Overcoming the Recalcitrance for the Conversion of Kenaf Pulp to Glucose via Microwave-Assisted Pre-Treatment Processes
Abstract
:1. Introduction
2. Experimental Section
2.1. NaOH Pre-Treatment of Avicel and Kenaf Using Microwave
2.2. Acid Pre-Treatment of Kenaf
2.3. Enzyme Hydrolysis and Glucose Assay
2.4. Raman Microscopy Analyses
3. Results and Discussion
3.1. Alkaline Pre-treatment of Avicel
3.2. Alkaline Pre-Treatment of Kenaf Pulp
3.3. Acid Pre-Treatment of Kenaf Pulp
3.4. Raman Analyses of Kenaf Fibers
4. Conclusions
Acknowledgments
References
- Kugler, DE. Kenaf commercialization: 1986–1995. In Progress in New Crops; Janick, J, Ed.; ASHS Press: Alexandria, VA, USA, 1996; pp. 129–132. [Google Scholar]
- Princen, LH. Kenaf—Promising new fiber crop. The Herbarist; Hicks, A, Ed.; USDA: Washington, DC, 1982; pp. 79–83. Available online: http://ddr.nal.usda.gov/bitstream/10113/26222/1/IND83082047.pdf (accessed on 17 August 2010).
- New uses for kenaf. News and Events; USDA: Washington, DC, USA, 2004. Available online: http://www.ars.usda.gov/is/AR/archive/aug00/kenaf0800.htm (accessed on 17 August 2010).
- Sinnott, ML. The cellobiohydrolases of Trichoderma reesei: A review of indirect and direct evidence that their function is not just glycosidic bond hydrolysis. Biochem. Soc. Trans 1998, 26, 160–164. [Google Scholar]
- Ooshima, H; Burns, DS; Converse, AO. Adsorption of cellulase from Trichoderma reesei on cellulose and lignacious residue in wood pretreated by dilute sulfuric acid with explosive decompression. Biotechnol. Bioeng 1990, 36, 446–452. [Google Scholar]
- Taherzadeh, MJ; Karimi, K. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review. Int. J. Mol. Sci 2008, 9, 1621–1651. [Google Scholar]
- Laser, M; Schulman, D; Allen, SG; Lichwa, J; Antal, MJ, Jr; Lynd, LR. A comparison of liquid hot water and steam pretreaments of sugar cane bagasse for bioconversion to ethanol. Bioresource Technol 2002, 81, 33–44. [Google Scholar]
- Borysiak, S; Doczekalska, B. Research into the mercerization processs of beechwood using the WAXS method. Fibres Text. East. Eur 2008, 16, 101–103. [Google Scholar]
- Mansikkamäki, P; Lahtinen, M; Rissanen, K. The conversion from cellulose I to cellulose II in NaOH mercerization performed in alcohol-water systems: An X-ray powered diffraction study. Carbohydr. Polym 2007, 68, 35–43. [Google Scholar]
- Zhang, J; Zhang, J; Lin, L; Chen, T; Zhang, J; Liu, S; Li, Z; Ouyang, P. Dissolution of microcrystalline cellulose in phosphoric acid—Molecular changes and kinetics. Molecules 2009, 14, 5027–5041. [Google Scholar]
- Isogai, A; Atalla, RH. Dissolution of cellulose in aqueous NaOH solutions. Cellulose 1998, 5, 309–319. [Google Scholar]
- Sao, KP; Samantaray, BK; Bhattacherjee, S. X-ray study of crystallinity and disorder in ramie fiber. J. Appl. Polym. Sci 1994, 52, 1687–1694. [Google Scholar]
- Zhang, J; Li, D; Zhang, X; Shi, Y. Solvent effect on carboxymethylation of cellulose. J. Appl. Polym. Sci 1993, 49, 741–746. [Google Scholar]
- Atalla, RH; Gast, JC; Sindorf, DW; Bartuska, VJ; Maciel, GE. 13C NMR spectra of cellulose polymorphs. J. Am. Chem Soc 1980, 102, 3249–3251. [Google Scholar]
- Earl, WL; VanderHart, DL. High resolution, magic angle sample spinning 13C NMR of solid cellulose I. J. Am. Chem Soc 1980, 102, 3251–3252. [Google Scholar]
- Kunze, J; Fink, H-P. Structural changes and activation of cellulose by caustic soda solution with urea. Macromol. Symp 2005, 223, 175–187. [Google Scholar]
- Atalla, RH; Agarwal, UP. Raman microprobe evidence for lignin orientation in the cell walls of native woody tissue. Science 1985, 227, 636–638. [Google Scholar]
- Atalla, RH; Agarwal, UP; Bond, JS. Raman spectroscopy of lignin. In Methods in Lignin Chemistry; Dence, CW, Lin, SY, Eds.; Springer-Verlag: Berlin, Germany, 1992; pp. 162–176. [Google Scholar]
- Agarwal, UP; Atalla, RH. FT Raman spectroscopy: What it is and what it can do for research on lignocellulosic materials. Proc. 8th Intl. Symp. Wood Pulp. Chem 1995, 8, 67–72. [Google Scholar]
- Agarwal, UP. An overview of Raman spectroscopy as applied to lignocellulosic materials. In Advances in Lignocellulosic Characterization; Argyropoulos, DS, Ed.; TAPPI Press: Atlanta, GA, USA, 1999; pp. 201–225. [Google Scholar]
- Atalla, RH. An innovative new technology to reduce recalcitrance of cellulose and make it competitive with corn as a biomass feedstock; Cellulose Sciences International: Madison, WI, USA, 2009. Available online: http://www.celscint.com/uploads/CSI_Technology.pdf (accessed on 1 May 2010).
