Enantioselective Synthesis of the Sex Pheromone of Sitodiplosis mosellana (Géhin) and Its Stereoisomers
Abstract
:1. Introduction
2. Results and Discussion
2.1. Retrosynthetic Analysis
2.2. Synthesis of Chiral TBDPS Ethers
2.3. Synthesis of Sex Pheromone of S. mosellana
2.4. Synthesis of Stereoisomers of S. mosellana Sex Pheromone
3. Materials and Methods
3.1. General Information
3.2. Synthesis of (S)-5-hexyn-3-ol ((S)-4)
3.3. Synthesis of (R)-5-hexyn-3-ol ((R)-4)
3.4. Synthesis of (S)-tert-butyl(hex-5-yn-3-yloxy)diphenylsilane ((S)-5)
3.5. Synthesis of (R)-tert-butyl(hex-5-yn-3-yloxy)diphenylsilane ((R)-5)
3.6. Synthesis of (2S,7S)-7-((tert-butyldiphenylsilyl)oxy)non-4-yn-2-ol ((2S,7S)-7)
3.7. Synthesis of (2R,7S)-7-((tert-butyldiphenylsilyl)oxy)non-4-yn-2-ol ((2R,7S)-7)
3.8. Synthesis of (2S,7R)-7-((tert-butyldiphenylsilyl)oxy)non-4-yn-2-ol ((2S,7R)-7)
3.9. Synthesis of (2R,7R)-7-((tert-butyldiphenylsilyl)oxy)non-4-yn-2-ol ((2R,7R)-7)
3.10. Synthesis of (2S,7S)-non-4-yne-2,7-diol ((2S,7S)-8)
3.11. Synthesis of (2R,7S)-non-4-yne-2,7-diol ((2R,7S)-8)
3.12. Synthesis of (2S,7R)-non-4-yne-2,7-diol ((2S,7R)-8)
3.13. Synthesis of (2R,7R)-non-4-yne-2,7-diol ((2R,7R)-8)
3.14. Synthesis of (2S,7S)-nonane-2,7-diol ((2S,7S)-9)
3.15. Synthesis of (2R,7S)-nonane-2,7-diol ((2R,7S)-9)
3.16. Synthesis of (2S,7R)-nonane-2,7-diol ((2S,7R)-9)
3.17. Synthesis of (2R,7R)-nonane-2,7-diol ((2R,7R)-9)
3.18. Synthesis of (2S,7S)-nonane-2,7-diyl dibutyrate ((2S,7S)-1)
3.19. Synthesis of (2R,7S)-nonane-2,7-diyl dibutyrate ((2R,7S)-1)
3.20. Synthesis of (2S,7R)-nonane-2,7-diyl dibutyrate ((2S,7R)-1)
3.21. Synthesis of (2R,7R)-nonane-2,7-diyl dibutyrate ((2R,7R)-1)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, G.; Meng, L.; Chen, R.; Wang, W.; Jing, X.; Zhu-Salzman, K.; Cheng, W. Characterization of three glutathione S-transferases potentially associated with adaptation of the wheat blossom midge Sitodiplosis mosellana to host plant defense. Pest Manage. Sci. 2024, 80, 885. [Google Scholar] [CrossRef] [PubMed]
- Weeraddana, C.D.S.; Wijesundara, R.; Hillier, W.; Swanburg, T.; Hillier, N.K.; Wang, H.V.; Faraone, N.; Wolfe, S.; McCartney, C.; Wist, T.; et al. Volatile organic compounds mediate host selection of wheat midge, Sitodiplosis mosellana (Gehin) (Diptera: Cecidomyiidae) between preanthesis and postanthesis stages of wheat. J. Chem. Ecol. 2024, 50, 237. [Google Scholar] [CrossRef] [PubMed]
- Mingeot, D.; Chavalle, S.; Buhl, P.N.; Sonet, G.; Dubois, B.; Hautier, L. Molecular methods for the detection and identification of parasitoids within larval wheat midges. Sci. Rep. 2024, 14, 27770. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Han, X.; Zhang, G.; Zhu-Salzman, K.; Cheng, W. Plant volatiles mediate host selection of Sitodiplosis mosellana (Diptera: Cecidomyiidae) among wheat varieties. J. Agric. Food Chem. 2022, 70, 10466. [Google Scholar] [CrossRef]
