Alcohol Synthesis over Pre-Reduced Activated Carbon-Supported Molybdenum-Based Catalysts
Abstract
:Introduction
Results and Discussion
Property changes during the catalyst calcination process
The reduction behavior of the catalysts
Reduction of bulk MoO3
Reduction of the AC support
Reduction of K/AC(C) samples
Reduction of Mo-based catalysts
Catalytic performance
Summary and Conclusions
Experimental
Catalyst preparation
Differential thermal analysis (DTA)
Temperature-programmed reduction (TPR)
Catalytic reaction
Acknowledgements
References
- Massoth, F.E. Characterization of molybdena catalysts. Adv. Catal. 1978, 27, 265. [Google Scholar]
- Murchison, C. B.; Murdick, D. A. Process for producing C2-C4 hydrocarbons from carbon monoxide and hydrogen. US Patent 4,151,190, 1979. to The Dow Chemical Company. [Google Scholar]
- Saito, M.; Anderson, R. B. J. Catal 1980, 63, 438.
- Saito, M.; Anderson, R. B. J. Catal 1981, 67, 296.
- Inoue, M.; Miyake, T.; Takegami, Y.; Inui, T. Direct alcohol synthesis from syngas on ruthenium-molybdenum-sodium/alumina catalysts: effects of physical properties of alumina supports. Appl. Catal. 1987, 29, 285. [Google Scholar]
- Tatsumi, T.; Muramatsu, A.; Tominaga, H. Supported molybdenum catalysts for alcohol synthesis from CO-H2. Appl. Catal. 1987, 34, 77. [Google Scholar]
- Tatsumi, T.; Muramatsu, A.; Fukunaga, T.; Tominaga, H. Nickel-promoted molybdenum catalysts for synthesis of mixed alcohols. In Proc. 9th Intern. Congr. Catal.; Phillips, M. J., Ternan, M., Eds.; The Chemical Institute of Canada: Ottawa, 1988; Vol. II, p. 618. [Google Scholar]
- Tatsumi, T.; Muramatsu, A.; Tominaga, H. Molybdenum catalysts for synthesis of mixed alcohols from synthesis gas. Sekiyu Gakkaishi (J. Jpn. Petrol. Inst.) 1992, 35, 233. [Google Scholar]
- Murchison, C. B.; Murdick, D. A. Syngas to LPG over moly catalysts. Hydrocarbon Processing 1981, 60, 159. [Google Scholar]
- Murchison, C. B.; Conway, M. M.; Stevens, R. R.; Quarderer, G. J. Mixed alcohols from syngas over moly catalysts. In Proc. 9th Intern. Congr. Catal.; Phillips, M. J., Ternan, M., Eds.; The Chemical Institute of Canada: Ottawa, 1988; Vol. II, p. 626. [Google Scholar]
- Conway, M. M.; Murchison, C. B.; Stevens, R. R. Alcohols from synthesis gas. (Continuation of European patents 0 170 973 and 0 172 431). U.S. Patent 4,675,344.
- Stevens, R. R. Process for producing alcohols from synthesis gas. U.S. Patent 4,752,623, 1988. to The Dow Chemical Company. [Google Scholar]
- Gunturu, A. K.; Kugler, E. L.; Cropley, J. B.; Dadyburjor, D. B. A kinetic model for the synthesis of high-molecular-weight alcohols over a sulfided Co-K-Mo/C catalyst. Ind. Engr. Chem. Res. 1998, 37, 2107. [Google Scholar]
- Klier, K.; Herman, R. G.; Simmons, G. W.; Lyman, C. E.; Santiesteban, J. G.; Najbar, M.; Bastian, R. Direct synthesis of alcohol fuels over molybdenum-based catalysts; US Department of Energy final technical report DOE/PC/80014-T1; Lehigh University: Bethlehem, PA, 1988. [Google Scholar]
- Forzatti, P.; Tronconi, E.; Pasquon, I. Higher alcohol synthesis. Catal. Rev. - Sci. Eng. 1991, 33, 109. [Google Scholar]
