Application of Magnetic Nanoparticles to Gene Delivery
Abstract
:1. Introduction
2. Gene Delivery
3. Cell Transplantation Therapy Using MNPs
4. Gene Delivery Using MNPs and Magnetic Force
5. Conclusions
References
- Chouly, C; Pouliquen, D; Lucet, I; Jeune, JJ; Jallet, P. Development of superparamagnetic nanoparticles for MRI: Effect of particle size, charge and surface nature on biodistribution. J. Microencapsul 1996, 13, 245–255. [Google Scholar]
- Schlorf, T; Meincke, M; Kossel, E; Gluer, CC; Jansen, O; Mentlein, R. Biological properties of iron oxide nanoparticles for cellular and molecular magnetic resonance imaging. Int. J. Mol. Sci 2010, 12, 12–23. [Google Scholar]
- Yoo, B; Pagel, MD. An overview of responsive MRI contrast agents for molecular imaging. Front. Biosci 2008, 13, 1733–1752. [Google Scholar]
- Sun, C; Fang, C; Stephen, Z; Veiseh, O; Hansen, S; Lee, D; Ellenbogen, RG; Olson, J; Zhang, M. Tumor-targeted drug delivery and MRI contrast enhancement by chlorotoxin-conjugated iron oxide nanoparticles. Nanomedicine (Lond. UK) 2008, 3, 495–505. [Google Scholar]
- Medarova, Z; Rashkovetsky, L; Pantazopoulos, P; Moore, A. Multiparametric monitoring of tumor response to chemotherapy by noninvasive imaging. Cancer Res 2009, 69, 1182–1189. [Google Scholar]
- Wu, YL; Ye, Q; Sato, K; Foley, LM; Hitchens, TK; Ho, C. Noninvasive evaluation of cardiac allograft rejection by cellular and functional cardiac magnetic resonance. JACC Cardiovasc. Imaging 2009, 2, 731–741. [Google Scholar]
- Wu, YL; Ye, Q; Foley, LM; Hitchens, TK; Sato, K; Williams, JB; Ho, C. In situ labeling of immune cells with iron oxide particles: An approach to detect organ rejection by cellular MRI. Proc. Natl. Acad. Sci. USA 2006, 103, 1852–1857. [Google Scholar]
- Chen, CL; Zhang, H; Ye, Q; Hsieh, WY; Hitchens, TK; Shen, HH; Liu, L; Wu, YJ; Foley, LM; Wang, SJ; et al. A New Nano-sized Iron Oxide Particle with High Sensitivity for Cellular Magnetic Resonance Imaging. Mol Imaging Biol 2010. [Google Scholar] [CrossRef]
- Matsumura, Y; Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 1986, 46, 6387–6392. [Google Scholar]
- Maeda, H; Matsumura, Y. Tumoritropic and lymphotropic principles of macromolecular drugs. Crit. Rev. Ther. Drug Carrier Syst 1989, 6, 193–210. [Google Scholar]
- Oh, KT; Baik, HJ; Lee, AH; Oh, YT; Youn, YS; Lee, ES. The reversal of drug-resistance in tumors using a drug-carrying nanoparticular system. Int. J. Mol. Sci 2009, 10, 3776–3792. [Google Scholar]
- Jordan, A; Scholz, R; Wust, P; Fahling, H; Roland, F. Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J. Magn. Magn. Mater 1999, 201, 413–419. [Google Scholar]
- Mornet, S; Vasseur, S; Grasset, F; Veverka, P; Goglio, G; Demourgues, A; Portier, J; Pollert, E; Duguet, E. Magnetic nanoparticle design for medical applications. Prog. Solid State Chem 2006, 34, 237–247. [Google Scholar]
- Kim, DH; Kim, KN; Kim, KM; Lee, YK. Targeting to carcinoma cells with chitosan- and starch-coated magnetic nanoparticles for magnetic hyperthermia. J. Biomed. Mater. Res. , Part A 2009, 88, 1–11. [Google Scholar]
- Ito, A; Shinkai, M; Honda, H; Kobayashi, T. Heat-inducible TNF-alpha gene therapy combined with hyperthermia using magnetic nanoparticles as a novel tumor-targeted therapy. Cancer Gene Ther 2001, 8, 649–654. [Google Scholar]
- Tang, QS; Zhang, DS; Cong, XM; Wan, ML; Jin, LQ. Using thermal energy produced by irradiation of Mn-Zn ferrite magnetic nanoparticles (MZF-NPs) for heat-inducible gene expression. Biomaterials 2008, 29, 2673–2679. [Google Scholar]
- Salloum, M; Ma, RH; Weeks, D; Zhu, L. Controlling nanoparticle delivery in magnetic nanoparticle hyperthermia for cancer treatment: Experimental study in agarose gel. Int. J. Hyperthermia 2008, 24, 337–345. [Google Scholar]
- Wust, P; Gneveckow, U; Johannsen, M; Bohmer, D; Henkel, T; Kahmann, F; Sehouli, J; Felix, R; Ricke, J; Jordan, A. Magnetic nanoparticles for interstitial thermotherapy—feasibility, tolerance and achieved temperatures. Int. J. Hyperth 2006, 22, 673–685. [Google Scholar]
