ZnS, CdS and HgS Nanoparticles via Alkyl-Phenyl Dithiocarbamate Complexes as Single Source Precursors
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Thermal Decomposition Studies
2.3. Morphological Characterization
2.3.1. Scanning Electron Microscopy (SEM)/Transmission Electron Microscopy (TEM) Studies
2.3.2. X-ray Diffraction (XRD) Patterns
2.4. Optical Characterization
2.4.1. Absorption Studies
2.4.2. Luminescence Studies
3. Experimental Section
3.1. Materials
3.2. Preparation of Nanoparticles
3.3. Sample Characterization
4. Conclusions
Acknowledgments
References
- Nanda, J; Kuruvilla, BA; Sarma, DD. Photoelectron spectroscopic study of CdS nanocrystallites. Phys Rev B 1999, 59, 7473–7479. [Google Scholar]
- Senthilkumaar, S; Selvi, TR. Synthesis and characterization of one dimensional ZnS nanorods. Synth React Inorg Met-Org Nano-Met Chem 2008, 38, 710–715. [Google Scholar]
- Stucky, GD; McDougall, JE. Quantum confinement and host/guest chemistry: Probing a new dimension. Science 1990, 247, 669–678. [Google Scholar]
- Brus, LE; Steigerwald, ML. Semi conductor crystallites-a class of large molecules. Acc Chem Res 1990, 23, 183–188. [Google Scholar]
- Stucky, GD. The interpahse of nanoscale inclusion chemistry. Prog Inorg Chem 1992, 40, 99–178. [Google Scholar]
- Weller, H. Quantized semiconductor particles: A novel state of matter for materials science. Adv Mater 1993, 5, 88–95. [Google Scholar]
- Martinez, S; Gomez, I; Hinojosa, M; Kharissova, OV; Hernandez, T. Highly Luminescent ZnS Nanoparticles Obtained by Microwave Heating. Synth React Inorg Met-Org Nano-Met Chem 2010, 40, 455–464. [Google Scholar]
- Gao, XD; Li, XM; Yu, WD. Morphology and optical properties of amorphous ZnS films deposited by ultrasonic-assisted successive ionic layer adsorption and reaction method. Thin Solid Films 2004, 468, 43–47. [Google Scholar]
- Nicolau, YF; Dupuy, M; Bruuel, M. Solution growth of ZnS, CdS, and Zn1–xCdxS thin films deposited by the successive ion layer adsorption and reaction process. J Electrochem Soc 1998, 137, 2915–2924. [Google Scholar]
- Bhargava, RN; Gallagher, D; Hong, X; Nurmikko, D. Optical properties of manganese doped nanocrystals of zinc sulfide. Phys Rev Lett 1994, 72, 416–419. [Google Scholar]
- Elidrissi, B; Addou, M; Regragui, M; Bougrine, A; Kachoune, A; Bernecde, JC. Structure, composition and optical properties of ZnS thin films prepared by spray pyrolysis. Mater Chem Phys 2001, 68, 175–179. [Google Scholar]
- Weller, H. Colloidal semiconductor Q-particles: Chemistry in the transition region between solid state and molecules. Angew Chem Int Ed (English) 1993, 32, 41–53. [Google Scholar]
- Yoffe, AD. Low-dimensional systems: Quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems. Adv Phys 1993, 42, 173–266. [Google Scholar]
- Ma, RM; Wei, XL; Dai, L; Huo, HB; Qin, GG. Synthesis of CdS nanowire networks and their optical and electrical properties. Nanotechnology 2007, 18, 1–5. [Google Scholar]
- Tan, L; Liu, L; Xie, Q; Zhang, Y; Yao, S. Fluorescence quenching of bovine serum albumin in reversed micelles by CdS nanoparticles. Anal Sci 2004, 20, 441–444. [Google Scholar]
- Mahtab, R; Rogers, JP; Murphy, CJ. Protein-Sized quantum dot luminescence can distinguish between ‘Straight”, “Bent”, and “Kinked” oligonucleotides. J Am Chem Soc 1995, 117, 9099–9100. [Google Scholar]
- Mahtab, R; Rogers, JP; Singleton, CP; Murphy, CJ. Preferential adsorption of a “Kinked” DNA to a neutral curved surface: comparisons to and implications for Nonspecific DNA-Protein interactions. J Am Chem Soc 1996, 118, 7028–7032. [Google Scholar]
- Zallan, R. II-IV Semiconducting Compounds; Thomas, DG, Ed.; Benjamin: New York, NY, USA, 1967; p. 877. [Google Scholar]
