Environmental Applications of Biosurfactants: Recent Advances
Abstract
:1. Introduction
2. Classification and Properties of Biosurfactants
3. Biosurfactants and Hydrocarbons Degradation/Remediation
3.1. Role of Biosurfactants in Biodegradation Processes
3.2. Biodegradation Studies
3.3. Soil Washing Technology
3.4. Clean-up Combined Technology
3.5. Microbial Enhanced Oil Recovery (MEOR)
3.5.1. Mechanism of MEOR
3.5.2. Applications of MEOR
4. Biosurfactants and Metals Remediation
4.1. Removal of Metals by Biosurfactants—Mechanism of the Process
4.1.2. Applications of the Process
4.2. Biosurfactants and Phytoremediation
5. Biosurfactants in Co-Contaminated Sites Remediation
6. Conclusions and Future Perspectives
Acknowledgements
References
- Lang, S. Biological amphiphiles (microbial biosurfactants). Curr. Opin. Colloid Inter. Sci 2002, 7, 12–20. [Google Scholar]
- Desai, JD; Banat, IM. Microbial production of surfactants and their commercial potential. Microbiol. Mol. Biol. R 1997, 61, 47–64. [Google Scholar]
- Kosaric, N. Biosurfactants in industry. Pure Appl. Chem 1992, 64, 1731–1737. [Google Scholar]
- Kosaric, N. Biosurfactants and their application for soil bioremediation. Food Technol. Biotechnol 2001, 39, 295–304. [Google Scholar]
- Rahman, KSM; Rahman, TJ; Kourkoutas, Y; Petsas, I; Marchant, R; Banat, IM. Enhanced bioremediation of n-alkane petroleum sludge using bacterial consortium amended with rhamnolipid and micronutrients. Bioresour. Technol 2003, 90, 159–168. [Google Scholar]
- Das, K; Mukherjee, AK. Comparison of lipopeptide biosurfactants production by Bacillus subtilis strains in submerged and solid state fermentation systems using a cheap carbon source: some industrial applications of biosurfactants. Process Biochem 2007, 42, 1191–1199. [Google Scholar]
- Das, P; Mukherjee, S; Sen, R. Improved bioavailability and biodegradation of a model polyaromatic hydrocarbon by a biosurfactant producing bacterium of marine origin. Chemosphere 2008, 72, 1229–1234. [Google Scholar]
- Muthusamy, K; Gopalakrishnan, S; Ravi, TK; Sivachidambaram, P. Biosurfactants: properties, commercial production and application. Curr. Sci 2008, 94, 736–747. [Google Scholar]
- Banat, IM; Franzetti, A; Gandolfi, I; Bestetti, G; Martinotti, MG; Fracchia, L; Smyth, TJ; Marchant, R. Microbial biosurfactants production, applications and future potential. Appl. Microbiol. Biotechnol 2010, 87, 427–444. [Google Scholar]
- Soberón-Chávez, G; Maier, RM. Biosurfactants: a General Overview. In Biosurfactants; Soberón-Chávez, G, Ed.; Springer-Verlag: Berlin, Germany, 2011; pp. 1–11. [Google Scholar]
- Rosenberg, E; Ron, EZ. High- and low-molecular-mass microbial surfactants. Appl. Microbiol. Biotechnol 1999, 52, 154–162. [Google Scholar]
- Calvo, C; Manzanera, M; Silva-Castro, GA; Uad, I; González-López, J. Application of bioemulsifiers in soil oil bioremediation processes. Future prospects. Sci. Total Environ 2009, 407, 3634–3640. [Google Scholar]
- Sifour, M; Al-Jilawi, MH; Aziz, GM. Emulsification properties of biosurfactant produced from Pseudomonas aeruginosa RB 28. Pak. J. Biol. Sci 2007, 10, 1331–1335. [Google Scholar]
- Whang, LM; Liu, PWG; Ma, CC; Cheng, SS. Application of biosurfactant, rhamnolipid, and surfactin, for enhanced biodegradation of diesel-contaminated water and soil. J. Hazard. Mater 2008, 151, 155–163. [Google Scholar]