- Ito, A; Honda, H; Kobayashi, T. Cancer immunotherapy based on intracellular hyperthermia using magnetite nanoparticles: A novel concept of “heat-controlled necrosis” with heat shock protein expression. Cancer Immunol. Immunother 2006, 55, 320–328. [Google Scholar]
- Tanaka, K; Ito, A; Kobayashi, T; Kawamura, T; Shimada, S; Matsumoto, K; Saida, T; Honda, H. Intratumoral injection of immature dendritic cells enhances antitumor effect of hyperthermia using magnetic nanoparticles. Int. J. Cancer 2005, 116, 624–633. [Google Scholar]
- Ito, A; Tanaka, K; Honda, H; Abe, S; Yamaguchi, H; Kobayashi, T. Complete regression of mouse mammary carcinoma with a size greater than 15 mm by frequent repeated hyperthermia using magnetite nanoparticles. J. Biosci. Bioeng 2003, 96, 364–369. [Google Scholar]
- Muggia, FM. Doxorubicin-polymer conjugates: Further demonstration of the concept of enhanced permeability and retention. Clin. Cancer Res 1999, 5, 7–8. [Google Scholar]
- Gabizon, A; Chemla, M; Tzemach, D; Horowitz, AT; Goren, D. Liposome longevity and stability in circulation: Effects on the in vivo delivery to tumors and therapeutic efficacy of encapsulated anthracyclines. J. Drug Target 1996, 3, 391–398. [Google Scholar]
- Sakakibara, T; Chen, FA; Kida, H; Kunieda, K; Cuenca, RE; Martin, FJ; Bankert, RB. Doxorubicin encapsulated in sterically stabilized liposomes is superior to free drug or drug-containing conventional liposomes at suppressing growth and metastases of human lung tumor xenografts. Cancer Res 1996, 56, 3743–3746. [Google Scholar]
- Harrington, KJ; Mohammadtaghi, S; Uster, PS; Glass, D; Peters, AM; Vile, RG; Stewart, JS. Effective targeting of solid tumors in patients with locally advanced cancers by radiolabeled pegylated liposomes. Clin. Cancer Res 2001, 7, 243–254. [Google Scholar]
- Noe, LL; Becker, RV, III; Gradishar, WJ; Gore, M; Trotter, JP. The cost effectiveness of tamoxifen in the prevention of breast cancer. Am J Manag Care 1999, 5(Suppl 6), S389–406. [Google Scholar]
- Ibrahim, NK; Desai, N; Legha, S; Soon-Shiong, P; Theriault, RL; Rivera, E; Esmaeli, B; Ring, SE; Bedikian, A; Hortobagyi, GN; et al. Phase I and pharmacokinetic study of ABI- 007, a Cremophor-free, protein-stabilized, nanoparticle formulation of paclitaxel. Clin. Cancer Res 2002, 8, 1038–1044. [Google Scholar]
- Ibrahim, NK; Samuels, B; Page, R; Doval, D; Patel, KM; Rao, SC; Nair, MK; Bhar, P; Desai, N; Hortobagyi, GN. Multicenter phase II trial of ABI-007, an albumin-bound paclitaxel, in women with metastatic breast cancer. J. Clin. Oncol 2005, 23, 6019–6026. [Google Scholar]
- Pinder, MC; Ibrahim, NK. Nanoparticle albumin-bound paclitaxel for treatment of metastatic breast cancer. Drugs Today 2006, 42, 599–604. [Google Scholar]
- Hamaguchi, T; Kato, K; Yasui, H; Morizane, C; Ikeda, M; Ueno, H; Muro, K; Yamada, Y; Okusaka, T; Shirao, K; et al. A phase I and pharmacokinetic study of NK105, a paclitaxel-incorporating micellar nanoparticle formulation. Br. J. Cancer 2007, 97, 170–176. [Google Scholar]
- Hamaguchi, T; Matsumura, Y; Suzuki, M; Shimizu, K; Goda, R; Nakamura, I; Nakatomi, I; Yokoyama, M; Kataoka, K; Kakizoe, T. NK105, a paclitaxel-incorporating micellar nanoparticle formulation, can extend in vivo antitumour activity and reduce the neurotoxicity of paclitaxel. Br. J. Cancer 2005, 92, 1240–1246. [Google Scholar]
- Muggia, FM; Hainsworth, JD; Jeffers, S; Miller, P; Groshen, S; Tan, M; Roman, L; Uziely, B; Muderspach, L; Garcia, A; et al. Phase II study of liposomal doxorubicin in refractory ovarian cancer: Antitumor activity and toxicity modification by liposomal encapsulation. J. Clin. Oncol 1997, 15, 987–993. [Google Scholar]
- Kikumori, T; Kobayashi, T; Sawaki, M; Imai, T. Anti-cancer effect of hyperthermia on breast cancer by magnetite nanoparticle-loaded anti-HER2 immunoliposomes. Breast Cancer Res. Treat 2009, 113, 435–441. [Google Scholar]
