C18:1 Methyl Ester Metathesis in [bmim][X] Type Ionic Liquids
Abstract
:1. Introduction
2. Results and Discussion
2.1. Self-Metathesis in [bmim][X] Type Ionic Liquids
2.1.1. Influence of RTIL Anion [X]
2.1.2. Influence of Reaction Temperature
2.2. [bmim][X] ILs vs. Conventional Organic Solvents
3. Experimental Section
3.1. Materials and Apparatus
3.2. Metathesis Experiments
4. Conclusions
Acknowledgments
References and Notes
- Welton, T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev 1999, 99, 2071–2083. [Google Scholar]
- Dupont, J; de Souza, RF; Suarez, PAZ. Ionic liquid (molten salt) phase organometallic catalysis. Chem. Rev 2002, 102, 3667–3692. [Google Scholar]
- Wilkes, JS. Properties of ionic liquid solvents for catalysis. J. Mol. Catal. A: Chem 2004, 214, 11–17. [Google Scholar]
- Pârvulescu, VI; Hardacre, C. Catalysis in ionic liquids. Chem. Rev 2007, 107, 2615–2665. [Google Scholar]
- Chowdhury, S; Mohan, RS; Scott, JL. Reactivity of ionic liquids. Tetrahedron 2007, 63, 2363–2389. [Google Scholar]
- D’Anna, F; Frenna, V; La Marca, S; Noto, R; Pace, V; Spinelli, D. On the characterization of some [bmim][X]/co-solvent binary mixtures: A multidisciplinary approach by using kinetic, spectrophotometric and conductometric investigations. Tetrahedron 2008, 64, 672–680. [Google Scholar]
- Favre, F; Olivier-Bourrbigou, O; Commereuc, D; Saussine, L. Hydroformylation of 1-hexene with rhodium in non-aqueous ionic liquids: How to design the solvent and the ligand to the reaction. Chem Commun 2001, 1360–1361. [Google Scholar]
- Song, CE; Yoon, MY; Choi, DS. Significant improvement of catalytic efficiencies in ionic liquids. Bull. Korean Chem. Soc 2005, 26, 1321–1330. [Google Scholar]
- Hardacre, C; Holbrey, JD; Katdare, SP; Seddon, KR. Alternating copolymerization of styrene and carbon monoxide in ionic liquids. Green Chem 2002, 4, 143–146. [Google Scholar]
- Nguyen, ST; Grubbs, RH; Ziller, JW. Syntheses and activities of new single-component, ruthenium-based olefin metathesis catalysts. J. Am. Chem. Soc 1993, 115, 9858–9859. [Google Scholar]
- Scholl, M; Ding, S; Lee, CW; Grubbs, RH. Synthesis and activity of new generation of ruthenium-based olefin metathesis catalysts coordinated with 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene ligands. Org. Lett 1999, 1, 953–956. [Google Scholar]
- Buijsman, RC; van Vuuren, E; Sterrenburg, JG. Ruthenium-catalyzed olefin metathesis in ionic liquids. Org. Lett 2001, 3, 3785–3787. [Google Scholar]
- Rix, D; Clavier, H; Coutard, Y; Gulajski, L; Grela, K; Mauduit, M. Activated pyridinium-tagged ruthenium complexes as efficient catalysts for ring-closing metathesis. J. Organomet. Chem 2006, 691, 5397–5405. [Google Scholar]
- Audic, N; Clavier, H; Mauduit, M; Guillemin, J-C. An ionic liquid-supported ruthenium carbine complex: A robust and recyclable catalyst for ring-closing olefin metathesis in ionic liquids. J.Am. Chem. Soc 2003, 125, 9248–9249. [Google Scholar]
- Clavier, H; Audic, N; Guillemin, J-G; Mauduit, M. Olefin metathesis in room temperature ionic liquids using immidazolium-tagged ruthenium complexes. J. Organomet. Chem 2005, 690, 3585–3599. [Google Scholar]
- Consorti, CS; Aydos, LPG; Ebeling, G; Dupont, J. On the immobilization of ruthenium metathesis catalysts in imidazolium ionic liquids. Organometallics 2009, 28, 4527–4533. [Google Scholar]
- Śledź, P; Maduit, M; Grela, K. Olefin metathesis in ionic liquids. Chem. Soc. Rev 2008, 37, 2433–2442. [Google Scholar]
- Csihony, S; Fischmeister, C; Bruneau, C; Horvath, IT; Dixneuf, PH. First ring-opening metathesis polymerization in an ionic liquid. Efficient recycling of a catalyst generated from a cationic ruthenium allenylidene complex. New. J. Chem 2002, 26, 1667–1670. [Google Scholar]
- Williams, DBG; Ajam, M; Ranwell, A. Highly selective metathesis of 1-octene in ionic liquids. Organometallics 2006, 25, 3088–3090. [Google Scholar]
- Ding, X; Xianhai, L; Hui, B; Chen, Z; Xiao, M; Guo, B; Tang, W. Olefin self-cross metathesis catalyzed by the second-generation grubbs carbene complex in room temperature ionic liquids. Tetrahedron Lett 2006, 47, 2921–2924. [Google Scholar]
- Clavier, H; Nolan, SP; Maduit, M. Ionic liquid anchored “boomerang” catalysts bearing saturated and unsaturated NHCs: Recyclability in biphasic media for cross metathesis. Organometallics 2008, 27, 2287–2292. [Google Scholar]
- Flagella, Z; Caterina, D; Monteleone, R; Giuzio, L; Pompa, M; Tarantino, E; Rotunno, T. Potentials for sunflower cultivation for fuel production in Southern Italy. HELIA 2006, 29, 81–88. [Google Scholar]
- Mol, JC. Applications of olefin metathesis in oleo chemistry: An example of green chemistry. Green Chem 2004, 4, 5–13. [Google Scholar]
- Marvey, BB. Sunflower-based feedstocks in nonfood applications: Perspectives from olefin metathesis. Int. J. Mol. Sci 2008, 9, 1393–1406. [Google Scholar]
- Green Reaction Media in Organic Synthesis; Mikami, K (Ed.) Wiley-Blackwell: Oxford, UK, 2005; pp. 22–23.