- Herman, DC; Artiola, JF; Miller, RM. Removal of cadmium, lead, and zinc from soil by a rhamnolipid biosurfactant. Environ. Sci. Technol 1995, 29, 2280–2285. [Google Scholar]
- Maier, RM; Soberón-Chávez, G. Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications. Appl. Microbiol. Biotechnol 2000, 54, 625–633. [Google Scholar]
- Franzetti, A; Gandolfi, I; Bestetti, G; Smyth, TJ; Banat, IM. Production and applications of trehalose lipid biosurfactants. Eur. J. Lipid. Sci. Tech 2010, 112, 617–627. [Google Scholar]
- Pesce, L. A biotechnological method for the regeneration of hydrocarbons from dregs and muds, on the base of biosurfactants. World Patent 02/062,495, 2002. [Google Scholar]
- Baviere, M; Degouy, D; Lecourtier, J. Process for washing solid particles comprising a sophoroside solution. U.S. Patent 5,326,407, 1994. [Google Scholar]
- Gerson, OF; Zajic, JE. Surfactant production from hydrocarbons by Corynebacterium lepus, sp. nov. and Pseudomonas asphaltenicus, sp. nov. Dev. Ind. Microbiol 1978, 19, 577–599. [Google Scholar]
- Ishigami, Y; Yamazaki, S; Gama, Y. Surface active properties of biosoap from spiculisporic acid. J. Colloid Interf. Sci 1983, 94, 131–139. [Google Scholar]
- Ishigami, Y; Zhang, Y; Ji, F. Spiculisporic acid. Functional development of biosurfactants. Chim Oggi 2000, 18, 32–34. [Google Scholar]
- Hong, JJ; Yang, SM; Lee, CH; Choi, YK; Kajiuchi, T. Ultrafiltration of divalent metal cations from aqueous solution using polycarboxylic acid type biosurfactants. J. Colloid Interf. Sci 1998, 202, 63–73. [Google Scholar]
- Appanna, VD; Finn, H; St Pierre, M. Exocellular phosphatidylethanolamine production and multiple-metal tolerance in Pseudomonas fluorescens. FEMS Microbiol. Lett 1995, 131, 53–56. [Google Scholar]
- Jennema, GE; McInerney, MJ; Knapp, RM; Clark, JB; Feero, JM; Revus, DE; Menzie, DE. A halotolerant, biosurfactants-producing Bacillus species potentially useful for enhanced oil recovery. Dev. Ind. Microbiol 1983, 24, 485–492. [Google Scholar]
- Awashti, N; Kumar, A; Makkar, R; Cameotra, S. Enhanced biodegradation of endosulfan, a chlorinated pesticide in presence of a biosurfactant. J. Environ. Sci. Heal B 1999, 34, 793–803. [Google Scholar]
- Arima, K; Kakinuma, A; Tamura, G. Surfactin, a crystalline peptide lipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochem. Biophys. Res. Commun 1968, 31, 488–494. [Google Scholar]
- Thomas, CP; Duvall, ML; Robertson, EP; Barrett, KB; Bala, GA. Surfactant-based EOR mediated by naturally occurring microorganisms. 1993, 11, 285–291. [Google Scholar]
- Zosim, Z; Gutnick, DL; Rosenberg, E. Properties of hydrocarbon-in-water emulsions stabilized by Acinetobacter RAG-1 emulsan. Biotechnol. Bioeng 1982, 24, 281–292. [Google Scholar]
- Toren, A; Navon-Venezia, S; Ron, EZ; Rosenberg, E. Emulsifying activity of purified alasan proteins from Acinetobacter radioresistens. Appl. Environ. Microbiol 2001, 67, 1102–1106. [Google Scholar]
- Rosenberg, E; Rubinovitz, C; Legmann, R; Ron, EZ. Purification and chemical properties of Acinetobacter calcoaceticus A2 Biodispersan. Appl. Environ. Microbiol 1988, 54, 323–326. [Google Scholar]
- Cirigliano, MC; Carman, GM. Purification and characterization of liposan, a bioemulsifier from Candida lipolytica. Appl. Environ. Microbiol 1984, 50, 846–850. [Google Scholar]
- Cameron, DR; Cooper, DG; Neufeld, RJ. The mannoprotein of accharomyces cerevisiae is an effective bioemulsifier. Appl. Environ. Microbiol 1988, 54, 1420–1425. [Google Scholar]