- Johannsen, M; Thiesen, B; Wust, P; Jordan, A. Magnetic nanoparticle hyperthermia for prostate cancer. Int. J. Hyperth 2010, 26, 790–795. [Google Scholar]
- Rao, W; Deng, ZS; Liu, J. A review of hyperthermia combined with radiotherapy/chemotherapy on malignant tumors. Crit. Rev. Biomed. Eng 2010, 38, 101–116. [Google Scholar]
- Yallapu, MM; Othman, SF; Curtis, ET; Gupta, BK; Jaggi, M; Chauhan, SC. Multi-functional magnetic nanoparticles for magnetic resonance imaging and cancer therapy. Biomaterials 2011, 32, 1890–1905. [Google Scholar]
- Chen, B; Wu, W; Wang, X. Magnetic iron oxide nanoparticles for tumor-targeted therapy. Curr. Cancer Drug Targets 2011, 11, 184–189. [Google Scholar]
- Zhang, H; Lee, MY; Hogg, MG; Dordick, JS; Sharfstein, ST. Gene delivery in three-dimensional cell cultures by superparamagnetic nanoparticles. ACS Nano 2010, 4, 4733–4743. [Google Scholar]
- Pickard, MR; Barraud, P; Chari, DM. The transfection of multipotent neural precursor/stem cell transplant populations with magnetic nanoparticles. Biomaterials 2011, 32, 2274–2284. [Google Scholar]
- Lee, JH; Lee, K; Moon, SH; Lee, Y; Park, TG; Cheon, J. All-in-one target-cell-specific magnetic nanoparticles for simultaneous molecular imaging and siRNA delivery. Angew. Chem., Int. Ed. Engl 2009, 48, 4174–4179. [Google Scholar]
- Kievit, FM; Veiseh, O; Bhattarai, N; Fang, C; Gunn, JW; Lee, D; Ellenbogen, RG; Olson, JM; Zhang, M. PEI-PEG-Chitosan Copolymer Coated Iron Oxide Nanoparticles for Safe Gene Delivery: Synthesis, complexation, and transfection. Adv. Funct. Mater 2009, 19, 2244–2251. [Google Scholar]
- Mykhaylyk, O; Antequera, YS; Vlaskou, D; Plank, C. Generation of magnetic nonviral gene transfer agents and magnetofection in vitro. Nat. Protoc 2007, 2, 2391–2411. [Google Scholar]
- Song, HP; Yang, JY; Lo, SL; Wang, Y; Fan, WM; Tang, XS; Xue, JM; Wang, S. Gene transfer using self-assembled ternary complexes of cationic magnetic nanoparticles, plasmid DNA and cell-penetrating Tat peptide. Biomaterials 2010, 31, 769–778. [Google Scholar]
- Scherer, F; Anton, M; Schillinger, U; Henke, J; Bergemann, C; Kruger, A; Gansbacher, B; Plank, C. Magnetofection: Enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Ther 2002, 9, 102–109. [Google Scholar]
- Shi, Y; Zhou, L; Wang, R; Pang, Y; Xiao, W; Li, H; Su, Y; Wang, X; Zhu, B; Zhu, X; Yan, D; Gu, H. In situ preparation of magnetic nonviral gene vectors and magnetofection in vitro. Nanotechnology 2010, 21, 115103. [Google Scholar]
- Ang, D; Nguyen, QV; Kayal, S; Preiser, PR; Rawat, RS; Ramanujan, RV. Insights into the mechanism of magnetic particle assisted gene delivery. Acta Biomater 2011, 7, 1319–1326. [Google Scholar]
- Morishita, N; Nakagami, H; Morishita, R; Takeda, S; Mishima, F; Terazono, B; Nishijima, S; Kaneda, Y; Tanaka, N. Magnetic nanoparticles with surface modification enhanced gene delivery of HVJ-E vector. Biochem. Biophys. Res. Commun 2005, 334, 1121–1126. [Google Scholar]
- Namgung, R; Singha, K; Yu, MK; Jon, S; Kim, YS; Ahn, Y; Park, IK; Kim, WJ. Hybrid superparamagnetic iron oxide nanoparticle-branched polyethylenimine magnetoplexes for gene transfection of vascular endothelial cells. Biomaterials 2010, 31, 4204–4213. [Google Scholar]
- Yiu, HH; McBain, SC; Lethbridge, ZA; Lees, MR; Dobson, J. Preparation and characterization of polyethylenimine-coated Fe3O4-MCM-48 nanocomposite particles as a novel agent for magnet-assisted transfection. J. Biomed. Mater. Res. , Part A 2010, 92, 386–392. [Google Scholar]
- Namiki, Y; Namiki, T; Yoshida, H; Ishii, Y; Tsubota, A; Koido, S; Nariai, K; Mitsunaga, M; Yanagisawa, S; Kashiwagi, H; et al. A novel magnetic crystal-lipid nanostructure for magnetically guided in vivo gene delivery. Nat. Nanotechnol 2009, 4, 598–606. [Google Scholar]
- Arsianti, M; Lim, M; Marquis, CP; Amal, R. Polyethylenimine based magnetic iron-oxide vector: The effect of vector component assembly on cellular entry mechanism, intracellular localization, and cellular viability. Biomacromolecules 2010, 11, 2521–3251. [Google Scholar]