- Ding, H.; Lamb, R.J. Oviposition and larval establishment of Sitodiplosis mosellana (Diptera: Cecidomyiidae) on wheat (Gramineae) at different growth stages. Can. Entomol. 1999, 131, 475. [Google Scholar] [CrossRef]
- Echegaray, E.R.; Barbour, C.R.; Talbert, L.; Stougaard, R.N. Evaluation of Sitodiplosis mosellana (Diptera: Cecidomyiidae) infestation and relationship with agronomic traits in selected spring wheat cultivars in northwestern Montana, United States of America. Can. Entomol. 2018, 150, 675. [Google Scholar] [CrossRef]
- Dufton, S.V.; Jorgensen, A.M.; Olfert, O.O.; Otani, J.K. Sitodiplosis mosellana (Gehin), orange wheat blossom midge/Cecidomyie du blé (Diptera: Cecidomyiidae). In Biological Control Programmes in Canada, 2013–2023; Vankosky, M.A., Martel, V., Eds.; CABI: Wallingford, UK, 2024; Volume 6, p. 359. [Google Scholar]
- Shrestha, G.; Reddy, G.V.P. Field efficacy of insect pathogen, botanical, and jasmonic acid for the management of wheat midge Sitodiplosis mosellana and the impact on adult parasitoid Macroglenes penetrans populations in spring wheat. Insect Sci. 2019, 26, 523. [Google Scholar] [CrossRef]
- El-Wakeil, N.E.; Abdel-Moniem, A.S.H.; Gaafar, N.; Volkmar, C. Effectiveness of some insecticides on wheat blossom midges in winter wheat. Gesunde Pflanz. 2013, 65, 7. [Google Scholar] [CrossRef]
- Dufton, S.V.; Olfert, O.O.; Laird, R.A.; Floate, K.D.; Ge, X.; Otani, J.K. A global review of orange wheat blossom midge, Sitodiplosis mosellana (Gehin) (Diptera: Cecidomyiidae), and integrated pest management strategies for its management. Can. Entomo. 2022, 154, e30. [Google Scholar] [CrossRef]
- Chavalle, S.; Jacquemin, G.; De Proft, M. Assessing cultivar resistance to Sitodiplosis mosellana (Gehin) (Diptera: Cecidomyiidae) using a phenotyping method under semi-field conditions. J. Appl. Entomol. 2017, 141, 780. [Google Scholar] [CrossRef]
- Kumar, S.; Burt, A.; Green, D.; Humphreys, G.; McCallum, B.; Fetch, T.; Menzies, J.; Aboukhaddour, R.; Henriquez, M.A. AAC darby Canada western red spring wheat. Can. J. Plant Sci. 2024. [Google Scholar] [CrossRef]
- Rizvi, S.A.H.; George, J.; Reddy, G.V.P.; Zeng, X.; Guerrero, A. Latest developments in insect sex pheromone research and its application in agricultural pest management. Insects 2021, 12, 484. [Google Scholar] [CrossRef] [PubMed]
- Souza, J.P.A.; Bandeira, P.T.; Bergmann, J.; Zarbin, P.H.G. Recent advances in the synthesis of insect pheromones: An overview from 2013 to 2022. Nat. Prod. Rep. 2023, 40, 866. [Google Scholar] [CrossRef]
- Gries, R.; Gries, G.; Khaskin, G.; King, S.; Olfert, O.; Kaminski, L.-A.; Lamb, R.; Bennett, R. Sex pheromone of orange wheat blossom midge, Sitodiplosis mosellana. Naturwissenschaften 2000, 87, 450. [Google Scholar] [CrossRef] [PubMed]
