Characteristics of Lignin from Flax Shives as Affected by Extraction Conditions
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Extraction Conditions on Lignin Yield, Purity and Composition
2.2. Pyrolysis-GC-MS of Flax Shive Lignin
3. Experimental Section
3.1. Samples
3.2. Flax Shives Composition Determination
3.3. Lignin Extraction
3.4. Nitrobenzene Oxidation
3.5. HPLC Analysis of Phenolic Compounds
3.6. UV Spectroscopy
3.7. Pyrolysis-GC-MS
4. Conclusions
Acknowledgements
References
- Ates, F; Isikdag, MA. Evaluation of the role of the pyrolysis temperature in straw biomass samples and characterization of the characterization of oils by GC/MS. Energy Fuels 2008, 22, 1936–1943. [Google Scholar]
- Cox, M; El-Shafey, E; Pichugin, AA; Appleton, Q. Preparation and characterization of a carbon adsorbent from flax shives by dehydration with sulfuric acid. J. Chem. Technol. Biotechnol 1999, 74, 1019–1029. [Google Scholar]
- Tamaki, Y; Mazza, G. Measurement of structural carbohydrates, lignins, and micro-components of straw and shives: Effects of extractives, particle size and crop species. Ind. Crop. Prod 2010, 31, 534–541. [Google Scholar]
- Buranov, A; Mazza, G. Lignin in straw of herbaceous crops. Ind. Crop. Prod 2008, 28, 237–259. [Google Scholar]
- Day, A; Ruel, K; Neutelings, G; Cronier, D; David, H; Hawkins, S; Chabbert, B. Lignification in the flax stem: Evidence for an unusual lignin in bast fibres. Planta 2005, 222, 234–245. [Google Scholar]
- Kalman, G; Reczey, K. Possible ways of biorefining and utilizing the residual lignocelluloses of corn growing and processing. Period. Polytech. Chem. Eng 2007, 51, 29–36. [Google Scholar]
- Buranov, AU; Ross, KA; Mazza, G. Isolation and characterization of lignins extracted from flax shives using pressurized aqueous ethanol. Bioresou. Technol 2010, 101, 7446–7455. [Google Scholar]
- El Mansouri, NE; Salvado, J. Structural characterization of technical lignins for the production of adhesives: application to lignosulfonate, kraft, soda-anthraquinone, organosolv and ethanol process lignins. Ind. Crop. Prod 2006, 24, 8–16. [Google Scholar]
- Gosselink, RJA; Snijder, MHB; Kranenberg, A; Keijsers, ERP; de Jong, E; Stigsson, LL. Characterization and application of Novafiber lignin. Ind. Crop. Prod 2004, 20, 191–203. [Google Scholar]
- Funaoka, M; Matsubara, M; Seki, N; Fukatsu, S. Conversion of native lignin to a highly phenolic functional polymer and its separation from lignocelluloses. Biotechnol. Bioeng 1995, 46, 545–552. [Google Scholar]
- Bentivenga, G; Bonini, C; D’Auria, M; de Bona, A. Singlet oxygen degradation of lignin: a GC-MS study on the residual products of the singlet oxygen degradation of a steam exploded lignin from Beech. J. Photochem. Photobiol. A 1999, 128, 139–143. [Google Scholar]