- Nguyen, TT; Youssef, NH; McInerney, MJ; Sabatini, DA. Rhamnolipid biosurfactant mixtures for environmental remediation. Water Res 2008, 42, 1735–1743. [Google Scholar]
- Christofi, N; Ivshina, IB. Microbial surfactants and their use in field studies of soil remediation. J. Appl. Microbiol 2002, 93, 915–929. [Google Scholar]
- Al-Tahhan, R; Sandrin, TR; Bodour, AA; Maier, RM. Rhamnolipid-iduced removal of lipopolysaccharide from Pseudomonas aeruginosa: effect on cell surface properties and interaction with hydrophobic substrates. Appl. Environ. Microbiol 2000, 66, 3262–3268. [Google Scholar]
- Sotirova, A; Spasova, D; Vasileva-Tonkova, E; Galabova, D. Effects of rhamnolipidbiosurfactant on cell surface of Pseudomonas aeruginosa. Microbiol. Res 2009, 164, 297–303. [Google Scholar]
- Mulligan, CN; Gibbs, BF. Types, production and applications of biosurfactants. Proc. Indian Nat. Sci. Acad 2004, 1, 31–55. [Google Scholar]
- Déziel, E; Paquette, G; Villemur, R; Lépine, F; Bisaillon, JG. Biosurfactant production by a soil Pseudomonas strain growing on polycyclic aromatic hydrocarbons. Appl. Environ. Microbiol 1996, 62, 1908–1912. [Google Scholar]
- Bai, GY; Brusseau, ML; Miller, RM. Biosurfactant enhanced removal of residual hydrocarbon from soil. J. Cont. Hydrol 1997, 25, 157–170. [Google Scholar]
- Rahman, KSM; Rahman, TJ; Lakshmanaperumalsamy, P; Marchant, R; Banat, IM. The potential of bacterial isolates for emulsification with range of hydrocarbons. Acta Biotechnol 2003, 4, 335–345. [Google Scholar]
- Urum, K; Pekdemir, T. Evaluation of biosurfactants for crude oil contaminated soil washing. Chemosphere 2004, 57, 1139–1150. [Google Scholar]
- Nievas, ML; Commendatore, MG; Estevas, JL; Bucalá, V. Biodegradation pattern of hydrocarbons from a fuel oil-type complex residue by an emulsifier-producing microbial consortium. J. Hazard. Mater 2008, 154, 96–104. [Google Scholar]
- Franzetti, A; Caredda, P; Ruggeri, C; Colla La, P; Tamburini, E; Papacchini, M; Bestetti, G. Potential applications of surface active compounds by Gordonia sp. strain BS29 in soil remediation technologies. Chemosphere 2009, 75, 801–807. [Google Scholar]
- Cameotra, SS; Singh, P. Synthesis of rhamnolipid biosurfactant and mode of hexadecane uptake by Pseudomonas species. Microbial. Cell Fact 2009, 8, 1–7. [Google Scholar]
- Inakollu, S; Hung, H; Shreve, GS. Biosurfactant enhancement of microbial degradation of various strructural classes of hydrocarbon in mixed waste systems. Environ. Eng. Sci 2004, 21, 463–469. [Google Scholar]
- Obayori, OS; Ilori, MO; Adebusoye, SA; Oyetibo, GO; Omotayo, AE; Amund, OO. Degradation of hydrocarbons and biosurfactant production by Pseudomonas sp. strain LP1. World J. Microbiol. Biotechnol 2009, 25, 1615–1623. [Google Scholar]
- Reddy, MS; Naresh, B; Leela, T; Prashanthi, M; Madhusudhan, NC; Dhanasri, G; Devi, P. Biodegradation of phenanthrene with biosurfactant production by a new strain of Brevibacillus sp. Bioresource Technol 2010, 101, 7980–7983. [Google Scholar]
- Kang, SW; Kim, YB; Shin, JD; Kim, EK. Enhanced biodegradation of hydrocarbons in soil by microbial biosurfactant, sophorolipid. Appl. Biochem. Biotechnol 2010, 160, 780–790. [Google Scholar]
- Das, K; Mukherjee, AK. Crude petroleum-oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum-oil contaminated soil from North-East India. Bioresource Technol 2007, 98, 1339–1345. [Google Scholar]