- Kim, TS; Lee, SH; Gang, GT; Lee, YS; Kim, SU; Koo, DB; Shin, MY; Park, CK; Lee, DS. Exogenous DNA uptake of boar spermatozoa by a magnetic nanoparticle vector system. Reprod. Domest. Anim 2009, 45, e201–e206. [Google Scholar]
- Yang, SY; Sun, JS; Liu, CH; Tsuang, YH; Chen, LT; Hong, CY; Yang, HC; Horng, HE. Ex vivo magnetofection with magnetic nanoparticles: A novel platform for nonviral tissue engineering. Artif. Organs 2008, 32, 195–204. [Google Scholar]
- Tresilwised, N; Pithayanukul, P; Mykhaylyk, O; Holm, PS; Holzmuller, R; Anton, M; Thalhammer, S; Adiguzel, D; Doblinger, M; Plank, C. Boosting oncolytic adenovirus potency with magnetic nanoparticles and magnetic force. Mol. Pharmaceutics 2010, 7, 1069–1089. [Google Scholar]
- Hashimoto, M; Hisano, Y. Directional gene-transfer into the brain by an adenoviral vector tagged with magnetic nanoparticles. J. Neurosci. Methods 2011, 194, 316–320. [Google Scholar]
- Mah, C; Fraites, TJ, Jr; Zolotukhin, I; Song, S; Flotte, TR; Dobson, J; Batich, C; Byrne, BJ. Improved method of recombinant AAV2 delivery for systemic targeted gene therapy. Mol. Ther 2002, 6, 106–112. [Google Scholar]
- Basti, H; Ben Tahar, L; Smiri, LS; Herbst, F; Vaulay, MJ; Chau, F; Ammar, S; Benderbous, S. Catechol derivatives-coated Fe3O4 and gamma-Fe2O3 nanoparticles as potential MRI contrast agents. J. Colloid Interface Sci 2010, 341, 248–254. [Google Scholar]
- Gamarra, LF; Amaro, E, Jr; Alves, S; Soga, D; Pontuschka, WM; Mamani, JB; Carneiro, SM; Brito, GE; Figueiredo Neto, AM. Characterization of the biocompatible magnetic colloid on the basis of Fe3O4 nanoparticles coated with dextran used as contrast agent in magnetic resonance imaging. J. Nanosci. Nanotechnol 2010, 10, 4145–4153. [Google Scholar]
- Jung, CW; Jacobs, P. Physical and chemical properties of superparamagnetic iron oxide MR contrast agents: Ferumoxides, ferumoxtran, ferumoxsil. Magn. Reson. Imaging 1995, 13, 661–674. [Google Scholar]
- Martina, MS; Fortin, JP; Menager, C; Clement, O; Barratt, G; Grabielle-Madelmont, C; Gazeau, F; Cabuil, V; Lesieur, S. Generation of superparamagnetic liposomes revealed as highly efficient MRI contrast agents for in vivo imaging. J. Am. Chem. Soc 2005, 127, 10676–10685. [Google Scholar]
- Widder, DJ; Greif, WL; Widder, KJ; Edelman, RR; Brady, TJ. Magnetite albumin microspheres: A new MR contrast material. Am. J. Roentgenol 1987, 148, 399–404. [Google Scholar]
- Sun, X; Gutierrez, A; Yacaman, MJ; Dong, X; Jin, S. Investigations on magnetic properties and structure for carbon encapsulated nanoparticles of Fe, Co, Ni. Mater. Sci. Eng. A 2000, 286, 157–160. [Google Scholar]
- Tomitaka, A; Kobayashi, H; Yamada, T; Jeun, M; Bae, S; Takemura, Y. Magnetization and self-heating temperature of NiFe2O4 nanoparticles measured by applying ac magnetic field. J. Phys.: Conf. Ser 2010, 200, 122010. [Google Scholar]
- Cho, WS; Duffin, R; Poland, CA; Duschl, A; Oostingh, GJ; Macnee, W; Bradley, M; Megson, IL; Donaldson, K. Differential pro-inflammatory effects of metal oxide nanoparticles and their soluble ions in vitro and in vivo; zinc and copper nanoparticles, but not their ions, recruit eosinophils to the lungs. Nanotoxicology 2011, in press. [Google Scholar]
- George, S; Xia, T; Rallo, R; Zhao, Y; Ji, Z; Lin, S; Wang, X; Zhang, H; France, B; Schoenfeld, D; et al. Use of a high-throughput screening approach coupled with in vivo zebrafish embryo screening to develop hazard ranking for engineered nanomaterials. ACS Nano 2011, 5, 1805–1817. [Google Scholar]
- Giri, J; Pradhan, P; Somani, V; Chelawat, H; Chhatre, S; Banerjee, R; Bahadur, D. Synthesis and characterizations of water-based ferrofluids of substituted ferrites [Fe1-xBxFe2O4, B = Mn, Co (x = 0−1)] for biomedical applications. J. Magn. Magn. Mater 2008, 320, 724–730. [Google Scholar]
- Karlsson, HL; Cronholm, P; Gustafsson, J; Moller, L. Copper oxide nanoparticles are highly toxic: A comparison between metal oxide nanoparticles and carbon nanotubes. Chem. Res. Toxicol 2008, 21, 1726–1732. [Google Scholar]