- Bocchini, P; Galletti, GC; Camarero, S; Martinez, AT. Absolute quantification of lignin pyrolysis products using an internal standard. J. Chromatogr. A 1997, 773, 227–232. [Google Scholar]
- Kleinert, M; Barth, T. Towards a Lignincellulosic Biorefinery: Direct one-step conversion of lignin to hydrogen-enriched biofuel. Energy Fuels 2008, 22, 1371–1379. [Google Scholar]
- Meier, D; Faix, O. State of the art applied fast pyrolysis of lignocellulosic materials: A review. Bioresour. Technol 1997, 68, 71–77. [Google Scholar]
- Ralph, J; Hatfield, RD. Pyrolysis-GC-MS characterization of forage materials. J. Agric. Food Chem 1991, 39, 1426–1437. [Google Scholar]
- Greenwood, PF; van Heemst, JDH; Guthrie, EA; Hatcher, PG. Laser micropyrolysis GC-MS of lignin. J. Anal. Appl. Pyrolysis 2002, 62, 365–373. [Google Scholar]
- Amen-Chen, C; Pakdel, H; Roy, C. Production of monomeric phenols by thermochemical conversion of biomass: A review. Bioresour. Technol 2001, 79, 277–299. [Google Scholar]
- Kim, J; Mazza, G. Extraction and separation of carbohydrates and phenolics compounds in flax shives with pH controlled pressurized low polarity water. J. Agric. Food Chem 2009, 57, 1805–1813. [Google Scholar]
- Lawther, JM; Sun, RC; Banks, WB. Extraction, fractionation, and characterization of structural polysaccharides from wheat straw. J. Agric. Food Chem 1995, 43, 667–675. [Google Scholar]
- Sun, R; Lawther, JM; Banks, WB. Influence of alkaline pre-treatments on the cell wall components of wheat straw. Ind. Crop. Prod 1995, 4, 127–145. [Google Scholar]
- Sun, R; Lawther, JM; Banks, WB. Effects of extraction time and different alkalis on the composition of alkali soluble wheat straw lignins. J. Agric. Food Chem 1996, 44, 3965–3970. [Google Scholar]
- Sluiter, A; Hames, B; Ruiz, R; Scarlata, C; Sluiter, J; Templeton, D; Crocker, D. Determination of structural carbohydrates and lignin in biomass. In Technical Report for Laboratory Analytical Procedure (LAP); NREL: Golden, CO, USA, 2007. [Google Scholar]
- Kim, S; Holtzapple, MT. Delignification kinetics of corn stover in lime extraction. Bioresour. Technol 2006, 97, 778–785. [Google Scholar]
- Ho, CHL; Cacace, JE; Mazza, G. Extraction of lignans, proteins, and carohydrates from flaxseed meal with pressurized low polarity water. LWT-Food Sci. Technol 2007, 40, 1637–1647. [Google Scholar]
- Pineiro, Z; Palma, M; Barroso, CG. Determination of catechins by means of extraction with pressurized liquids. J. Chrom. A 2004, 1026, 19–23. [Google Scholar]
- Kim, J; Mazza, G. Opitmization of extraction of phenolic compounds from flax shives by pressurized low-polarity water. J. Agric. Food Chem 2006, 54, 7575–7584. [Google Scholar]
- Xu, F; Sun, RC; Zhai, MZ; Sun, JX; Jiang, JX; Zhao, GJ. Comparative study of three lignin fractions isolated from mild ball milled Tamarix austromogoliac and Caragana sepium. J. Appl. Polym. Sci 2008, 108, 1158–1168. [Google Scholar]