- Joseph, PJ; Joseph, A. Microbial enhanced separation of oil from a petroleum refinery sludge. J. Hazard. Mater 2009, 161, 522–525. [Google Scholar]
- Barkay, T; Navon-Venezia, S; Ron, EZ; Rosenberg, E. Enhacement of solubilization and biodegradation of polyaromatic hydrocarbons by the bioemulsifier alasan. Appl. Environ. Microbiol 1999, 65, 2697–2702. [Google Scholar]
- Martínez-Checa, F; Toledo, FL; Mabrouki, KE; Quesada, E; Calvo, C. Characteristics of bioemulsifier V2-7 synthesized in culture media added of hydrocarbons: chemical composition, emulsifying activity and rheological properties. Bioresour. Technol 2007, 98, 3130–3135. [Google Scholar]
- Hua, X; Wu, Z; Zhang, H; Lu, D; Wang, M; Liu, Y; Liu, Z. Degradation of hexadecane by Enterobacter cloacae strain TU that secretes an exopolysaccharide as a bioemulsifier. Chemosphere 2010, 80, 951–956. [Google Scholar]
- Banat, IM; Franzetti, A; Gandolfi, I; Bestetti, G; Martinotti, G; Fracchia, L; Smyth, TJ; Marchant, R. Microbial biosurfactants production, applications and future potential. Appl. Microbiol. Biotechnol 2010, 87, 427–444. [Google Scholar]
- Urum, K; Grigson, S; Pekdemir, T; McMenamy, S. A Comparison of the efficiency of different surfactants for removal of crude oil from contaminated soils. Chemosphere 2006, 62, 1403–1410. [Google Scholar]
- Lai, CC; Huang, YC; Wei, YH; Chang, JS. Biosurfactant-enhanced removal of total petroleum hydrocarbons from contaminated soil. J. Hazard. Mater 2009, 167, 609–614. [Google Scholar]
- Franzetti, A; Bestetti, G; Caredda, P; Colla La, P; Tamburini, E. Surface-active compounds and their role in the access to hydrocarbons in Gordonia strains. FEMS Microbiol. Ecol 2008, 63, 238–248. [Google Scholar]
- Kildisas, V; Levisauskas, D; Grigiskis, S. Development of clean-up complex technology of soil contaminated by oil pollutants based on cleaner production concepts. Environ. Res. Eng. Manage 2003, 25, 87–93. [Google Scholar]
- Baskys, E; Grigiskis, S; Levisauskas, D; Kildisas, V. A new complex technology of clean-up of soil contaminated by oil pollutants. Environ. Res. Eng. Manage 2004, 30, 78–81. [Google Scholar]
- Banat, IM; Makkar, RS; Cameotra, SS. Potential commercial applications of microbial surfactants. Appl. Environ. Microbiol 2000, 53, 495–508. [Google Scholar]
- Sen, R. Biotechnology in petroleum recovery: the microbial EOR. Prog. Energ. Combust 2008, 34, 714–724. [Google Scholar]
- Suthar, H; Hingurao, K; Desai, A; Nerurkar, A. Evaluation of bioemulsi, fier mediated microbial enhanced oil recovery using sand pack column. J. Microbiol Methods 2008, 75, 225–230. [Google Scholar]
- Bordoloi, NK; Konwar, BK. Microbial surfactant-enhanced mineral oil recovery under laboratory conditions. Colloid Surf B 2008, 63, 73–82. [Google Scholar]
- Jinfeng, L; Lijun, M; Bozhong, M; Rulin, L; Fangtian, N; Jiaxi, Z. The field pilot of microbial enhanced oil recovery in a high temperature petroleum reservoir. J. Petrol. Sci. Eng 2005, 48, 265–271. [Google Scholar]
- Pornsunthorntawee, O; Arttaweeporn, N; Paisanjit, S; Somboonthanate, P; Abe, M; Rujiravanit, R; Chavadej, S. Isolation and comparison of biosurfactants produced by Bacillus subtilis PT2 and Pseudomonas aeruginosa SP4 for microbial surfactant-enhanced oil recovery. Biochem. Eng. J 2008, 42, 172–179. [Google Scholar]
- Haddadin, MSY; Arqoub, AAA; Reesh, IA; Haddadin, J. Kinetics of hydrocarbon extraction from oil shale using biosurfactant producing bacteria. Energ. Convers. Manage 2009, 50, 983–990. [Google Scholar]