- McBain, SC; Yiu, HH; Dobson, J. Magnetic nanoparticles for gene and drug delivery. Int. J. Nanomed 2008, 3, 169–180. [Google Scholar]
- Buyukhatipoglu, K; Clyne, AM. Superparamagnetic iron oxide nanoparticles change endothelial cell morphology and mechanics via reactive oxygen species formation. J. Biomed. Mater. Res. , Part A 2011, 96, 186–195. [Google Scholar]
- Schroder, U; Segren, S; Gemmefors, C; Hedlund, G; Jansson, B; Sjogren, HO; Borrebaeck, CA. Magnetic carbohydrate nanoparticles for affinity cell separation. J. Immunol. Methods 1986, 93, 45–53. [Google Scholar]
- Berry, CC; Wells, S; Charles, S; Curtis, AS. Dextran and albumin derivatised iron oxide nanoparticles: Influence on fibroblasts in vitro. Biomaterials 2003, 24, 4551–7455. [Google Scholar]
- Nitin, N; LaConte, LE; Zurkiya, O; Hu, X; Bao, G. Functionalization and peptide-based delivery of magnetic nanoparticles as an intracellular MRI contrast agent. J. Biol. Inorg. Chem 2004, 9, 706–712. [Google Scholar]
- Ito, A; Ino, K; Kobayashi, T; Honda, H. The effect of RGD peptide-conjugated magnetite cationic liposomes on cell growth and cell sheet harvesting. Biomaterials 2005, 26, 6185–6193. [Google Scholar]
- de la Fuente, JM; Penades, S. Glyconanoparticles: Types, synthesis and applications in glycoscience, biomedicine and material science. Biochim. Biophys. Acta 2006, 1760, 636–651. [Google Scholar]
- McDonald, MA; Watkin, KL. Investigations into the physicochemical properties of dextran small particulate gadolinium oxide nanoparticles. Acad. Radiol 2006, 13, 421–427. [Google Scholar]
- Mertz, CJ; Kaminski, MD; Xie, Y; Finck, MR; Guy, S; Rosengart, AJ. In vitro studies of functionalized magnetic nanospheres for selective removal of a simulant biotoxin. J. Magn. Magn. Mater 2005, 293, 572–577. [Google Scholar]
- Mikhaylova, M; Jo, Y; Kim, D; Bobrysheva, N; Andersson, Y; Eriksson, T; Osmolowsky, M; Semenov, V; Muhammed, M. The Effect of Biocompatible Coating Layers on Magnetic Properties of Superparamagnetic Iron Oxide Nanoparticles. Hyperfine Interact 2004, 156–157, 257–263. [Google Scholar]
- Qiu, XP; Winnik, F. Preparation and characterization of PVA coated magnetic nanoparticles. Chin. J. Polym. Sci 2000, 18, 535–539. [Google Scholar]
- Yiu, HHP; Wright, PA; Botting, NP. Enzyme immobilisation using SBA-15 mesoporous molecular sieves with functionalised surfaces. J. Mol. Catal. B: Enzym 2001, 15, 81–92. [Google Scholar]
- Ameur, S; Martelet, C; Jaffrezic-Renault, N; Chovelon, J-M. Sensitive immunodetection through impedance measurements onto gold functionalized electrodes. Appl. Biochem. Biotechnol 2000, 89, 161–170. [Google Scholar]
- Arsianti, M; Lim, M; Lou, SN; Goon, IY; Marquis, CP; Amal, R. Bi-functional gold-coated magnetite composites with improved biocompatibility. J. Colloid Interface Sci 2011, 354, 536–545. [Google Scholar]
- Williams, D; Gold, K; Holoman, T; Ehrman, S; Wilson, O. Surface modification of magnetic nanoparticles using gum arabic. J. Nanopart. Res 2006, 8, 749–753. [Google Scholar]
- Klabunde, KJ; Stark, J; Koper, O; Mohs, C; Park, DG; Decker, S; Jiang, Y; Lagadic, I; Zhang, D. Nanocrystals as stoichiometric reagents with unique surface chemistry. J. Phys. Chem 1996, 100, 12142–12153. [Google Scholar]
- Zhang, H; Xia, T; Meng, H; Xue, M; George, S; Ji, Z; Wang, X; Liu, R; Wang, M; France, B; et al. Differential expression of syndecan-1 mediates cationic nanoparticle toxicity in undifferentiated versus differentiated normal human bronchial epithelial cells. ACS Nano 2011, 5, 2756–2769. [Google Scholar]
- Sunoqrot, S; Bae, JW; Jin, SE; Ryan, MP; Liu, Y; Hong, S. Kinetically controlled cellular interactions of polymer-polymer and polymer-liposome nanohybrid systems. Bioconjugate Chem 2011, 22, 466–474. [Google Scholar]
- Schweiger, C; Pietzonka, C; Heverhagen, J; Kissel, T. Novel magnetic iron oxide nanoparticles coated with poly(ethylene imine)-g-poly(ethylene glycol) for potential biomedical application: Synthesis, stability, cytotoxicity and MR imaging. Int. J. Pharm 2011, 408, 130–137. [Google Scholar]