- Curreli, N; Agelli, M; Pisu, B; Rescigno, A; Sanjust, E; Rinaldi, A. Complete and efficient enzymatic hydrolysis of pre-treated wheat straw. Process Biochem 2002, 37, 937–941. [Google Scholar]
- Zhu, S; Wu, Y; Yu, Z; Liao, J; Zhang, Y. Pretreatment by microwave/alkali of rice straw and its enzymatic hydrolysis. Process Biochem 2005, 40, 3082–3086. [Google Scholar]
- Zhu, S; Wu, Y; Yu, Z; Wang, C; Yu, F; Jin, S; Ding, Y; Chi, R; Liao, J; Zhang, Y. Comparison of three microwave/chemical pretreatment processes for enzymatic hydrolysis of rice straw. Biosyst. Eng 2006, 93, 279–283. [Google Scholar]
- Jeffries, TW. Mandel’s manual of cellulase assay; USDA Forest Products Laboratory: Madison, WI, USA, 1987. Available online: http://calvin.biotech.wisc.edu/jeffries/cellulases/mandels.html (accessed on 22 February 2011).
- Cunningham, RL; Carr, ME; Bagby, MO. Hemicellulose isolation from annual plants. Biotechnol. Bioeng. Symp 1986, 17, 159–168. [Google Scholar]
- Um, BH; Karim, MN; Henk, LL. Effect of sulfuric and phosphoric acid pre-treatments on enzymatic hydrolysis of corn stover. Appl. Biochem. Biotechnol 2003, 105–108, 115–125. [Google Scholar]
- Agarwal, UP; Ralph, SA. FT-Raman spectroscopy of wood: Identifying contributions of lignin and carbohydrate polymers in the spectrum of black spruce (Picea mariana). Appl. Spectrosc 1997, 51, 1648–1655. [Google Scholar]
- Ona, T; Sonoda, T; Ito, K; Shibata, M; Katayama, T; Kato, T; Ootake, Y. Non-destructive determination of lignin syringyl/guaiacyl monomeric composition in native wood by Fourier transform Raman spectroscopy. J. Wood Chem. Technol 1998, 18, 43–51. [Google Scholar]
- Sun, Z; Ibrahim, A; Oldham, PB; Schultz, TP; Conners, TE. Rapid lignin measurement in hardwood pulp samples by near-infrared Fourier transform Raman spectroscopy. J. Agric. Food Chem 1997, 45, 3088–3091. [Google Scholar]
- Ooi, BG; Lankford, KR. Strategy for adapting wine yeasts for bioethanol production. Int. J. Mol. Sci 2009, 10, 385–394. [Google Scholar]
- Mondal, K; Roy, I; Gupta, MN. Enhancement of catalytic efficiencies of xylanase, pectinase, and cellulase by microwave pretreatment of their substrates. Biocatal. Biotransfor 2004, 22, 9–16. [Google Scholar]
Samples | T1:HCl-FeCl3 | T2: HCl only | T3:FeCl3 only |
---|---|---|---|
Kenaf | 1.5 g | 1.5 g | 1.5 g |
dH2O | 5.0 g | 5.0 g | 5.0 g |
12 M HCl | 3.0 mL | 3.0 mL | 3.0 mL dH2O |
FeCl3 | 0.5 g | -------- | 0.5 g |
Control | No Microwave | Microwave | Control | |||
---|---|---|---|---|---|---|
Samples | “Walseth” Avicel | NaOH − 30 min, EtOH − 15 min | NaOH + EtOH − 45 min | NaOH − 30 min, EtOH − 15 min | NaOH + EtOH − 45 min | Untreated Avicel |