- Aşçı, Y; Nurbaş, M; Açıkel, YS. Investigation of sorption/desorption equilibria of heavy metal ions on/from quartz using rhamnolipid biosurfactant. J. Environ. Manage 2010, 91, 724–731. [Google Scholar]
- Briuns, MR; Kapil, S; Oehme, FW. Microbial resistance to metals in the environment. Ecotoxicol. Environ. Saf 2000, 45, 198–207. [Google Scholar]
- Ledin, M. Accumulation of metals by microorganisms—processes and importance for soil systems. Earth Sci 2000, 51, 1–31. [Google Scholar]
- Singh, P; Cameotra, SS. Enhancement of metal bioremediation by use of microbial surfactants. Biochem. Biophy. Res. Commun 2004, 319, 291–297. [Google Scholar]
- Juwarkar, AA; Nair, A; Dubey, KV; Singh, SK; Devotta, S. Biosurfactant technology for remediation of cadmium and lead contaminated soils. Chemosphere 2007, 68, 1996–2002. [Google Scholar]
- Aşçı, Y; Nurbaş, M; Açıkel, YS. A comparative study for the sorption of Cd(II) by soils with different clay contents and mineralogy and the recovery of Cd(II) using rhamnolipid biosurfactant. J. Hazd. Mater 2008, 154, 663–673. [Google Scholar]
- Mulligan, CN. Environmental applications for biosurfactants. Environ. Pollut 2005, 133, 183–198. [Google Scholar]
- Juwarkar, AA; Dubey, KV; Nair, A; Singh, SK. Bioremediation of multi-metal contaminated soil using biosurfactant—a novel approach. Indian J. Microbiol 2008, 48, 142–146. [Google Scholar]
- Das, P; Mukherjee, S; Sen, R. Biosurfactant of marine origin exhibiting heavy metal remediation properties. Bioresour. Technol 2009, 100, 4887–4890. [Google Scholar]
- Dahrazma, B; Mulligan, CN. Investigation of the removal of heavy metals from sediments using rhamnolipid in a continuous flow configuration. Chemosphere 2007, 69, 705–711. [Google Scholar]
- Wang, S; Mulligan, CN. Rhamnolipid foam enhanced remediation of cadmium and nickel contaminated soil. Water Air Soil Pollut 2004, 157, 315–330. [Google Scholar]
- Wang, S; Mulligan, CN. Arsenic mobilization from mine tailings in the presence of a biosurfactant. Appl. Geochem 2009, 24, 928–935. [Google Scholar]
- Doong, RA; Wu, YW; Lei, WG. Surfactant enhanced remediation of cadmium contaminated soils. Water Sci. Technol 1998, 37, 65–71. [Google Scholar]
- Gnanamani, A; Kavitha, V; Radhakrishnan, N; Rajakumar, GS; Sekaran, G; Mandal, AB. Microbial products (biosurfactant and extracellular chromate reductase) of marine microorganism are the potential agents reduce the oxidative stress induced by toxic heavy metals. Colloid Surf B 2010, 79, 334–339. [Google Scholar]
- Sheng, X; He, L; Wang, Q; Ye, H; Jiang, C. Effects of inoculation of biosurfactant-producing Bacillus sp. J119 on plant growth and cadmium uptake in a cadmium-amended soil. J. Hazard. Mat 2008, 155, 17–22. [Google Scholar]
- Sandrin, TR; Maier, RM. Impact of metals on the biodegradation of organic pollutants. Environ. Health Perspect 2003, 111, 1093–1100. [Google Scholar]
- Sandrin, TR; Chech, AM; Maier, RM. A rhamnolipid biosurfactant reduces cadmium toxicity during napthalene biodegradation. Appl. Environ. Microbiol 2000, 66, 4585–4588. [Google Scholar]
- Maslin, PM; Maier, RM. Rhamnolipid enhanced mineralization of phenanthrene in organic metal co-contaminated soils. Bioremed. J 2000, 4, 295–308. [Google Scholar]
- Singh, A; van Hammer, JD; Ward, OP. Surfactants in microbiology and biotechnology: Part 2. Applications aspects. Biotech. Adv 2007, 25, 99–121. [Google Scholar]