- Chavalle, S.; Censier, F.; Gomez, G.S.M.Y.; De Proft, M. Effect of trap type and height in monitoring the orange wheat blossom midge, Sitodiplosis mosellana (Gain) (Diptera: Cecidomyiidae) and its parasitoid, Macroglenes penetrans (Kirby) (Hymenoptera: Pteromalidae). Crop Prot. 2019, 116, 101. [Google Scholar] [CrossRef]
- Senevirathna, K.M.; Guelly, K.N.; Mori, B.A. Management of the orange blossom wheat midge, Sitodiplosis mosellana, in western Canada. Plant Health Cases 2023, 2023, phcs20230002. [Google Scholar] [CrossRef]
- Li, C.; Wu, Y.; Yin, X.; Gong, Z.; Xing, H.; Miao, J.; Wang, S.; Liu, J.; Na, R.; Li, Q. Modular synthesis of the pheromone (2S, 7S)-2, 7-nonanediyl dibutyrate and its racemate and their field efficacy to control orange wheat blossom midge, Sitodiplosis mosellana (Géhin)(Diptera: Cecidomyiidae). Pest Manag. Sci. 2023, 79, 97. [Google Scholar] [CrossRef]
- Na, R.; Liu, J.; Song, N.; Yin, X.; Lu, S.; Wu, Y.; Tang, Q.; Li, W.; Liu, B.; Wang, C. Synthesis of Red Wheat Blossom Midge Sex Pheromone Precursor Compound and Red Wheat Blossom Midge Sex Pheromone. CN Patent 105085168, 29 March 2017. [Google Scholar]
- Hooper, A.M.; Dufour, S.; Willaert, S.; Pouvreau, S.; Pickett, J.A. Synthesis of (2S,7S)-dibutyroxynonane, the sex pheromone of the orange wheat blossom midge, Sitodiplosis mosellana (Gehin) (Diptera: Cecidomyiidae), by diastereoselective silicon-tethered ring-closing metathesis. Tetrahedron Lett. 2007, 48, 5991. [Google Scholar] [CrossRef]
- Bruce, T.J.; Hooper, A.M.; Ireland, L.; Jones, O.T.; Martin, J.L.; Smart, L.E.; Oakley, J.; Wadhams, L.J. Development of a pheromone trap monitoring system for orange wheat blossom midge, Sitodiplosis mosellana, in the UK. Pest Manag. Sci. 2007, 63, 49. [Google Scholar] [CrossRef]
- Hernandez-Torres, G.; Mateo, J.; Urbano, A.; Carreno, M.C. The shortest (four-step) total synthesis of the eight-membered cyclic ether racemic- and (-)-cis-lauthisan. Eur. J. Org. Chem. 2013, 2013, 6259. [Google Scholar] [CrossRef]
- Thiraporn, A.; Rukachaisirikul, V.; Iawsipo, P.; Somwang, T.; Tadpetch, K. Total synthesis and cytotoxic activity of 5′-hydroxyzearalenone and 5′β-hydroxyzearalenone. Eur. J. Org. Chem. 2017, 2017, 7133. [Google Scholar] [CrossRef]
- Abad, J.-L.; Camps, F.; Fabrias, G. Substrate-dependent stereochemical course of the (Z)-13-desaturation catalyzed by the processionary moth multifunctional desaturase. J. Am. Chem. Soc. 2007, 129, 15007. [Google Scholar] [CrossRef]
- Yan, F.; Moon, S.-J.; Liu, P.; Zhao, Z.; Lipscomb, J.D.; Liu, A.; Liu, H.-w. Determination of the substrate binding mode to the active site iron of (S)-2-hydroxypropylphosphonic acid epoxidase using 17O-enriched substrates and substrate analogues. Biochemistry 2007, 46, 12628. [Google Scholar] [CrossRef] [PubMed]