- Marvey, BB; Segakweng, CK; Vosloo, HCM. Ruthenium carbene mediated metathesis of oleate-type fatty compounds. Int. J. Mol. Sci 2008, 9, 615–625. [Google Scholar]
- Brennecke, JF; Maginn, EJ. Ionic liquids: Innovative fluids for chemical processing. AIChE J 2001, 47, 2384–2388. [Google Scholar]
- Ajam, M. Metathesis and hydroformylation reactions in ionic liquids. . MSc dissertation, 2005; 61–65. [Google Scholar]
- Forman, GS; McConnell, AE; Hanton, MJ; Slawin, AMZ; Tooze, RP; van Rensberg, WJ; Meyer, WH; Dwyer, C; Kirk, MM; Serfontein, DW. A stable Ruthenium catalyst for productive olefin metathesis. Organometallics 2004, 23, 4824–4827. [Google Scholar]
- Forman, GS; Bellabarba, RM; Tooze, RP; Slawin, AMZ; Karch, R; Winde, R. Metathesis of renewable unsaturated fatty acid esters catalyzed by a phoban-indenylidene ruthenium catalyst. J. Organomet. Chem 2006, 691, 5513–5516. [Google Scholar]
- Buchowicz, W; Mol, J. Catalytic activity and selectivity of Ru(=CHPh)Cl2(PCy3)2 in the metathesis of linear olefins. J. Mol. Catal. A: Chem 1999, 148, 97–103. [Google Scholar]
X | Solubility in H2O | Viscosity (cP)(25 °C) | |
---|---|---|---|
PF6 | 0.667 | Insoluble | 207 |
BF4 | 0.673 | Soluble | 233 |
NTf2 | 0.642 | Insoluble | 52 |
RTIL | Catalyst | Temp. (°C) | Conv (%) | Selec[a] (%) | TON |
---|---|---|---|---|---|
3a | 1 | 20 | 50.1 | 100 | 50.1 |
2 | 52.9 | 100 | 52.8 | ||
1 | 40 | 57.1 | 100 | 57.1 | |
2 | 64.9 | 90 | 64.9 | ||
1 | 60 | 59.4 | 99 | 59.4 | |
2 | 74.9 | 81 | 74.9 | ||
1 | 80 | 61.6 | 92 | 61.6 | |
2 | 79.0 | 60 | 79.0 | ||
1 | 100 | 62.0 | 92 | 62.0 | |
2 | 79.1 | 47 | 79.1 | ||
3b | 1 | 20 | 54.4 | 100 | 54.4 |
2 | 58.8 | 100 | 58.8 | ||
1 | 60 | 61.1 | 95 | 61.1 | |
2 | 78.2 | 87 | 78.2 | ||
3c | 1 | 20 | 51.2 | 100 | 51.2 |
2 | 60.5 | 99 | 60.5 | ||
1 | 60 | 60.5 | 99 | 60.5 | |
2 | 72.7 | 72 | 72.7 | ||
3a* | 1 | 60 | 23.0 | 88 | 2300 |
2 | 62.0 | 85 | 6200 |
Entry | Solvent | Catalyst | Conv (%) | Selec (%) |
---|---|---|---|---|
1 | PhCl | 1 | 47.1 | 100 |
2 | 50.6 | 100 | ||
2 | PhMe | 1 | 45.0 | 100 |
2 | 48.0 | 100 | ||
3 | DCM | 1 | 49.0 | 100 |
2 | 51.3 | 100 | ||
4 | DCE | 1 | 48.9 | 100 |
2 | 50.7 | 100 |
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Thomas, P.A.; Marvey, B.B. C18:1 Methyl Ester Metathesis in [bmim][X] Type Ionic Liquids. Int. J. Mol. Sci. 2009, 10, 5020-5030. https://doi.org/10.3390/ijms10115020
Thomas PA, Marvey BB. C18:1 Methyl Ester Metathesis in [bmim][X] Type Ionic Liquids. International Journal of Molecular Sciences. 2009; 10(11):5020-5030. https://doi.org/10.3390/ijms10115020
Chicago/Turabian StyleThomas, Priya A., and Bassie B. Marvey. 2009. "C18:1 Methyl Ester Metathesis in [bmim][X] Type Ionic Liquids" International Journal of Molecular Sciences 10, no. 11: 5020-5030. https://doi.org/10.3390/ijms10115020
APA StyleThomas, P. A., & Marvey, B. B. (2009). C18:1 Methyl Ester Metathesis in [bmim][X] Type Ionic Liquids. International Journal of Molecular Sciences, 10(11), 5020-5030. https://doi.org/10.3390/ijms10115020