a.[Glucose] mg/dL | 534 ± 16 | 480 ± 6 | 478 ± 12 | 481 ± 16 | 453 ± 8 | 200 ± 5 |
Relative Yield | 2.7× | 2.4× | 2.4× | 2.4× | 2.3× | 1.0× |
b.[Glucose] mg/dL | 552 ± 7 | 559 ± 13 | 542 ± 19 | 542 ± 8 | 499 ± 6 | 268 ± 3 |
Relative Yield | 2.1× | 2.1× | 2.0× | 2.0× | 1.9× | 1.0× |
c.[Glucose] mg/dL | 570 ± 34 | 559 ± 22 | 565 ± 19 | 551 ± 22 | 507 ± 8 | 376 ± 11 |
Relative Yield | 1.5× | 1.5× | 1.5× | 1.5× | 1.4× | 1.0× |
(a) | ||||||
---|---|---|---|---|---|---|
Conditions | 50 °C, 30 minutes | |||||
Control | Conventional Heating | Microwave Heating | Control | |||
Samples | PO43− Kenaf | 2% NaOH | 5% NaOH | 2% NaOH | 5% NaOH | Untreated Kenaf |
[Glucose] mg/dL | 89 ± 4 | 228 ± 6 | 251 ± 5 | 269 ± 2 | 283 ± 5 | 79 ± 6 |
Relative Yield | 1.1× | 2.9× | 3.2× | 3.4× | 3.6× | 1.0× |
(b) | ||||
---|---|---|---|---|
Conditions | Room Temperature, 30 minutes | |||
Control | No Microwave | Microwave | Control | |
Samples | PO43− Kenaf | 25% NaOH | 25% NaOH | Untreated Kenaf |
[Glucose] mg/dL | 125 ± 5 | 321 ± 10 | 298 ± 6 | 124 ± 4 |
Relative Yield | 1.0× | 2.6× | 2.4× | 1.0× |
Treatment | 50 °C for 3 Hours | Control | 90 °C for 0.25 Hours | ||||||
---|---|---|---|---|---|---|---|---|---|
Samples | HCl–FeCl3 | HCl | FeCl3 | Untreated Kenaf | PO4−3 Kenaf | HCl–FeCl3 | HCl | FeCl3 | Untreated Kenaf |
[Glucose] mg/dL | 97 ± 2 | 89 ± 4 | 78 ± 3 | 81 ± 3 | 67 ± 4 | 94 ± 3 | 119 ± 5 | 58 ± 4 | 68 ± 4 |
Relative Yield | 1.2× | 1.1× | 1.0× | 1.0× | 1.0× | 1.4× | 1.8× | 0.9× | 1.0× |
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Ooi, B.G.; Rambo, A.L.; Hurtado, M.A. Overcoming the Recalcitrance for the Conversion of Kenaf Pulp to Glucose via Microwave-Assisted Pre-Treatment Processes. Int. J. Mol. Sci. 2011, 12, 1451-1463. https://doi.org/10.3390/ijms12031451
Ooi BG, Rambo AL, Hurtado MA. Overcoming the Recalcitrance for the Conversion of Kenaf Pulp to Glucose via Microwave-Assisted Pre-Treatment Processes. International Journal of Molecular Sciences. 2011; 12(3):1451-1463. https://doi.org/10.3390/ijms12031451
Chicago/Turabian StyleOoi, Beng Guat, Ashley L. Rambo, and Miguel A. Hurtado. 2011. "Overcoming the Recalcitrance for the Conversion of Kenaf Pulp to Glucose via Microwave-Assisted Pre-Treatment Processes" International Journal of Molecular Sciences 12, no. 3: 1451-1463. https://doi.org/10.3390/ijms12031451
APA StyleOoi, B. G., Rambo, A. L., & Hurtado, M. A. (2011). Overcoming the Recalcitrance for the Conversion of Kenaf Pulp to Glucose via Microwave-Assisted Pre-Treatment Processes. International Journal of Molecular Sciences, 12(3), 1451-1463. https://doi.org/10.3390/ijms12031451