- Millioli, VS; Servulo, EC; Sobral, LG; Carvalho, DD. Bioremediation of crude oil-bearing soil: Evaluating the effect of rhamnolipid addition to soil toxicity and to crude oil biodegradation efficiency. Global NEST J 2009, 11, 181–188. [Google Scholar]
Biosurfactant | Microorganism | Applications in Environmental Biotechnology | References | |
---|---|---|---|---|
Group | Class | |||
Glycolipids | Rhamnolipids | Pseudomonas aeruginosa, Pseudomonas sp. | Enhancement of the degradation and dispersion of different classes of hydrocarbons; emulsification of hydrocarbons and vegetable oils; removal of metals from soil | [13–16] |
Trehalolipids | Mycobacterium tuberculosis, Rhodococcus erythropolis, Arthrobacter sp., Nocardia sp., Corynebacterium sp. | Enhancement of the bioavailability of hydrocarbons | [17] | |
Sophorolipids | Torulopsis bombicola, Torulopsis petrophilum, Torulopsis apicola | Recovery of hydrocarbons from dregs and muds; removal of heavy metals from sediments; enhancement of oil recovery | [14,18,19] | |
Fatty acids, phospholipids and neutral lipids | Corynomycolic acid | Corynebacterium lepus | Enhancement of bitumen recovery | [20] |
Spiculisporic acid | Penicillium spiculisporum | Removal of metal ions from aqueous solution; dispersion action for hydrophilic pigments; preparation of new emulsion-type organogels, superfine microcapsules (vesicles or liposomes), heavy metal sequestrants | [21–23] | |
Phosphati-dylethanolamine | Acinetobacter sp., Rhodococcus erythropolis | Increasing the tolerance of bacteria to heavy metals | [24] | |
Lipopeptides | Surfactin | Bacillus subtilis | Enhancement of the biodegradation of hydrocarbons and chlorinated pesticides; removal of heavy metals from a contaminated soil, sediment and water; increasing the effectiveness of phytoextraction | [25–27] |
Lichenysin | Bacillus licheniformis | enhancement of oil recovery | [28] | |
Polymeric biosurfactants | Emulsan | Acinetobacter calcoaceticus RAG-1 | Stabilization of the hydrocarbon-inwater emulsions | [29] |
Alasan | Acinetobacter radioresistens KA-53 | [30] | ||
Biodispersan | Acinetobacter calcoaceticus A2 | Dispersion of limestone in water | [31] | |
Liposan | Candida lipolytica | Stabilization of hydrocarbon-in-water emulsions | [32] | |
Mannoprotein | Saccharomyces cerevisiae | [33] |
© 2011 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Pacwa-Płociniczak, M.; Płaza, G.A.; Piotrowska-Seget, Z.; Cameotra, S.S. Environmental Applications of Biosurfactants: Recent Advances. Int. J. Mol. Sci. 2011, 12, 633-654. https://doi.org/10.3390/ijms12010633
Pacwa-Płociniczak M, Płaza GA, Piotrowska-Seget Z, Cameotra SS. Environmental Applications of Biosurfactants: Recent Advances. International Journal of Molecular Sciences. 2011; 12(1):633-654. https://doi.org/10.3390/ijms12010633
Chicago/Turabian StylePacwa-Płociniczak, Magdalena, Grażyna A. Płaza, Zofia Piotrowska-Seget, and Swaranjit Singh Cameotra. 2011. "Environmental Applications of Biosurfactants: Recent Advances" International Journal of Molecular Sciences 12, no. 1: 633-654. https://doi.org/10.3390/ijms12010633
APA StylePacwa-Płociniczak, M., Płaza, G. A., Piotrowska-Seget, Z., & Cameotra, S. S. (2011). Environmental Applications of Biosurfactants: Recent Advances. International Journal of Molecular Sciences, 12(1), 633-654. https://doi.org/10.3390/ijms12010633