- Natta, G.; Colombo, U.; Pasquon, I. Direct catalytic synthesis of higher alcohols from carbon monoxide and hydrogen. In Catalysis; Emmett, P. H., Ed.; Reinhold: New York, 1957; Vol. 5, Chapter 3; p. 131. [Google Scholar]
- Smith, K.; Anderson, R. B. A chain growth scheme for the higher alcohol synthesis. J. Catal. 1984, 85, 428. [Google Scholar]
- Villa, P. L.; Forzatti, P.; Buzzi-Ferraris, G.; Garone, G.; Pasquon, I. Synthesis of alcohols from carbon oxides and hydrogen. I. Kinetics of the low-pressure methanol synthesis. Ind. Eng. Chem. Process Des. Dev. 1985, 24, 12. [Google Scholar]
- Villa, P. L.; Del Piero, G.; Cipelli, A.; Lietti, L.; Pasquon, I. Synthesis of alcohols from carbon oxides and hydrogen. III. Copper-manganese-titanium-potassium oxide systems. Appl. Catal. 1986, 26, 161. [Google Scholar]
- Villa, P. L.; Del Piero, G.; Lietti, L.; Garagiola, F.; Mologni, G.; Tronconi, E.; Pasquon, I. Synthesis of alcohols from carbon oxides and hydrogen. VI. Zinc and titanium oxides: preparation and catalytic activity. Appl. Catal. 1987, 35, 47. [Google Scholar]
- Forzatti, P.; Cristiani, C.; Ferlazza, N.; Lietti, L.; Tronconi, E.; Villa, P. L.; Pasquon, I. Synthesis of alcohols from carbon oxides and hydrogen. VII. Preparation, activation and catalytic behavior of a zinc-manganese-chromium-potassium oxide catalyst. J. Catal. 1988, 111, 120. [Google Scholar]
- Klier, K.; Herman, R. G.; Young, C. W. Direct synthesis of 2-methyl-1-propanol. Prepr. Pap. - Am. Chem. Soc., Div. Fuel Chem. 1984, 29, 273. [Google Scholar]
- Nunan, J. G.; Bogdan, C. E.; Klier, K.; Smith, K. J.; Young, C. W.; Herman, R. G. Higher alcohol and oxygenate synthesis over cesium-doped copper/zinc oxide catalysts. J. Catal. 1989, 116, 195. [Google Scholar]
- Nunan, J. G.; Herman, R. G.; Klier, K. Higher alcohol and oxygenate synthesis over cesium-doped copper/zinc oxide catalysts. Higher alcohol and oxygenate synthesis over cesium/copper/zinc oxide/M2O3 (M=aluminum, chromium) catalysts. J. Catal. 1989, 116, 222. [Google Scholar]
- Klier, K.; Herman, R. G.; Simmons, G. W.; Nunan, J. G.; Smith, K. J.; Bogdan, C. E.; Himelfarb, P. B. Direct synthesis of 2-methyl-1-propanol/methanol fuels and feedstocks; US Department of Energy final technical report DOE/PC/70021-T1-Rev. 1; Lehigh University: Bethlehem, PA, 1988. [Google Scholar]
- Kaplan, L. Promoting the catalytic process for producing polyhydric alcohols. Ger. Offen. 2,643,913, 1977. to Union Carbide Corporation. [Google Scholar]
- Kaplan, L. Novel solvents for the catalytic process for making polyhydric alcohols. Ger. Offen. 2,743,630, 1978. to Union Carbide Corporation. [Google Scholar]
- Kaplan, L. Promoting n-propyl alcohol formation with vanadium compounds. US Patent 4,151,192, 1979. to Union Carbide Corporation. [Google Scholar]
- Kaplan, L. Catalytic process for producing polyhydric alcohols. Eur. Patent Appl. 1980. to Union Carbide Corporation. [Google Scholar]
- Dombek, B. D. J. Am. Chem. Soc. 1980, 102, 6855.
- Dombek, B. D. Process for producing alcohols. Eur. Patent Appl. 13,008, 1980. to Union Carbide Corporation. [Google Scholar]
- Dombek, B. D. ACS Symp. Ser. 1981, 152, 213.
- Dombek, B. D. J. Am. Chem. Soc. 1981, 103, 6508.