- Roberts, GG; Lind, EL; Davis, EA. Photoelectronic properties of synthetic mercury sulphide crystals. J Phys Chem Solids 1969, 30, 833–844. [Google Scholar]
- Sapriel, J. Cinnabar (α-HgS), a promising acousto-optical material. Appl Phys Lett 1971, 19, 533–535. [Google Scholar]
- Tokyo, N. Optical absorption and dispersion in rf-sputtered α-HgS films. J Appl Phys 1975, 46, 4857–4861. [Google Scholar]
- Wang, H; Zhang, JR; Zhu, JJ. A microwave assisted heating method for the rapid synthesis of sphalerite-type mercury sulphide nanocrystals with different sizes. J Cryst Growth 2001, 233, 829–836. [Google Scholar]
- Higginson, KA; Kuno, M; Bonevich, J; Qadri, SB; Yousuf, M; Mattoussi, H. Synthesis and characterization of colloidal β-HgS quantum dots. J Phys Chem B 2002, 106, 9982–9985. [Google Scholar]
- Zhang, S; Xie, Y; Zhao, Q; Tian, Y. 1-D Coordination polymer template approach CdS and HgS aligned nanowire bundles. New J Chem 2003, 27, 827–830. [Google Scholar]
- Chakravorty, I; Mitra, D; Moulik, PS. Spectroscopic studies on nanodispersion of CdS, HgS, their core shell and composites prepared in micellar medium. J Nanopart Res 2005, 7, 227–236. [Google Scholar]
- Memon, AA; Afzaal, M; Malik, MA; Nguyen, CQ; O’Brien, P; Raftery, J. The N-alkyldithiocarbamato complexes [M(S2CNHR)2] (M = Cd(II) Zn(II); R = C2H5, C4H9, C6H13, C12H25); their synthesis, thermal decomposition and use to prepare of nanoparticles and nanorods of CdS. Dalton Trans 2006, 4499–4505. [Google Scholar]
- Onwudiwe, DC; Ajibade, PA. Synthesis and characterization of Zn(II), Cd(II), and Hg(II) Alkyl-aryl dithiocarbamate: X-ray crystal structure of [(C6H5N(et)CS2)Hg(C6H5N(butyl)CS2)]. Synth React Inorg Met-Org Nano-Met Chem 2010, 40, 279–284. [Google Scholar]
- Rodríguez-Fragoso, P; González de la Cruz, G; Tomas, SA; Zelaya-Angel, O. Optical characterization of CdS semiconductor nanoparticles capped with starch. Appl Surf Sci 2010, 257, 581–584. [Google Scholar]
- Eychmüller, A. Structure and photophysics of semiconductor nanocrystals. J Phys Chem B 2000, 104, 6514–6528. [Google Scholar]
- Vossmeyer, T; Katsikas, L; Giersig, M; Popovic, IG; Diesner, K; Chemseddine, A; Euchmüller, A; Weller, H. CdS nanoclusters: Synthesis, characterization, size dependent oscillator strength, temperature shift of the excitonic transition energy, and reversible absorbance shift. J Phys Chem 1994, 98, 7665–7673. [Google Scholar]
- Uchihara, T; Fukuda, N; Miyagi, E. Subpicosecond spectroscopic studies on the photochemical events of 2-dimethylaminoethanethiol-capped CdS nanoparticles in water. J Photochem Photobiol A 2005, 169, 309–315. [Google Scholar]
- Uchihara, T; Maedomari, S; Komesu, T; Tanaka, K. Influence of proton-dissociation equilibrium of capping agents of the photo-chemical events of the colloidal solutions containing the thiol-capped cadmium sulfide particles. J Photochem Photobio A 2004, 161, 227–232. [Google Scholar]
- Hardy, AD; Sutherland, HH; Vaishanav, R; Worthing, MA. A report on the composition of mercurials used in traditional medicines in Oman. J Ethropharm 1995, 49, 17–22. [Google Scholar]
- Gajanan, P; Sharma, HK. A new approach of synthesis of micro/nanoscale HgS spheres. Synth React Inorg Met-Org Nano-Met Chem 2010, 40, 312–318. [Google Scholar]
- Nyamen, LD; Pullabhotla, VSR; Nejo, AA; Ndifon, P; Revaprasadu, N. Heterocyclic dithiocarbamates: Precursors for shape controlled growth of CdS nanoparticles. New J Chem 2011, 35, 133–1139. [Google Scholar]
- Kumbhakar, P; Chattopadhyay, M; Mitra, AK. Nonlinear Optical Properties of ZnS Nanoparticles. Proceedings of ICOP 2009 International Conference on Optics and Photonics, Chandigarh, India, 30 October–1 November 2009.
