Flavonoids, Phenolics, and Antioxidant Capacity in the Flower of Eriobotrya japonica Lindl.
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Effects of Extract Solvents on Flavonoids, Phenolics and Antioxidant Capacity
2.2. The Effects of Cultivars on Flavonoids, Phenolics and Antioxidant Capacity
2.3. The Effects of Developmental Stages on Flavonoids, Phenolics and Antioxidant Capacity
2.4. The Flavonoids, Phenolics and Antioxidant Capacity in the Various Flower Tissues
2.5. Correlation Analysis
3. Experimental Section
3.1. Plant Materials
3.2. Extraction of Flavonoids and Phenolics
3.3. Determination of Flavonoid and Phenolic Content
3.4. Determination of Antioxidant Capacity
3.5. Statistical Analysis
4. Conclusions
Acknowledgments
References
- Halliwell, B; Gutteridge, JMC; Cross, CE. Free radicals, antioxidants, and human disease. Where are we now? J. Lab. Clin. Med 1992, 119, 598–620. [Google Scholar]
- Halliwell, B. 1996, 16, 33–50.
- Wolfe, K; Wu, XZ; Liu, RH. Antioxidant aActivity of apple peels. J. Agric. Food Chem 2003, 51, 609–614. [Google Scholar]
- Hassimotto, NMA; Genovese, MI; Lajolo, FM. Antioxidant activity of dietary fruits, vegetables, and commercial frozen fruit pulps. J. Agric. Food Chem 2005, 53, 2928–2935. [Google Scholar]
- Andarwulan, N; Batari, R; Sandrasari, DA; Bolling, B; Wijaya, N. Flavonoid content and antioxidant activity of vegetables from Indonesia. Food Chem 2010, 121, 1231–1235. [Google Scholar]
- Schinella, G; Mosca, S; Cienfuegos-Jovellanos, E; Pasamar, MA; Muguerza, B; Ramon, D; Rios, JL. Antioxidant properties of polyphenol-rich cocoa products industrially processed. Food Res. Int 2010, 43, 1614–1623. [Google Scholar]
- Liao, LX; Peng, YH; Li, L. Antioxidant activities of 35 kinds of fresh flowers (In Chinese). J. Plant Resour. Environ 2002, 11, 21–24. [Google Scholar]
- Li, W; Gao, YX; Zha, J; Wang, Q. Phenolic, flavonoid, and lutein ester content and antioxidant activity of 11 cultivars of chinese marigold. J. Agric. Food Chem 2007, 55, 8478–8484. [Google Scholar]
- Zeng, YW; Zhao, JL; Peng, YH. A comparative study on the free radical scavenging activities of some fresh flowers in southern China. LWT-Food Sci. Technol 2008, 41, 1586–1591. [Google Scholar]
- Fu, MR; He, ZP; Zhao, YY; Yang, J; Mao, LC. Antioxidant properties and involved compounds of daylily flowers in relation to maturity. Food Chem 2009, 114, 1192–1197. [Google Scholar]
- Kaur, G; Jabbar, Z; Athar, M; Alam, MS. Punica granatum (pomegranate) flower extract possesses potent antioxidant activity and abrogates Fe-NTA induced hepatotoxicity in mice. Food Chem. Toxicol 2006, 44, 984–993. [Google Scholar]
- Sapkota, K; Park, SE; Kim, JE; Kim, S; Choi, HS; Chun, HS; Kim, SJ. Antioxidant and antimelanogenic properties of chestnut flower extract. Biosci. Biotechnol. Biochem 2010, 74, 1527–1533. [Google Scholar]
- Xiong, WY; Wang, JZ; Shi, TD; Li, WF (Eds.) Officinal Wood Plant of China (In Chinese); Educational Publishing house of Shanghai Science and Technology: Shanghai, China, 1993; pp. 239–246.