- Catalytica Associates, Inc. Synthesis of methanol, glycols, higher alcohols, and other oxygenates from CO/H2; Multiclient Study No. 4162; May 1983; p. 110. [Google Scholar]
- Watson, P. R.; Somorjai, G. A. The hydrogenation of carbon monoxide over rhodium oxide surface. J. Catal. 1981, 72, 347. [Google Scholar]
- Inoue, M.; Miyake, T.; Takegami, Y.; Inui, T. Alcohol synthesis from syngas on ruthenium-based composite catalysts. Appl. Catal. 1984, 11, 103. [Google Scholar]
- Anderson, R. B. Nitrided iron catalysts for the Fischer-Tropsch synthesis in the eighties. Catal. Rev. - Sci. Eng. 1980, 21, 53. [Google Scholar]
- Sugier, A.; Freund, E. Saturated and straight chain alcohols from synthesis gas. US Patent 4,122,110, 1978. The Institut Francais du Petrole. [Google Scholar]
- Santiesteban, J. G.; Bogdan, C. E.; Herman, R. G.; Klier, K. Mechanism of C1 – C4 alcohol synthesis over alkali/MoS2 and alkali/Co/MoS2 catalysts. In Proc. 9th Intern. Congr. Catal.; Phillips, M. J., Ternan, M., Eds.; The Chemical Institute of Canada: Ottawa, 1988; Vol. II, p. 561. [Google Scholar]
- Duan, L.; Zhang, O.; Ma, S.; Li, S.; Xie, Y. The role of K2CO3 and the structural state of K+ in Mo-based sulfur-tolerant catalysts for alcohol synthesis. J. Mol. Catal. (China). 1990, 4, 208. [Google Scholar]
- Yang, Y.; Lin, G.; Huang, H.; Zhang, H. Preparation of Mo-based sulfur-tolerant catalysts for alcohol synthesis from syngas. J. Fuel. Chem. Technol. 1993, 21, 1. [Google Scholar]
- Bian, G.; Jiang, M.; Fu, Y.; Omata, K.; Fujimoto, K. Effect of preparation conditions and supports upon catalytic properties of sulfided K-Mo catalysts used for mixed alcohol synthesis from syngas. J. Fuel. Chem. Technol. 1993, 21, 350. [Google Scholar]
- Xie, Y.; Naasz, B. M.; Somorjai, G. A. Alcohol synthesis from CO and H2 over molybdenum sulfide. Appl. Catal. 1986, 27, 233. [Google Scholar]
- Fu, Y.; Fujimoto, K.; Lin, P.; Omata, K.; Yu, Y. Effect of calcination conditions of the oxidized precursor on the structure of a sulfided K-Mo/γ- Al2O3 catalyst for mixed alcohol synthesis. Appl. Catal. A: General 1995, 126, 273. [Google Scholar]
- Liu, Z.; Li, X.; Close, M. R.; Kugler, E. L.; Petersen, J. L.; Dadyburjor, D. B. Screening of alkali-promoted vapor-phase-synthesized molybdenum sulfide catalysts for the production of alcohols from synthesis gas. Ind. Eng. Chem. Res. 1997, 36, 3085. [Google Scholar]
- Li, X.; Feng, L.; Liu, Z.; Zhong, B.; Dadyburjor, D. B.; Kugler, E. L. Higher alcohols from synthesis gas using carbon-supported doped molybdenum-based catalysts. Ind. Eng. Chem. Res. 1998, 37, 3853. [Google Scholar]
- Jiang, M.; Bian, G.-Z.; Fu, Y.-L. Effect of the K-Mo interaction in K-MoO3/γ-Al2O3 catalysts on the properties for alcohol synthesis from syngas. J. Catal. 1994, 146, 144. [Google Scholar]
- Lee, J. S.; Kim, S.; Lee, K. H.; Nam, I.-S.; Chung, J. S.; Kim, Y. G.; Woo, H. C. Role of alkali promoters in K/MoS2 catalysts for CO-H2 reactions. Appl. Catal. A: General 1994, 110, 11. [Google Scholar]
- Quarderer, G.J.; Cochran, K. A. Process for producing mixed alcohols from hydrogen and carbon monoxide. Eur. Patent 0119609, 1984. to The Dow Chemical Company. [Google Scholar]
- Stevens, R. R. Alcohols from synthesis gas. Eur. Patent 0172431, 1986. to The Dow Chemical Company. [Google Scholar]
- Kinkade, N. E. Alcohols from carbon monoxide and hydrogen using an alkali-molybdenum sulfide catalyst. Eur. Patent 0149256, 1985. to Union Carbide Corporation. [Google Scholar]
- Alyea, E. C.; He, D.; Wang, J. Alcohol synthesis from syngas. I. Performance of alkali-promoted Ni-Mo(MOVS) catalysts. Appl. Catal. A: General 1993, 104, 77. [Google Scholar]
- Storm, D. A. The production of higher alcohols from syngas using potassium promoted Co/Mo/Al2O3 and Rh/Co/Mo/Al2O3. Topics in Catal. 1995, 2, 91. [Google Scholar]
- Duchet, J. C.; van Oers, E. M.; de Beer, V. H. J.; Prins, R. Carbon-supported sulfide catalysts. J. Catal. 1983, 80, 386. [Google Scholar]
- Feng, L.; Li, X.; Kugler, E. L.; Dadyburjor, D. B. A temperature-programmed-reduction study on alkali-promoted, carbon-supported molybdenum catalysts. J. Catal. 2000, 190, 1. [Google Scholar]
- Li, M.; Cheng, Y. W.; Ye, X. L. A thermal analysis study on the decomposition and reduction of unsupported and supported ammonium molybdate. Chinese Chem. World 1998, 39, 628. [Google Scholar]
- Ratnasamy, P.; Mehrotra, R. P.; Ramaswamy, A. V. Interaction between the active components and support in cobalt-molybdenum-alumina systems. J. Catal. 1974, 32, 63. [Google Scholar]
- Dandekar, A.; Baker, R. J. K.; Vannice, M. A. Characterization of activated carbon, graphitized carbon fibers and synthetic diamond powder using TPD and DRIFTS. Carbon 1998, 36, 1821. [Google Scholar]
- Arnoldy, P.; De Jonge, J. C. M.; Moulijn, J. A. J. Phys. Chem. 1985, 89, 4517.