- Boussif, O; Lezoualc’h, F; Zanta, MA; Mergny, MD; Scherman, D; Demeneix, B; Behr, JP. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: Polyethylenimine. Proc. Natl. Acad. Sci. USA 1995, 92, 7297–7301. [Google Scholar]
- Thomas, M; Lu, JJ; Ge, Q; Zhang, C; Chen, J; Klibanov, AM. Full deacylation of polyethylenimine dramatically boosts its gene delivery efficiency and specificity to mouse lung. Proc. Natl. Acad. Sci. USA 2005, 102, 5679–5684. [Google Scholar]
- Abdallah, B; Hassan, A; Benoist, C; Goula, D; Behr, JP; Demeneix, BA. A powerful nonviral vector for in vivo gene transfer into the adult mammalian brain: Polyethylenimine. Hum. Gene Ther 1996, 7, 1947–1954. [Google Scholar]
- Zuo, KH; Jiang, DL; Zhang, JX; Lin, QL. Forming nanometer TiO2 sheets by nonaqueous tape casting. Ceram. Int 2007, 33, 477–481. [Google Scholar]
- Ieda, M; Fu, JD; Delgado-Olguin, P; Vedantham, V; Hayashi, Y; Bruneau, BG; Srivastava, D. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 2010, 142, 375–386. [Google Scholar]
- Takeuchi, JK; Bruneau, BG. Directed transdifferentiation of mouse mesoderm to heart tissue by defined factors. Nature 2009, 459, 708–711. [Google Scholar]
- Vierbuchen, T; Ostermeier, A; Pang, ZP; Kokubu, Y; Sudhof, TC; Wernig, M. Direct conversion of fibroblasts to functional neurons by defined factors. Nature 2010, 463, 1035–1041. [Google Scholar]
- Zhou, Q; Brown, J; Kanarek, A; Rajagopal, J; Melton, DA. In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature 2008, 455, 627–632. [Google Scholar]
- Takahashi, K; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126, 663–676. [Google Scholar]
- Laurent, N; Sapet, CD; Le Gourrierec, L; Bertosio, E; Zelphati, O. Nucleic acid delivery using magnetic nanoparticles: The Magnetofection™ technology. Ther. Deliv 2011, 2, 471–482. [Google Scholar]
- Sonawane, ND; Szoka, FC, Jr; Verkman, AS. Chloride accumulation swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes. J. Biol. Chem 2003, 278, 44826–44831. [Google Scholar]
- Brunner, S; Sauer, T; Carotta, S; Cotten, M; Saltik, M; Wagner, E. Cell cycle dependence of gene transfer by lipoplex, polyplex and recombinant adenovirus. Gene Ther 2000, 7, 401–407. [Google Scholar]
- Nishiyama, N; Kataoka, K. Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol. Ther 2006, 112, 630–648. [Google Scholar]
- Yu, JH; Quan, JS; Huang, J; Nah, JW; Cho, CS. Degradable poly(amino ester) based on poly(ethylene glycol) dimethacrylate and polyethylenimine as a gene carrier: Molecular weight of PEI affects transfection efficiency. J. Mater. Sci.: Mater. Med 2009, 20, 2501–2510. [Google Scholar]
- Veiseh, O; Kievit, FM; Gunn, JW; Ratner, BD; Zhang, M. A ligand-mediated nanovector for targeted gene delivery and transfection in cancer cells. Biomaterials 2009, 30, 649–657. [Google Scholar]
- Pan, X; Guan, J; Yoo, JW; Epstein, AJ; Lee, LJ; Lee, RJ. Cationic lipid-coated magnetic nanoparticles associated with transferrin for gene delivery. Int. J. Pharm 2008, 358, 263–270. [Google Scholar]
- Li, Z; Xiang, J; Zhang, W; Fan, S; Wu, M; Li, X; Li, G. Nanoparticle delivery of anti-metastatic NM23-H1 gene improves chemotherapy in a mouse tumor model. Cancer Gene Ther 2009, 16, 423–429. [Google Scholar]
- Gonzalez, B; Ruiz-Hernandez, E; Feito, MJ; Lopez de Laorden, C; Arcos, D; Ramirez-Santillan, C; Matesanz, C; Portoles, MT; Vallet-Regi, M. Covalently bonded dendrimer-maghemite nanosystems: Nonviral vectors for in vitro gene magnetofection. J. Mater. Chem 2011, 21, 4598–4604. [Google Scholar]
- Wu, H-C; Wang, T-W; Bohn, MC; Lin, F-H; Spector, M. Novel magnetic hydroxyapatite nanoparticles as non-viral vectors for the glial cell line-derived neurotrophic factor Gene. Adv. Funct. Mater 2010, 20, 67–77. [Google Scholar]
- Zhao, D; Gong, T; Zhu, D; Zhang, Z; Sun, X. Comprehensive comparison of two new biodegradable gene carriers. Int J Pharm 2011, in press. [Google Scholar]