- Sun, RC; Tomkinson, J. Fractional separation and physico-chemical analysis of lignins from black liquour of oil palm trunk fibre pulping. Sep. Purif. Technol 2001, 24, 529–539. [Google Scholar]
- Wang, K; Xu, F; Sun, RC. Molecular characteristics of Kraft-AQ pulping lignin fractionated by sequential organic solvent extraction. Int. J. Mol. Sci 2010, 11, 2988–3001. [Google Scholar]
- Ramos, L; Kristenson, EM; Brinkman, UA. Current use of pressurized liquid extraction and subcritical water extraction in environmental analysis. J. Chrom. A 2002, 975, 3–29. [Google Scholar]
- Xu, F; Sun, JX; Sun, RC; Fowler, P; Baird, MS. Comparative study of organosolv lignins from wheat straw. Ind. Crop. Prod 2006, 23, 180–193. [Google Scholar]
- Sun, R; Tomkinson, J; Xu, W; Wang, NJ. Delignification of maize stems by peroxymonosulfuric acid, peroxyformic acid, peracetic acid, hydrogen peroxide. 1. Physicochemical and structural characterization of the solubilized lignins. J. Agric. Food Chem 2000, 48, 1253–1262. [Google Scholar]
- Sun, JX; Xu, F; Sun, XF; Sun, RC; Wu, SB. Comparative study of lignins from ultrasonic irradiated sugarcane bagasse. Polym. Int 2004, 53, 1711–1721. [Google Scholar]
- Sun, R; Sun, XF; Xu, P. Effect of ultrasound on the physicochemical properties of organosolv lignins from wheat straw. J. Appl. Polym. Sci 2002, 84, 2512–2522. [Google Scholar]
- Yang, Q; Wu, S; Rui, L; Lv, G. Analysis of wheat straw lignin by thermogravimetry and pyrolysis-gas chromatography/mass spectroscopy. J. Anal. Appl. Pyrolysis 2010, 87, 65–69. [Google Scholar]
- Janshekar, H; Brown, C; Fiechter, A. Determination of biodegraded lignin by UV spectrophotometry. Anal. Chim. Acta 1980, 130, 81–91. [Google Scholar]
- Fahmi, R; Bridgwater, AV; Thain, SC; Donnison, IS; Morris, PM; Yates, N. Prediction of Klason lignin and lignin thermal degradation products by Py-GC/MS in a collection of Lolium and Festuca grasses. J. Anal. Appl. Pyrolysis 2007, 80, 16–23. [Google Scholar]
- Nierop, KGJ; van Lagen, B; Buurman, P. Composition of plant tissues and soil organic matter in the first stages of vegetation succession. Geoderma 2001, 100, 1–24. [Google Scholar]
- Sluiter, A; Hames, B; Ruiz, R; Scarlata, C; Sluiter, J; Templeton, D. Determination of ash in biomass. In Technical Report for Laboratory Analytical Procedure (LAP); NREL: Golden, CO, USA, 2005. [Google Scholar]
- Dubois, M; Gilles, KA; Hamilton, JK; Rebers, PA; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem 1956, 28, 350–356. [Google Scholar]
- Saha, SK; Brewer, CF. Determination of the concentrations of oligosaccharides, complex type carbohydrates, and glycoproteins using the phenol-sulfuric acid method. Carbohydr. Res 1994, 254, 157–167. [Google Scholar]