- Ding, CK; Chachin, K; Ueda, Y; Imahori, Y; Wang, CY. Metabolism of phenolic compounds during loquat fruit development. J. Agric. Food Chem 2001, 49, 2883–2888. [Google Scholar]
- Ito, H; Kobayashi, E; Li, SH; Hatano, T; Sugita, D; Kub, N; Shimura, S; Itoh, Y; Tokuda, H; Nishino, H; Yoshida, T. Antitumor activity of compounds isolated from leaves of Eriobotrya japonica. J. Agric. Food Chem 2002, 50, 2400–2403. [Google Scholar]
- Ferreres, F; Gomes, D; Valentao, P; Goncalves, R; Pio, R; Chagas, EA; Seabra, RM; Andrade, PB. Improved loquat (Eriobotrya japonica Lindl.) cultivars: Variation of phenolics and antioxidative potential. Food Chem 2009, 114, 1019–1027. [Google Scholar]
- Hong, YP; Lin, SQ; Jiang, YM; Ashraf, M. Variation in contents of total phenolics and flavonoids and antioxidant activities in the leaves of 11 Eriobotrya species. Plant Food Hum. Nutr 2008, 63, 200–204. [Google Scholar]
- Jung, HA; Park, JC; Chung, HY; Kim, J; Choi, JS. Antioxidant flavonoids and chlorogenic acid from the leaves of Eriobotrya japonica. Arch. Pharm. Res 1999, 22, 213–218. [Google Scholar]
- Li, EN; Luo, JG; Kong, LY. Qualitative and quantitative determination of seven triterpene acids in Eriobotrya japonica Lindl. by high-performance liquid chromatography with photodiode array detection and mass spectrometry. Phytochem. Anal 2009, 20, 338–343. [Google Scholar]
- Louati, S; Simmonds, MSJ; Grayer, RJ; Kite, GC; Damak, M. Flavonoids from Eriobotrya japonica (Rosaceae) growing in Tunisia. Biochem. Syst. Ecol 2003, 31, 99–101. [Google Scholar]
- Cheng, L; Liu, Y; Chen, LY; Luo, J. Studies on the triterpenoidal saponins from flowers of Eriobotrya japonica (In Chinese). J. West. Med. Univ (China) 2001, 32, 283–285. [Google Scholar]
- Zhou, CH; Chen, KS; Sun, CD; Chen, QJ; Zhang, WS; Li, X. Determination of oleanolic acid, ursolic acid, and amygdalin in the flower of Eriobotrya japonica Lindl. by HPLC. Biomed. Chromatogr 2007, 21, 755–761. [Google Scholar]
- Thaipong, K; Boonprakob, U; Crosby, K; Cisneros-Zevallos, L; Byrne, DH. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal 2006, 19, 669–675. [Google Scholar]
- Bouayed, J; Piri, K; Rammal, H; Dicko, A; Desor, F; Younos, C; Soulimani, R. Comparative evaluation of the antioxidant potential of some Iranian medicinal plants. Food Chem 2007, 104, 364–368. [Google Scholar]
- Li, H; Zhang, YH. Optimization of extraction method of flavonoids from apple peel and its determination (In Chinese). J. Shangdong Agric. Univ 2003, 3, 471–474. [Google Scholar]
- Pomar, F; Novo, M; Masa, A. Varietal differences among the anthocyanin profiles of 50 red table grape cultivars studied by high performance liquid chromatography. J. Chromatogr. A 2005, 1094, 34–41. [Google Scholar]
- Atkinson, CJ; Dodds, PAA; Ford, YY; Le Miere, J; Taylor, JM; Blake, PS; Paul, N. Effects of cultivar, fruit number and reflected photosynthetically active radiation on Fragaria xananassa productivity and fruit ellagic acid and ascorbic acid concentrations. Ann. Bot 2006, 97, 429–441. [Google Scholar]
- Borochov-Neori, H; Judeinstein, S; Tripler, E; Harari, M; Greenberg, A; Shomer, I; Holland, D. Seasonal and cultivar variations in antioxidant and sensory quality of pomegranate (Punica granatum L.) fruit. J. Food Compos. Anal 2009, 22, 189–195. [Google Scholar]