- Hoa, TTQ; Vu, LV; Canh, TD; Long, NN. Preparation of ZnS nanoparticles by hydrothermal method. J Phys 2009, 187, 012081. [Google Scholar]
- Ludolph, B; Malik, MA; O’Brien, P; Revaprasadu, N. Novel single molecule precursor routes for the direct synthesis of highly monodispersed quantum dots of cadmium or zinc sulfide or selenide. Chem Commun 1998, 1849–1850. [Google Scholar]
- Trandafilović, LV; Djoković, V; Bibić, N; Georges, MK; Radhakrishna, T. Preparation and optical properties of CdS nanoparticles dispersed in poly (2-(dimethylamino)ethyl methacrylateco- acrylic acid) co-polymers. Opt Mater 2008, 30, 1208–1212. [Google Scholar]
- Moloto, N; Revaprasadu, N; Moloto, MJ; O’Brien, P; Raftery, J. N, N’-diisopropylthiourea and N,N’-dicyclohexylthiourea zinc(II) complexes as precursors for the synthesis of ZnS nanoparticles. S Afr J Sci 2009, 105, 258–263. [Google Scholar]
- Moffit, M; Eisenberg, A. Size control of nanoparticles in semiconductor-polymer composites. 1. Control via multiplet aggregation numbers in styrene-based random ionomers. Chem Mater 1995, 7, 1178–1184. [Google Scholar]
- He, R; Qian, X; Yin, J; Xi, H; Bian, L; Zhu, Z. Formation of monodispersed PVP-capped ZnS and CdS nanocrystals under microwave irradiation. Colloids Surf A 2003, 220, 151–157. [Google Scholar]
- Brus, LE. Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J Chem Phys 1984, 80, 4403–4410. [Google Scholar]
- Lippens, PE; Lannoo, M. Optical properties of II–VI semiconductor nanocrystals. Semicond Sci Technol 1991, 6, A157–A160. [Google Scholar]
- Winkelmann, K; Noviello, T; Brooks, S. Preparation of CdS nanoparticles by first-year undergraduates. J Chem Educ 2007, 84, 709–710. [Google Scholar]
- Hasselbarth, A; Eychmuller, A; Weller, H. Detection of shallow electron traps in quantum sized CdS by fluorescence quenching experiments. Chem Phys Lett 1993, 203, 271–276. [Google Scholar]
- Geng, B; Ma, J; Zhan, F. A solution phase thermal decomposition molecule precursors route to ZnS:Cu2+ nanorods and their optical properties. Mat Chem Phys 2009, 113, 534–538. [Google Scholar]
- Nell, M; Marohn, J; Mclendon, G. Dynamics of electron-hole pair recombination in semiconductor clusters. J Chem Phys 1990, 94, 4359–4363. [Google Scholar]
- Spanhel, L; Haase, M; Weller, H; Henglein, A. Surface modification and stability of strong luminescing CdS particles. J Am Chem Soc 1987, 109, 5649–5655. [Google Scholar]
- Biswas, S; Kar, S. Fabrication of ZnS nanoparticles and nanorods with cubic and hexagonal crystal structures: a simple solvothermal approach. Nanotechnology 2008, 19, 045710. [Google Scholar]
Compounds | Decompos. Ranges | Peak Temperature (°C) | Weight Loss (%) | Product Expected | Mass Changes | |
---|---|---|---|---|---|---|
Calc. | Found | |||||
[Zn L1L2] | 204–382 | 318 | 78.2 | ZnS | 2.32 | 2.85 |
[Cd L1L2] | 229–372 | 323 | 70.0 | CdS | 2.85 | 3.10 |
[Hg L1L2] | 205–340 | 302 | 78.92 | HgS | 4.34 | 4.60 |
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Onwudiwe, D.C.; Ajibade, P.A. ZnS, CdS and HgS Nanoparticles via Alkyl-Phenyl Dithiocarbamate Complexes as Single Source Precursors. Int. J. Mol. Sci. 2011, 12, 5538-5551. https://doi.org/10.3390/ijms12095538
Onwudiwe DC, Ajibade PA. ZnS, CdS and HgS Nanoparticles via Alkyl-Phenyl Dithiocarbamate Complexes as Single Source Precursors. International Journal of Molecular Sciences. 2011; 12(9):5538-5551. https://doi.org/10.3390/ijms12095538
Chicago/Turabian StyleOnwudiwe, Damian C., and Peter A. Ajibade. 2011. "ZnS, CdS and HgS Nanoparticles via Alkyl-Phenyl Dithiocarbamate Complexes as Single Source Precursors" International Journal of Molecular Sciences 12, no. 9: 5538-5551. https://doi.org/10.3390/ijms12095538
APA StyleOnwudiwe, D. C., & Ajibade, P. A. (2011). ZnS, CdS and HgS Nanoparticles via Alkyl-Phenyl Dithiocarbamate Complexes as Single Source Precursors. International Journal of Molecular Sciences, 12(9), 5538-5551. https://doi.org/10.3390/ijms12095538