- Scalbert, A; Monties, B; Lallemand, JY; Guittet, E; Rolando, C. Ether linkage between phenolic acids and lignin fractions from wheat straw. Phytochemistry 1985, 24, 1359–1362. [Google Scholar]
Component | Content (g kg−1 Flax Shives) |
---|---|
Cellulose | 333 ± 5.0 |
Hemicellulose | 219 ± 5.0 |
Acid Insoluble Lignin | 260 ± 1.8 |
Acid Soluble Lignin | 13 ± 0.1 |
Ash | 15 ± 0.4 |
Wax | 35 ± 2.4 |
Extraction Conditions | Lignin Yield a (g kg−1 Flax Shives) | Lignin Extraction Efficiency b (%) | Carbohydrate Content c (g kg−1 Flax Shives) | Free Phenolic Content d (g kg−1 Flax Shives) |
---|---|---|---|---|
Method 1—Alkali hydrolysis: 1.25 M NaOH, 80 °C, 5 h | 92 ± 20 | 33.7 | N/M | N/M |
Method 2—PLPW: 0.47 M NaOH: 100 °C, 82 min | 33 ± 2 | 12.1 | 177 ± 2 | 1.0 ± 0.1 |
Method 2—PLPW: 0.47 M NaOH: 140 °C, 82 min | 72 ± 1 | 26.4 | 213 ± 2 | 3.0 ± 0.3 |
Method 2—PLPW: 0.47 M NaOH: 180 °C, 82 min | 241 ± 32 | 88.3 | 302 ± 6 | 4.7 ± 0.3 |
Method 2—PLPW: Water: 180 °C, 82 min | 27 ± 5 | 9.9 | 311 ± 2 | 3.9 ± 0.1 |
Substrate | Extraction Conditions | Phenolic Compounds (μmoles/g lignin) | Molar Ratio | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
p-BA | VA | SA | VN | SAL | AVN | FA | Total | S/G | H/G | ||
Flax Shives | Unprocessed | 36.1 ± 2.5 | 110.1 ± 8.9 | 39.4 ± 1.0 | 1309.2 ± 65.8 | 358.2 ± 12.1 | 11.5 ± 0.1 | 17.5 ± 0.1 | 1882 | 0.28 | 0.025 |
Flax Shives Lignina | 1.25 M NaOH: 80 °C, 5 h | 3.3 ± 0.8 | 29.8 ± 1.2 | 6.1 ± 1.5 | 194.7 ± 20.4 | 46.7 ± 5.5 | 10.8 ± 5.4 | 4.6 ± 1.1 | 296 | 0.22 | 0.014 |
Flax Shives PLPW Extract Ligninb | 0.47 M NaOH: 100 °C, 82 min | 14.8 ± 4.1 | 105.9 ± 14.9 | 28.3 ± 7.1 | 611.2 ± 44.1 | 138.5 ± 43.9 | N/D | N/D | 899 | 0.23 | 0.021 |
0.47 M NaOH: 140 °C, 82 min | 7.4 ± 0.8 | 82.1 ± 2.9 | 20.2 ± 1.0 | 594.7 ± 12.5 | 134.1 ± 12.6 | 18.7 ± 1.2 | 10.3 ± 0.5 | 868 | 0.22 | 0.011 | |
0.47 M NaOH: 180 °C, 82 min | 4.1 ± 0.8 | 62.5 ± 9.5 | 14.1 ± 2.5 | 429.6 ± 98.1 | 78.1 ± 11.5 | 20.5 ± 3.6 | 6.7 ± 1.1 | 616 | 0.18 | 0.01 | |
Water: 180 °C, 82 min | 8.2 ± 0.8 | 103.6 ± 1.8 | 25.3 ± 0.5 | 688.2 ± 19.7 | 150.6 ± 12.1 | N/D | N/D | 976 | 0.22 | 0.01 |
Peak | RT (min) | Chemical Name | Origin | MW | Conventional Alkaline Extracted Lignina | PLPW Extracted Ligninb | Flax Shives (FS) |
---|---|---|---|---|---|---|---|
1 | 1.51 | Acetic acid | C | 60 | - | - | 13.2 |
2 | 1.67 | Tetrahydrofuran | C | 72 | - | - | - |
3 | 1.85 | Benzene | B | 78 | - | 0.68 | - |
4 | 2.11 | 2,5-dimethylfuran | C | 78 | - | - | - |
5 | 2.74 | Toluene | C | 92 | 0.38 | 1.41 | 0.85 |
6 | 3.04 | 3-Methylene-heptane | C | 112 | 0.16 | - | - |
7 | 3.41 | 3-Furaldehyde | C | 96 | - | - | 0.29 |
8 | 3.8 | Furfural | C | 96 | - | - | 2.65 |
9 | 4.4 | 3-Furanmethanol | C | 98 | - | - | 0.79 |
10 | 6.26 | 2-Furanone | C | 84 | - | - | - |
11 | 6.83 | 1,2-Cyclopentanedione | C | 98 | - | - | 1.93 |