- Bhuniya, R.; Mahapatra, T.; Nanda, S. Klebsiellapneumoniae (NBRC 3319) mediated asymmetric reduction of α-substituted β-oxo esters and its application to the enantioiselective synthesis of small-ring carbocycle derivatives. Eur. J. Org. Chem. 2012, 2012, 1597. [Google Scholar] [CrossRef]
- Pettersson, M.; Johnson, D.S.; Humphrey, J.M.; am Ende, C.W.; Butler, T.W.; Dorff, P.H.; Efremov, I.V.; Evrard, E.; Green, M.E.; Helal, C.J.; et al. Discovery of clinical candidate PF-06648671: A potent γ-secretase modulator for the treatment of Alzheimer’s disease. J. Med. Chem. 2024, 67, 10248. [Google Scholar] [CrossRef] [PubMed]
- Bucknam, A.R.; Micalizio, G.C. Asymmetric de novo synthesis of a cucurbitane triterpenoid: Total synthesis of octanorcucurbitacin B. J. Am. Chem. Soc. 2022, 144, 8493. [Google Scholar] [CrossRef] [PubMed]
- Geerdink, D.; Horst, B.T.; Lepore, M.; Mori, L.; Puzo, G.; Hirsch, A.K.H.; Gilleron, M.; de Libero, G.; Minnaard, A.J. Total synthesis, stereochemical elucidation and biological evaluation of Ac2SGL; a 1,3-methyl branched sulfoglycolipid from Mycobacterium tuberculosis. Chem. Sci. 2013, 4, 709. [Google Scholar] [CrossRef]
- Madasu, M.; Mohapatra, D.K. Total synthesis of okaspirodiol. ChemistrySelect 2023, 8, e202300352. [Google Scholar] [CrossRef]
- Takahashi, N.; Hayashi, H.; Poznaks, V.; Kakeya, H. Total synthesis of verucopeptin, an inhibitor of hypoxia-inducible factor 1 (HIF-1). Chem. Commun. 2019, 55, 11956. [Google Scholar] [CrossRef]
- Chen, D.; Evans, P.A. A concise, efficient and scalable total synthesis of thapsigargin and nortrilobolide from (R)-(-)-carvone. J. Am. Chem. Soc. 2017, 139, 6046. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.F.; Lan, H.Q.; Yang, R.F.; Peng, Q.L.; Xiao, Z.H.; Tuo, S.C.; Hu, K.Z.; Xiang, Y.G.; Wei, Z.; Zhang, Z.; et al. Asymmetric syntheses of the sex pheromones of pine sawflies, their homologs and stereoisomers. Helv. Chim. Acta 2012, 95, 1799. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Li, X.; Zhou, Y.; Bian, Q.; Zhong, J. Enantioselective Synthesis of the Sex Pheromone of Sitodiplosis mosellana (Géhin) and Its Stereoisomers. Molecules 2025, 30, 671. https://doi.org/10.3390/molecules30030671
Wang J, Li X, Zhou Y, Bian Q, Zhong J. Enantioselective Synthesis of the Sex Pheromone of Sitodiplosis mosellana (Géhin) and Its Stereoisomers. Molecules. 2025; 30(3):671. https://doi.org/10.3390/molecules30030671
Chicago/Turabian StyleWang, Jianan, Xiaoyang Li, Yun Zhou, Qinghua Bian, and Jiangchun Zhong. 2025. "Enantioselective Synthesis of the Sex Pheromone of Sitodiplosis mosellana (Géhin) and Its Stereoisomers" Molecules 30, no. 3: 671. https://doi.org/10.3390/molecules30030671
APA StyleWang, J., Li, X., Zhou, Y., Bian, Q., & Zhong, J. (2025). Enantioselective Synthesis of the Sex Pheromone of Sitodiplosis mosellana (Géhin) and Its Stereoisomers. Molecules, 30(3), 671. https://doi.org/10.3390/molecules30030671