- Kami, D; Takeda, S; Makino, H; Toyoda, M; Itakura, Y; Gojo, S; Kyo, S; Umezawa, A; Watanabe, M. Efficient transfection method using deacylated polyethylenimine-coated magnetic nanoparticles. J Artif Organs 2011, in press. [Google Scholar]
- Moghimi, SM; Symonds, P; Murray, JC; Hunter, AC; Debska, G; Szewczyk, A. A twostage poly(ethylenimine)-mediated cytotoxicity: Implications for gene transfer/therapy. Mol. Ther 2005, 11, 990–995. [Google Scholar]
- Zou, SM; Erbacher, P; Remy, JS; Behr, JP. Systemic linear polyethylenimine (L-PEI)-mediated gene delivery in the mouse. J. Gene Med 2000, 2, 128–134. [Google Scholar]
- Biswas, S; Gordon, LE; Clark, GJ; Nantz, MH. Click assembly of magnetic nanovectors for gene delivery. Biomaterials 2011, 32, 2683–2688. [Google Scholar]
- Ahmed, M; Deng, Z; Narain, R. Study of transfection efficiencies of cationic glyconanoparticles of different sizes in human cell line. ACS Appl. Mater. Interfaces 2009, 1, 1980–1987. [Google Scholar]
- Frohlich, E; Kueznik, T; Samberger, C; Roblegg, E; Wrighton, C; Pieber, TR. Sizedependent effects of nanoparticles on the activity of cytochrome P450 isoenzymes. Toxicol. Appl. Pharmacol 2010, 242, 326–332. [Google Scholar]
- McBain, SC; Griesenbach, U; Xenariou, S; Keramane, A; Batich, CD; Alton, EWFW; Dobson, J. Magnetic nanoparticles as Gene delivery agents: Enhanced transfection in the presence of oscillating magnet arrays. Nanotechnology 2008, 19, 405102. [Google Scholar]
- Kamau, SW; Hassa, PO; Steitz, B; Petri-Fink, A; Hofmann, H; Hofmann-Amtenbrink, M; von Rechenberg, B; Hottiger, MO. Enhancement of the efficiency of non-viral gene delivery by application of pulsed magnetic field. Nucleic Acids Res 2006, 34, e40. [Google Scholar]
- Dimos, JT; Rodolfa, KT; Niakan, KK; Weisenthal, LM; Mitsumoto, H; Chung, W; Croft, GF; Saphier, G; Leibel, R; Goland, R; et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 2008, 321, 1218–1221. [Google Scholar]
- Ebert, AD; Yu, J; Rose, FF, Jr; Mattis, VB; Lorson, CL; Thomson, JA; Svendsen, CN. Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 2009, 457, 277–280. [Google Scholar]
- Okita, K; Ichisaka, T; Yamanaka, S. Generation of germline-competent induced pluripotent stem cells. Nature 2007, 448, 313–317. [Google Scholar]
- Okita, K; Nakagawa, M; Hyenjong, H; Ichisaka, T; Yamanaka, S. Generation of mouse induced pluripotent stem cells without viral vectors. Science 2008, 322, 949–953. [Google Scholar]
- Takahashi, K; Tanabe, K; Ohnuki, M; Narita, M; Ichisaka, T; Tomoda, K; Yamanaka, S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007, 131, 861–782. [Google Scholar]
Purpose | References | |
---|---|---|
MRI | Diagnosis | [1–8,57–61] |
DDS | Anti-cancer therapy, Enzyme therapy | [9–11,22–31] |
Hyperthermia | Anti-cancer therapy | [12–18,33–37] |
Gene Delivery | Anti-cancer therapy, Cell transplantation therapy | [38–55] |
Expression Type | Efficiency (%) | Cell Viability (%) | Safety | |
---|---|---|---|---|
Virus* | Stable, or Transient | 80–90% | 80–90% | Low |
Electroporation | Transient | 50–70% | 40–50% | High |
TF reagent ** | Transient | 20–30% | 80–90% | High |
Author | Year | Vector | Magnetic Nanoparticles | Modifying Agent | Targeting Cell, or Tissue | TF Efficiency | Cell Viability (% of Control) | Reference |
---|---|---|---|---|---|---|---|---|
Kami D | 2011 | Plasmid | Iron oxide (γ-Fe2O3) | PEI max (MW: 25 k) | P19CL6 | * 82% | 100% | [107] |
Pickard MR | 2011 | Plasmid | NeuroMag | - | Neural precursor cell | * 30% | 70% | [39] |
Hashimoto M | 2011 | Adenovirus, Biotin | SPION | PEI, Streptoavidin | HeLa | ** 4-fold | - | [55] |
Adenovirus, Biotin | SPION | PEI, Streptoavidin | NIH3T3 | ** 10-fold | - | |||
Adenovirus, Biotin | SPION | PEI, Streptoavidin | Mouse embryonic brain | - | - | |||
Biswas S | 2011 | Plasmid | Iron oxide (Fe3O4) | Aminooxy, Oxime ether | MCF-7 | ** 1425-fold | 89% | [110] |
B González | 2011 | Plasmid | SPION | Poly(propyleneimine) dendrimers | Saos-2 osteoblasts | * 12% | 75% | [104] |