- Bolling, BW; Dolnikowski, G; Blumberg, JB; Chen, CYO. Polyphenol content and antioxidant activity of California almonds depend on cultivar and harvest year. Food Chem 2010, 122, 819–825. [Google Scholar]
- Brown, PD; Tokuhisa, JG; Reichelt, M; Gershenzon, J. Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana. Phytochemistry 2003, 62, 471–481. [Google Scholar]
- Jemai, H; Bouaziz, M; Sayadi, S. Phenolic composition, sugar contents and antioxidant activity of Tunisian sweet olive cultivar with regard to fruit ripening. J. Agric. Food Chem 2009, 57, 2961–2968. [Google Scholar]
- Karray-Bouraoui, N; Ksouri, R; Falleh, H; Rabhi, M; Jaleel, CA; Grignon, C; Lachaal, M. Effects of environment and developmental stage on phenolic content and antioxidant activities of Mentha pulegium L. J. Food Biochem 2010, 34, 79–89. [Google Scholar]
- Rassam, M; Laing, W. Variation in ascorbic acid and oxalate levels in the fruit of Actinidia chinensis tissues and genotypes. J. Agric. Food Chem 2005, 53, 2322–2326. [Google Scholar]
- Tabart, J; Kevers, C; Pincemail, J; Defraigne, JO; Dommes, J. Antioxidant capacity of black currant varies with organ, season, and cultivar. J. Agric. Food Chem 2006, 54, 6271–6276. [Google Scholar]
- Luximon-Ramma, A; Bahorun, T; Soobrattee, MA; Aruoma, OI. Antioxidant activities of phenolic, proanthocyanidin, and flavonoid components in extracts of Cassia fistula. J. Agric. Food Chem 2002, 50, 5042–5047. [Google Scholar]
- Yang, J; Meyer, KJ; Heide, JVD; Liu, RH. Varietal differences in phenolic content and antioxidant and antiproliferative activities of onions. J. Agric. Food Chem 2004, 52, 6787–6793. [Google Scholar]
- Hukkanen, AT; Pölönen, SS; Kärenlampi, SO; Kokko, HI. Antioxidant capacity and phenolic content of sweet rowanberries. J. Agric. Food Chem 2006, 54, 112–119. [Google Scholar]
- Awika, JM; Rooney, LW; Wu, XL; Prior, RL; Cisneros-Zevallos, L. Screening methods to measure antioxidant activity of sorghum (Sorghum bicolor) and sorghum products. J. Agric. Food Chem 2003, 51, 6657–6662. [Google Scholar]
- Zhou, CH; Sun, CD; Li, X. Study on method for flavonoids determining of plant rich in chlorogenic acid (In Chinese). Plant Physiol. Commun 2007, 42, 902–904. [Google Scholar]
- Maksimovic, Z; Malencic, D; Kovacevic, N. Polyphenol contents and antioxidant activity of Maydis stigma extracts. Bioresour. Technol 2005, 96, 873–877. [Google Scholar]
- Deighton, N; Brennan, R; Finn, C; Davies, HV. Antioxidant properties of domesticated and wild Rubus species. J. Sci. Food Agric 2000, 80, 1307–1313. [Google Scholar]
- Kim, DO; Lee, KW; Lee, HJ; Lee, CY. Vitamin C equivalent antioxidant capacity (VCEAC) of phenolic phytochemicals. J. Agric. Food Chem 2002, 50, 3713–3717. [Google Scholar]
- Bao, JS; Cai, YZ; Sun, M; Wang, GY; Corke, H. Anthocyanins, flavonols, and free radical scavenging activity of Chinese Bayberry (Myrica rubra) extracts and their color properties and stability. J. Agric. Food Chem 2005, 53, 2327–2332. [Google Scholar]
- Delgado-Andrade, C; Rufián-Henares, JA; Morales, FJ. Assessing the antioxidant activity of melanoidins from coffee brews by different antioxidant methods. J. Agric. Food Chem 2005, 53, 7832–7836. [Google Scholar]
Extract Solvent | Component (mg/g DW) | Antioxidant Capacity (VCEAC mg/g DW) | |||
---|---|---|---|---|---|
Flavonoids | Phenolics | FRAP | DPPH | ABTS | |
Methanol | 6.36 ± 0.41 a | 36.80 ± 4.28 a | 4.46 ± 0.08 a | 7.07 ± 0.01 a | 11.67 ± 0.09 a |
