Scholar] [CrossRef]
- Abe, T.; Suzuki, T.; Anada, M.; Matsunaga, S.; Yamada, K. 2-Hydroxyindoline-3-triethylammonium Bromide: A Reagent for Formal C3-Electrophilic Reactions of Indoles. Org. Lett. 2017, 19, 4275–4278. [Google Scholar] [CrossRef] [PubMed]
- Mangion, I.K.; Nwamba, I.K.; Shevlin, M.; Huffman, M.A. Iridium-Catalyzed X-H Insertions of Sulfoxonium Ylides. Org. Lett. 2009, 11, 3566–3569. [Google Scholar] [CrossRef]
- Mangion, I.K.; Weisel, M. Gold (I) catalysis of X–H bond insertions. Tetrahedron Lett. 2010, 51, 5490–5492. [Google Scholar] [CrossRef]
- Momo, P.B.; Levielle, A.N.; Farrar, E.H.E.; Grayson, M.N.; Mattson, A.E.; Burtoloso, A.C.B. Enantioselective S-H Insertion Reactions of α-Carbonyl Sulfoxonium Ylides. Angew. Chem. Int. Ed. 2020, 59, 15554–15559. [Google Scholar] [CrossRef] [PubMed]
- Furniel, L.G.; Echemendía, R.; Burtoloso, A.C.B. Cooperative Copper-squaramide Catalysis for the Enantioselective N–H Insertion Reaction with Sulfoxonium Ylides. Chem. Sci. 2021, 12, 7453–7459. [Google Scholar] [CrossRef] [PubMed]
- Leveille, A.N.; Echemendía, R.; Mattson, A.E.; Burtoloso, A.C.B. Enantioselective Indole Insertion Reactions of α-Carbonyl Sulfoxonium Ylides. Org. Lett. 2021, 23, 9446–9450. [Google Scholar] [CrossRef]
- Guo, W.; Wang, M.; Han, Z.; Huang, H.; Sun, J. Organocatalytic Asymmetric Synthesis of α-Amino Esters from Sulfoxonium Ylides. Chem. Sci. 2021, 12, 11191–11196. [Google Scholar] [CrossRef] [PubMed]
- Seitz, M.; Reiser, O. Synthetic Approaches Towards Structurally Diverse γ-Butyrolactone Natural-product-like Compounds. Curr. Opin. Chem. Biol. 2005, 9, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, H.M.R.; Rabe, J. Synthesis and Biological Activity of α-Methylene-γ-butyrolactones. Angew. Chem., Int. Ed. 1985, 24, 94–110. [Google Scholar] [CrossRef]
- Koch, S.S.C.; Chamberlain, A.R. Studies in Natural Products Chemistry; Atta-ur-Rahman, Ed.; Elsevier Science: New York, NY, USA, 1995; Volume 16, pp. 687–725. [Google Scholar]
- de March, P.; Figueredo, M.; Font, J.; Raya, J. Highly Efficient, Enantioselective Synthesis of (+)-Grandisol from a C2-Symmetric Bis(α,β-butenolide). Org. Lett. 2000, 2, 163–165. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.K.; Swanson, L. Enantioselective Synthesis of (+)-Cryptophycin 52 (LY355703), a Potent Antimitotic Antitumor Agent. J. Org. Chem. 2003, 68, 9823–9826. [Google Scholar] [CrossRef] [PubMed]
- Mondal, M.; Ho, H.-J.; Peraino, N.J.; Gary, M.A.; Wheeler, K.A.; Kerrigan, N.J. Diastereoselective Reaction of Sulfoxonium Ylides, Aldehydes and Ketenes: An Approach to trans-γ-Lactones. J. Org. Chem. 2013, 78, 4587–4593. [Google Scholar] [CrossRef] [PubMed]
- Peraino, N.J.; Wheeler, K.A.; Kerrigan, N.J. Diastereoselective synthesis of γ-lactones through reaction of enediolates with α,β-unsaturated sulfoxonium salts. Org. Lett. 2015, 17, 1735–1737. [Google Scholar] [CrossRef]
- Peraino, N.J.; Kaster, S.H.; Wheeler, K.A.; Kerrigan, N.J. Asymmetric synthesis of γ-lactones through Koga amine-controlled addition of enediolates to α,β-unsaturated sulfoxonium salts. J. Org. Chem. 2017, 82, 606–615. [Google Scholar] [CrossRef] [PubMed]
- Peraino, N.J.; Mondal, M.; Ho, H.J.; Beuque, A.; Viola, E.; Gary, M.; Wheeler, K.A.; Kerrigan, N.J. Synthesis of γ-Lactones through Reaction of Sulfoxonium Ylides, Aldehydes, and Ketenes: Substrate Scope and Mechanistic Studies. Eur. J. Org. Chem. 2021, 2021, 151–160. [Google Scholar] [CrossRef]
- Okuma, K.; Tanaka, Y.; Ohta, H. Novel reaction course of oxosulfonium ylides to sulfurane oxides. J. Am. Chem. Soc. 1981, 103, 5976–5977. [Google Scholar] [CrossRef]