12 | 10.9 | Phenol | H | 94 | 0.50 | 1.91 | - |
13 | 13.3 | Maple lactone | C | 112 | - | - | 0.61 |
14 | 15.3 | o-Cresol | H | 108 | 0.30 | 1.05 | 0.59 |
15 | 16.4 | p-Cresol | H | 108 | 0.51 | 1.98 | 1.06 |
16 | 16.8 | Guaiacol | G | 124 | 1.29 | 8.61 | 1.85 |
17 | 19.8 | 2,4-Xylenol | H | 122 | - | 0.38 | - |
18 | 20.9 | m-Methylguaiacol | G | 138 | - | 0.48 | - |
19 | 21.5 | 4-Methyl guaiacol | G | 138 | 0.91 | 4.74 | 1.34 |
20 | 22.0 | Catechol | L/Pp | 110 | 1.22 | 5.15 | 2.89 |
21 | 22.8 | Coumaran | C | 120 | - | 0.56 | - |
22 | 23.0 | 5-Hydrxoymethylfurfural | C | 126 | - | - | 1.26 |
23 | 24.1 | 3-Methoxy catechol | L/Pp | 140 | - | 1.19 | 0.70 |
24 | 24.3 | 3-Methyl catechol | L/Pp | 124 | - | 1.35 | 0.77 |
25 | 24.9 | 4-Ethyl guaiacol | G | 152 | 0.29 | 1.64 | - |
26 | 25.4 | Homocatechol | L/Pp | 124 | 0.78 | 3.05 | 3.46 |
27 | 26.1 | 4-Vinyl guaiacol | G | 150 | 1.49 | 8.24 | 2.53 |
28 | 27.4 | Syringol | S | 154 | 0.43 | 2.69 | 0.44 |
29 | 27.6 | Eugenol | G | 164 | 0.44 | 1.72 | 0.88 |
30 | 28.6 | 4-Ethylcatechol | L/Pp | 138 | - | 1.18 | - |
31 | 28.9 | Vanillin | G | 152 | 0.95 | 2.82 | 2.61 |
32 | 29.3 | trans-Isoeugenol | G | 164 | 1.15 | 1.05 | 0.52 |
33 | 30.6 | cis-Isoeugenol | G | 164 | - | 6.69 | 2.70 |
34 | 30.8 | 4-Propylguaiacol | G | 166 | - | - | 0.89 |
35 | 31.5 | Levoglucosan | C | 180 | 39.54 | 2.45 | 0.53 |
36 | 31.7 | Acetovanillone | G | 166 | - | 2.52 | 1.38 |
37 | 35.2 | 4-Allylsyringol | S | 194 | - | 0.44 | - |
38 | 36.7 | Syringaldehyde | S | 182 | - | 0.42 | 0.54 |
39 | 37.2 | cis-Coniferyl alcohol | G | 180 | 1.31 | 0.84 | 0.63 |
40 | 38.0 | Methoxy eugenol | G | 194 | - | 1.39 | 0.54 |
41 | 38.7 | 4-Hydroxy-2 methoxycinnamaldehyde | H | 178 | - | 0.92 | 2.13 |
42 | 38.8 | trans-Coniferyl alcohol | G | 180 | - | 2.26 | 2.0 |
43 | 45.0 | trans-Sinapaldehyde | S | 208 | 1.73 | - | - |
SUM (L + H + G + S) | 13.3 | 64.7 | 30.5 |
© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Ross, K.; Mazza, G. Characteristics of Lignin from Flax Shives as Affected by Extraction Conditions. Int. J. Mol. Sci. 2010, 11, 4035-4050. https://doi.org/10.3390/ijms11104035
Ross K, Mazza G. Characteristics of Lignin from Flax Shives as Affected by Extraction Conditions. International Journal of Molecular Sciences. 2010; 11(10):4035-4050. https://doi.org/10.3390/ijms11104035
Chicago/Turabian StyleRoss, Kelly, and Giuseppe Mazza. 2010. "Characteristics of Lignin from Flax Shives as Affected by Extraction Conditions" International Journal of Molecular Sciences 11, no. 10: 4035-4050. https://doi.org/10.3390/ijms11104035
APA StyleRoss, K., & Mazza, G. (2010). Characteristics of Lignin from Flax Shives as Affected by Extraction Conditions. International Journal of Molecular Sciences, 11(10), 4035-4050. https://doi.org/10.3390/ijms11104035