Ethanol | 1.59 ± 0.04 b | 8.33 ± 0.20 b | 2.32 ± 0.28 b | 3.31 ± 0.20 b | 4.06 ± 0.14 b |
Acetone | 1.00 ± 0.02 c | 2.88 ± 0.20 c | 0.80 ± 0.03 c | 1.15 ± 0.14 c | 1.84 ± 0.18 c |
n-Butyl alcohol | 0.80 ± 0.06 c | 2.76 ± 0.20 c | 0.65 ± 0.05 c,d | 0.91 ± 0.04 c,d,e | 1.45 ± 0.14 c,d |
Ethyl acetate | 0.72 ± 0.04 c | 1.34 ± 0.44 c | 0.42 ± 0.10 d | 0.55 ± 0.07 d,e,f | 1.01 ± 0.20 d |
Cultivar | Component (mg/g DW) | Antioxidant Capacity (VCEAC mg/g DW) | |||
---|---|---|---|---|---|
Flavonoids | Phenolics | FRAP | DPPH | ABTS | |
Baozhu | 1.35 ± 0.01 b | 7.39 ± 0.10c | 2.02 ± 0.10 c,d | 2.80 ± 0.06 b,c | 3.75 ± 0.11 b |
Dahongpao | 1.79 ± 0.10 a | 7.77 ± 0.35 b,c | 2.28 ± 0.07 b | 2.89 ± 0.05 b,c | 3.64 ± 0.24 b |
Dayeyangdun | 1.81 ± 0.07 a | 9.15 ± 0.20 a | 2.60 ± 0.09 a | 3.22 ± 0.19 a | 4.25 ± 0.08 a |
Jiajiao | 1.30 ± 0.01 b | 6.73 ± 0.21 d | 1.94 ± 0.06 d | 2.62 ± 0.12 c | 3.52 ± 0.10 b |
Ruantiaobaisha | 1.70 ± 0.06 a | 8.24 ± 0.28 b | 2.18 ± 0.06 b,c | 3.03 ± 0.11 a,b | 3.63 ± 0.18 b |
Average | 1.59 ± 0.24 | 7.86 ± 0.87 | 2.20 ± 0.25 | 2.91 ± 0.23 | 3.76 ± 0.29 |
Developmental Stage | Component (mg/g DW) | Antioxidant Capacity (VCEAC mg/g DW) | |||
---|---|---|---|---|---|
Flavonoids | Phenolics | FRAP | DPPH | ABTS | |
Stage 1 | 1.16 ± 0.04 c | 8.25 ± 0.07 b | 1.56 ± 0.05 c | 2.52 ± 0.14 c | 3.22 ± 0.24 c |
Stage 2 | 1.50 ± 0.05 b | 8.74 ± 0.15 b | 2.35 ± 0.05 b | 3.41 ± 0.18 b | 4.10 ± 0.09 b |
Stage 3 | 3.01 ± 0.13 a | 13.53 ± 0.38 a | 3.61 ± 0.21 a | 5.19 ± 0.41 a | 6.48 ± 0.08 a |
Stage 4 | 1.24 ± 0.04 c | 6.72 ± 0.67 c | 2.10 ± 0.15 b | 3.03 ± 0.27 b,c | 3.88 ± 0.20 b |
Flower Tissue | Component (mg/g DW) | Antioxidant Capacity (VCEAC mg/g DW) | |||
---|---|---|---|---|---|
Flavonoids | Phenolics | FRAP | DPPH | ABTS | |
Peduncle | 1.19 ± 0.07 b | 4.88 ± 0.17b c | 1.50 ± 0.02 c | 1.89 ± 0.12 c | 2.54 ± 0.08 c |
Petal | 7.45 ± 0.38 a | 19.63 ± 2.72 a | 4.24 ± 0.04 a | 6.73 ± 0.04 a | 7.19 ± 0.17 a |
Pistil + Stamen | 1.81 ± 0.07 b | 7.99 ± 0.25 b | 2.34 ± 0.14 b | 3.06 ± 0.16 b | 4.12 ± 0.09 b |
Sepal | 1.15 ± 0.14 b | 4.26 ± 0.66 c | 1.31 ± 0.09 c | 1.78 ± 0.19 c | 2.69 ± 0.27 c |
Antioxidant Capacity | Flavonoids | Phenolics |
---|---|---|
FRAP | y = 0.5615x + 0.8809 (r2 = 0.694**) | y = 0.1318x + 0.8335 (r2= 0.762**) |
DPPH | y = 0.9107x + 1.0784 (r2 = 0.785**) | y = 0.2091x + 1.0382 (r2 = 0.824**) |
ABTS | y = 1.1812x + 1.5189 (r2 = 0.785**) | y = 0.301x + 1.2275 (r2 = 0.947**) |
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Zhou, C.; Sun, C.; Chen, K.; Li, X. Flavonoids, Phenolics, and Antioxidant Capacity in the Flower of Eriobotrya japonica Lindl. Int. J. Mol. Sci. 2011, 12, 2935-2945. https://doi.org/10.3390/ijms12052935
Zhou C, Sun C, Chen K, Li X. Flavonoids, Phenolics, and Antioxidant Capacity in the Flower of Eriobotrya japonica Lindl. International Journal of Molecular Sciences. 2011; 12(5):2935-2945. https://doi.org/10.3390/ijms12052935
Chicago/Turabian StyleZhou, Chunhua, Chongde Sun, Kunsong Chen, and Xian Li. 2011. "Flavonoids, Phenolics, and Antioxidant Capacity in the Flower of Eriobotrya japonica Lindl." International Journal of Molecular Sciences 12, no. 5: 2935-2945. https://doi.org/10.3390/ijms12052935
APA StyleZhou, C., Sun, C., Chen, K., & Li, X. (2011). Flavonoids, Phenolics, and Antioxidant Capacity in the Flower of Eriobotrya japonica Lindl. International Journal of Molecular Sciences, 12(5), 2935-2945. https://doi.org/10.3390/ijms12052935