- Ohno, F.; Kawashima, T.; Okazaki, R. Synthesis, Crystal Structure, and Thermolysis of a Pentacoordinate 1,2λ6-Oxathietane: An Intermediate of the Corey–Chaykovsky Reaction of Oxosulfonium Ylides? J. Am. Chem. Soc. 1996, 118, 697–698. [Google Scholar] [CrossRef]
- Kawashima, T.; Ohno, F.; Okazaki, R.; Ikeda, H.; Inagaki, S. Experimental and Theoretical Evidence for Oxirane Formation Reaction of Pentacoordinate 1,2λ6-Oxathietanes with Retention of Configuration. J. Am. Chem. Soc. 1996, 118, 12455–12456. [Google Scholar] [CrossRef]
- Lau, P.H.W.; Martin, J.C. Sulfuranes. 30. An Alkylaryldialkoxysulfurane Oxide with Labile α-Protons. A New Kind of Pentacoordinated Sulfur Ylide. J. Am. Chem. Soc. 1977, 99, 5490–5491. [Google Scholar] [CrossRef]
- Marino, J.P.; Neisser, M. Stereospecific Reactions of Dichloroketene with Vinyl Sulfoxides: A New Type of Polar Cycloaddition. J. Am. Chem. Soc. 1981, 103, 7687–7689. [Google Scholar] [CrossRef]
- Peraino, N.J.; Ho, H.-J.; Mondal, M.; Kerrigan, N.J. Asymmetric Synthesis of γ-Lactones Through Reaction of Sulfoxonium Ylides, Aldehydes, and Ketenes. Tetrahedron Lett. 2014, 55, 4260–4263. [Google Scholar] [CrossRef]
- Johnson, C.R.; Haake, M.; Schroeck, C.W. Chemistry of Sulfoxides and Related Compounds. XXVI. Preparation and Synthetic Applications of (Dimethylamino)phenyloxosulfonium Methylide. J. Am. Chem. Soc. 1970, 92, 6594–6598. [Google Scholar] [CrossRef]
- Johnson, C.R.; Schroeck, C.W. Chemistry of Sulfoxides and Related Compounds. XLV. Asymmetric Syntheses using Optically Active Oxosulfonium Alkylides. J. Am. Chem. Soc. 1973, 95, 7418–7423. [Google Scholar] [CrossRef]
- Johnson, C.R.; Shroeck, C.W.; Shanklin, J.R. Chemistry of Sulfoxides and Related Compounds. XLVIII. Mechanism of Nucleophilic Alkylidene Transfer by Sulfonium and Oxosulfonium Ylides. J. Am. Chem. Soc. 1973, 95, 7424–7431. [Google Scholar] [CrossRef]
- Brandt, J.; Gais, H.-J. An Efficient Resolution of (±)-S-methyl-S-phenylsulfoximine with (+)-10-Camphorsulfonic acid By the Method of Half-quantities. Tetrahedron Asymmetry 1997, 8, 909–912. [Google Scholar] [CrossRef]
- Chai, Y.; Hong, S.-P.; Lindsay, H.A.; McFarland, C.; McIntosh, M.C. New Aspects of the Ireland and Related Claisen Rearrangements. Tetrahedron 2002, 58, 2905–2928. [Google Scholar] [CrossRef]
- Martin, J.C.; Perozzi, E.F. Sulfuranes. XII. Relative Reactivities of Acyclic, Cyclic and Spirobicyclic Sulfuranes and Sulfurane Oxides. J. Am. Chem. Soc. 1974, 96, 3155–3168. [Google Scholar] [CrossRef]
- Rongione, J.C.; Martin, J.C. Replacing Apical-Substituent Methyl Groups By Trifluoromethyl Groups in 10-S-5 Hypervalent Sulfur Species Provides Less Acidic Carbon-Hydrogen Bonds on Equatorial Methyls. J. Am. Chem. Soc. 1990, 112, 1637–1638. [Google Scholar] [CrossRef]
- Drabowicz, J.; Martin, J.C. Stereochemistry of Spirosulfuranes and Their Oxides: Static and Synamic Aspects. Pure Appl. Chem. 1996, 68, 951–956. [Google Scholar] [CrossRef]
- Drabowicz, J.; Martin, J.C. The First Optically Active Spirosulfurane Oxides: Stereoselective Syntheses and Racemization Processes. Phosphorus Sulfur Silicon Relat. Elem. 1993, 74, 439–440. [Google Scholar] [CrossRef]
- Li, S.-S.L.; Qin, Q.; Qi, Z.; Yang, L.-M.; Kang, Y.; Zhang, X.-Z.; Ma, A.-J.; Peng, J.B. Synthesis of Disubstituted γ-Butyrolactones and Spirocyclopropanes via a Multicomponent Reaction of Aldehydes, Meldrum’s acid and Sulfoxonium Ylides. Org. Chem. Front. 2021, 8, 3069–3075. [Google Scholar] [CrossRef]