Zhang H | 2010 | Plasmid | SPION | Branch PEI (MW: 25 k) | NIT3T3 | * 64% | 100% | [38] |
siRNA | SPION | Branch PEI (MW: 25 k) | NIT3T3 | * 77% | 100% | |||
Song HP | 2010 | Plasmid | PolyMag | Tat peptide | U251 | * 60% | 80% | [43] |
Plasmid | PolyMag | Tat peptide | Rat spinal cord | ** 2-fold | - | |||
Arsianti M | 2010 | Plasmid | Iron oxide | Branch PEI (MW: 25 k) | BHK-21 | - | 60–90% | [51] |
Shi Y | 2010 | Plasmid | Magnetite | Hyperbranch PEI (MW: 10 k) | COS-7 | ** 13-fold | - | [45] |
Ang D | 2010 | Plasmid | Magnetite | Branch PEI (MW: 25 k) | COS-7 | ** 6-fold | 70% | [46] |
Tresilwised N | 2010 | Adenovirus | Iron oxide (Fe2O3, Fe3O4) | Branch PEI (MW: 25 k), Zonyl FSA fluorosurfactant | EPP85-181RDB | ** 10-fold | - | [54] |
Namgung R | 2010 | Plasmid | SPION | PEG, Branch PEI (MW: 25 k) | HUVEC | ** 12-fold | 80% | [48] |
Yiu HH | 2010 | Plasmid | Iron oxide (Fe3O4) | PEI (MW: 25 k), MCM48 (Silica particle) | NCI-H292 | ** 4-fold | - | [49] |
HC Wu | 2010 | Plasmid | Magnetite | Hydroxyapatite | Rat marrow stromal cells | * 60–70% | 100% | [105] |
Namiki Y | 2009 | Plasmid | Magnetite | Oleic acid, Phospholipid | HSC45 | ** 8-fold | - | [50] |
siRNA | Magnetite | Oleic acid, Phospholipid | Tissue sample from gastric cancer | - | - | |||
Kim TS | 2009 | Plasmid | PolyMag | - | Boar spermatozoa | - | - | [52] |
Kievit FM | 2009 | Plasmid | SPION | PEI (MW: 25 k) | C6 | * 90% | 10% | [41] |
Plasmid | SPION | PEI (MW: 25 k), Chitosan | C6 | * 45% | 100% | |||
Plasmid | PolyMag | - | C6 | * 32% | 66% | |||
Lee JH | 2009 | siRNA | MnMEIO | Serum albumin, PEG-RGD | MDA-MB-435-GFP | * 30% | - | [40] |
Li Z | 2009 | Plasmid | Iron oxide | Poly-l-lysine | Lung tissue | *** 60% | - | [103] |
Yang SY | 2008 | Plasmid | Iron oxide (Fe3O4) | Lipofectamine 2000 | He99 | - | - | [53] |
Plasmid | Iron oxide (Fe3O4) | DOTAP:DOPE | He99 | - | - | |||
Pan X | 2008 | Plasmid | Magnetite | Oleic acid, Branch PEI (MW: 25 k), Transferrin | KB | ** 300-fold | 92% | [102] |
Mykhaylyk O | 2007 | Plasmid | Iron oxide (Fe2O3, Fe3O4) | Branch PEI (MW: 25 k) | H441 | * 49% | - | [42] |
Plasmid | Iron oxide (Fe2O3, Fe3O4) | Pluronic F-127 | H441 | * 37% | - | |||
Plasmid | Iron oxide (Fe2O3, Fe3O4) | Lauroyl sarcosinate | H441 | - | - | |||
Plasmid | Iron oxide (Fe2O3, Fe3O4) | Branch PEI (MW: 25 k), Lauroyl sarcosinate | H441 | - | - | |||
Morishita N | 2005 | Plasmid | Iron oxide (γFe2O3) | HVJ-E, protamine sulfate | BHK-21 | ** 4-fold | - | [47] |
Plasmid | Iron oxide (γ-Fe2O3) | HVJ-E, heparin sulfate | Liver, BALB/c mice (8 weeks age) | ** 3-fold | - | |||
Scherer F | 2002 | Plasmid | SPION | PEI (MW: 800 k) | NIH3T3 | ** 5-fold | - | [44] |
Adenovirus | SPION | PEI (MW: 800 k) | K562 | ** 100-fold | - | |||
Retrovirus | SPION | PEI (MW: 800 k) | NIH3T3 | * 20% | - | |||
Mah C | 2002 | Adenovirus | Avidinylated magnetite | Biotunylated heparan sulfate | C12S | * 75% | - | [56] |
Adenovirus | Avidinylated magnetite | Biotunylated heparan sulfate | Adult 129/SvJ mice | - | - |
© 2011 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Kami, D.; Takeda, S.; Itakura, Y.; Gojo, S.; Watanabe, M.; Toyoda, M. Application of Magnetic Nanoparticles to Gene Delivery. Int. J. Mol. Sci. 2011, 12, 3705-3722. https://doi.org/10.3390/ijms12063705
Kami D, Takeda S, Itakura Y, Gojo S, Watanabe M, Toyoda M. Application of Magnetic Nanoparticles to Gene Delivery. International Journal of Molecular Sciences. 2011; 12(6):3705-3722. https://doi.org/10.3390/ijms12063705
Chicago/Turabian StyleKami, Daisuke, Shogo Takeda, Yoko Itakura, Satoshi Gojo, Masatoshi Watanabe, and Masashi Toyoda. 2011. "Application of Magnetic Nanoparticles to Gene Delivery" International Journal of Molecular Sciences 12, no. 6: 3705-3722. https://doi.org/10.3390/ijms12063705
APA StyleKami, D., Takeda, S., Itakura, Y., Gojo, S., Watanabe, M., & Toyoda, M. (2011). Application of Magnetic Nanoparticles to Gene Delivery. International Journal of Molecular Sciences, 12(6), 3705-3722. https://doi.org/10.3390/ijms12063705