- Brito, J. L.; Laine, J.; Pratt, K. C. J. Mater. Sci. 1989, 24, 425.
- Walker, P. L., Jr. Chemistry and Physics of Carbon; Marcel Dekker: New York, 1970; Vol.6. [Google Scholar]
- Kelemen, S. R.; Freund, H.; Mims, C. A. The dependence of water adsorption and reaction on the structure of the carbon substrate. J. Vac. Sci. Technol. 1984, A(2), 987. [Google Scholar]
- Kelemen, S. R.; Freund, H.; Mims, C. A. The interaction of potassium hydroxide with clean and oxidized carbon surfaces. J. Catal. 1986, 97, 228. [Google Scholar]
- Otake, Y.; Jenkins, R. G. Characterization of oxygen-containing surface complexes created on a microporous carbon by air and nitric acid treatment. Carbon 1993, 31, 109. [Google Scholar]
- Kelemen, S. R.; Mims, C. A. The interaction of potassium hydroxide with basal surface of graphite. Surf. Sci. 1983, 133, 71. [Google Scholar]
- Rajagopal, S.; Marini, H. J.; Marzari, J. A.; Miranda, R. Silica-alumina-supported acidic molybdenum catalysts – TPR and XRD characterization. J. Catal. 1994, 147, 417. [Google Scholar]
- Arnoldy, P.; Franken, M. C.; Scheffer, B.; Moulijn, J. A. Temperature-programmed reduction of cobalt monoxide-molybdena/alumina catalysts. J. Catal. 1985, 96, 381. [Google Scholar]
- Watson, P. R.; Somorjai, G. A. The formation of oxygen-containing organic molecules by the hydrogenation of carbon monoxide over a lanthanum rhodate catalyst. J. Catal. 1982, 74, 282. [Google Scholar]
© 2003 by MDPI ( http://www.mdpi.org). Reproduction is permitted for noncommercial purposes.
Share and Cite
Li, X.; Feng, L.; Zhang, L.; Dadyburjor, D.B.; Kugler, E.L. Alcohol Synthesis over Pre-Reduced Activated Carbon-Supported Molybdenum-Based Catalysts. Molecules 2003, 8, 13-30. https://doi.org/10.3390/80100013
Li X, Feng L, Zhang L, Dadyburjor DB, Kugler EL. Alcohol Synthesis over Pre-Reduced Activated Carbon-Supported Molybdenum-Based Catalysts. Molecules. 2003; 8(1):13-30. https://doi.org/10.3390/80100013
Chicago/Turabian StyleLi, Xianguo, Lijuan Feng, Lijun Zhang, Dady B. Dadyburjor, and Edwin L. Kugler. 2003. "Alcohol Synthesis over Pre-Reduced Activated Carbon-Supported Molybdenum-Based Catalysts" Molecules 8, no. 1: 13-30. https://doi.org/10.3390/80100013
APA StyleLi, X., Feng, L., Zhang, L., Dadyburjor, D. B., & Kugler, E. L. (2003). Alcohol Synthesis over Pre-Reduced Activated Carbon-Supported Molybdenum-Based Catalysts. Molecules, 8(1), 13-30. https://doi.org/10.3390/80100013