- Wilson, C.L. Reactions of Furan Compounds. VII. Thermal Interconversion of 2,3-Dihydrofuran and Cyclopropane Aldehyde. J. Am. Chem. Soc. 1947, 69, 3002–3004. [Google Scholar] [CrossRef]
- Cloke, J.B. The Formation of Pyrrolines From γ-Chloropropyl and Cyclopropyl Ketimines. J. Am. Chem. Soc. 1929, 51, 1174–1187. [Google Scholar] [CrossRef]
- Ortega, A.; Manzano, R.; Uria, U.; Carrillo, L.; Reyes, E.; Tejero, T.; Merino, P.; Vicario, J.L. Catalytic Enantioselective Cloke-Wilson Rearrangement. Angew. Chem., Int. Ed. 2018, 57, 8225–8229. [Google Scholar] [CrossRef]
- Schomaker, J.M.; Pulgam, V.R.; Borhan, B. Synthesis of Diastereomerically and Enantiomerically Pure 2,3-Disubstituted Tetrahydrofurans Using a Sulfoxonium Ylide. J. Am. Chem. Soc. 2004, 126, 13600–13601. [Google Scholar] [CrossRef]
- Schomaker, J.M.; Bhattacharjee, S.; Yan, J.; Borhan, B. Diastereomerically and Enantiomerically Pure 2,3-Disubstituted Pyrrolidines from 2,3-Aziridin-1-ols Using a Sulfoxonium Ylide: A One-Carbon Homologative Relay Ring Expansion. J. Am. Chem. Soc. 2007, 129, 1996–2003. [Google Scholar] [CrossRef]
- Schomaker, J.M.; Geiser, A.R.; Huang, R.; Borhan, B. Tetrasubstituted Pyrrolidines via a Tandem Aza-Payne/Hydroamination Reaction. J. Am. Chem. Soc. 2007, 129, 3794–3795. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.; Lv, G.; Chen, Y.; Luo, Y.; Li, J.; Guo, L.; Wu, Y. Synthesis of 2,3-dihydrofurans via Lewis acid-Catalyzed [4+1] Cycloaddition of Enynones with Sulfoxonium Ylides in Ionic Liquids: A Mild and Green Platform. ChemistrySelect 2020, 5, 8562–8565. [Google Scholar] [CrossRef]
- Luo, N.; Zhan, Z.; Ban, Z.; Lu, G.; He, J.; Hu, F.; Huang, G. Brønsted Acid-Promoted Diastereoselective [4+1] Cyclization Reaction of Enamides and Sulfoxonium Ylides. Adv. Synth. Catal. 2020, 362, 3126–3130. [Google Scholar] [CrossRef]
- Zhou, T.; Qian, P.-F.; Li, J.-Y.; Zhou, Y.-B.; Li, H.-C.; Chen, H.-Y.; Shi, B.-F. Efficient Synthesis of Sulfur-Stereogenic Sulfoximines via Ru(II)-Catalyzed Enantioselective C-H Functionalization Enabled By Chiral Carboxylic Acid. J. Am. Chem. Soc. 2021, 143, 6810–6816. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Tang, Y.; Tang, S.; Sun, J. Iridium-Catalyzed Diasteo- and Enantioselective [4+1] Cycloaddition Hydroxyallyl Anilines with Sulfoxonium Ylides. Org. Lett. 2023, 25, 4621–4626. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, J.Y.; Sarlah, D.; Carreira, E.M. Iridium-Catalyzed Enantioselective Allyl—Alkene Coupling. J. Am. Chem. Soc. 2014, 136, 3006–3009. [Google Scholar] [CrossRef] [PubMed]
- Rossler, S.L.; Krautwald, S.; Carreira, E.M. Study of Intermediates in Iridium-(Phosphoramidite, Olefin)-Catalyzed Enantioselective Allylic Substitution. J. Am. Chem. Soc. 2017, 139, 3603–3606. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
O’Shaughnessy, C.; Mondal, M.; Kerrigan, N.J. Recent Developments in Stereoselective Reactions of Sulfoxonium Ylides. Molecules 2025, 30, 655. https://doi.org/10.3390/molecules30030655
O’Shaughnessy C, Mondal M, Kerrigan NJ. Recent Developments in Stereoselective Reactions of Sulfoxonium Ylides. Molecules. 2025; 30(3):655. https://doi.org/10.3390/molecules30030655
Chicago/Turabian StyleO’Shaughnessy, Ciarán, Mukulesh Mondal, and Nessan J. Kerrigan. 2025. "Recent Developments in Stereoselective Reactions of Sulfoxonium Ylides" Molecules 30, no. 3: 655. https://doi.org/10.3390/molecules30030655
APA StyleO’Shaughnessy, C., Mondal, M., & Kerrigan, N. J. (2025). Recent Developments in Stereoselective Reactions of Sulfoxonium Ylides. Molecules, 30(3), 655. https://doi.org/10.3390/molecules30030655