Bioactive Compounds and Biological Activities of Jatropha curcas L. Kernel Meal Extract
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Composition
2.2. Phenolics and Flavonoids Analyses by HPLC
2.3. Metabolite Composition Analysis by GC-MS
2.4. Antibacterial Activity
2.5. Antioxidant Activity
2.6. Cytotoxicity Activity
3. Experimental Section
3.1. Sample and Extract Preparation
3.2. Chemical Constituents
3.3. Phytochemical Analyses
3.3.1. Total Phenolics
3.3.2. Total Flavonoids
3.3.3. Total Saponins
3.4. Analyses of Phenolic and Flavonoid Compounds by HPLC
3.5. Analysis of Phorbol Esters
3.6. Analysis of Metabolites by Gas Chromatography-Mass Spectrometry (GC-MS)
3.7. Antibacterial Activity
3.8. Antioxidant Activity
3.8.1. DPPH Radical-Scavenging Activity
3.8.2. Ferric-Reducing Antioxidant Power (FRAP) Assay
3.9. Cytotoxicity Assay
3.10. Statistical Analyses
4. Conclusions
Acknowledgments
References
- Makkar, H; Becker, K. Jatropha curcas, a promising crop for the generation of biodiesel and value-added coproducts. Eur J Lipid Sci Technol 2009, 111, 773–787. [Google Scholar]
- Oskoueian, E; Abdullah, N; Saad, WZ; Omar, AR; Ahmad, S; Kuan, WB; Zolkifli, NA; Hendra, R; Ho, YW. Antioxidant, anti-inflammatory and anticancer activities of methanolic extracts from Jatropha curcas Linn. J Med Plants Res 2011, 5, 49–57. [Google Scholar]
- Devappa, RK; Makkar, HPS; Becker, K. Jatropha Diterpenes: a Review. J Am Oil Chem Soc 2011, 88, 301–322. [Google Scholar]
- Balasundram, N; Sundram, K; Samman, S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem 2006, 99, 191–203. [Google Scholar]
- Muraoka, S; Miura, T. Inhibition of xanthine oxidase by phytic acid and its antioxidative action. Life Sci 2004, 74, 1691–1700. [Google Scholar]
- Devappa, RK; Swamylingappa, B. Biochemical and nutritional evaluation of Jatropha protein isolate prepared by steam injection heating for reduction of toxic and anti nutritional factors. J Sci Food Agric 2008, 88, 911–919. [Google Scholar]
- Sparg, SG; Light, ME; Van Staden, J. Biological activities and distribution of plant saponins. J Ethnopharmacol 2004, 94, 219–243. [Google Scholar]
- Makkar, HPS; Siddhuraju, P; Becker, K. Methods in Molecular Biology: Plant Secondary Metabolites; Humana Press: Totowa, NJ, USA, 2007; pp. 93–100. [Google Scholar]
- Goel, G; Makkar, HPS; Francis, G; Becker, K. Phorbol esters: structure, biological activity, and toxicity in animals. Int J Toxicol 2007, 26, 279–288. [Google Scholar]
- Fujii, T; Garcia-Bermejo, ML; Bernabo, JL; Caamano, J; Ohba, M; Kuroki, T; Li, L; Yuspa, SH; Kazanietz, MG. Involvement of protein kinase C (PKC) in phorbol ester-induced apoptosis in LNCaP prostate cancer cells. J Biol Chem 2000, 275, 7574–7582. [Google Scholar]
- Park, IC; Park, MJ; Rhee, CH; Lee, JI; Choe, TB; Jang, JJ; Lee, SH; Hong, SI. Protein kinase C activation by PMA rapidly induces apoptosis through caspase-3/CPP32 and serine protease(s) in a gastric cancer cell line. Int J Oncol 2001, 18, 1077–1083. [Google Scholar]
- Chhabra, SC; Mahunnah, RLA; Mshiu, EN. Plants used in traditional medicine in Eastern Tanzania. III. Angiosperms (Euphorbiaceae to Menispermaceae). J Ethnopharmacol 1990, 28, 255–283. [Google Scholar]
- El Diwani, G; El Rafie, S; Hawash, S. Antioxidant activity of extracts obtained from residues of nodes leaves stem and root of Egyptian Jatropha curcas. Afr J Pharm Pharacol 2009, 3, 521–530. [Google Scholar]
- Popendorf, W; Selim, M; Lewis, MQ. Exposure while applying industrial antimicrobial pesticides. Am Ind Hyg Assoc J 1995, 56, 993–1001. [Google Scholar]
- Ajaiyeoba, EO; Onocha, PA; Nwozo, SO; Sama, W. Antimicrobial and cytotoxicity evaluation of Buchholzia coriacea stem bark. Fitoterapia 2003, 74, 706–709. [Google Scholar]
- Gupta, MB; Nath, R; Srivastava, N; Shanker, K; Kishor, K; Bhargava, KP. Anti-inflammatory and antipyretic activities of β-sitosterol. Planta Med 1980, 39, 157–163. [Google Scholar]
- Awad, A; Chen, YC; Fink, C; Hennessey, T. Sitosterol inhibits HT-29 human colon cancer cell growth and alters membrane lipids. Anticancer Res 1996, 16, 2797–2804. [Google Scholar]
- Rigal, L; Gaset, A. Direct preparation of 5-hydroxymethyl-2-furancarboxaldehyde from polyholosides: a chemical valorisation of the Jerusalem artichoke (Helianthus tuberosus L.). Biomass 1983, 3, 151–163. [Google Scholar]
- Morales, FJ. Hydroxymethylfurfural (HMF) and Related Compounds. In Process-Induced Food Toxicants; Stadler, RH, Lineback, DR, Eds.; John Wiley & Sons, Inc: Hoboken, NJ, USA, 2008; pp. 135–174. [Google Scholar]
- Ryssel, H; Kloeters, O; Germann, G; Schafer, T; Wiedemann, G; Oehlbauer, M. The antimicrobial effect of acetic acid-An alternative to common local antiseptics? Burns 2009, 35, 695–700. [Google Scholar]
- Boussaada, O; Chriaa, J; Nabli, R; Ammar, S; Saidana, D; Mahjoub, M; Chraeif, I; Helal, A; Mighri, Z. Antimicrobial and antioxidant activities of methanol extracts of Evax pygmaea (Asteraceae) growing wild in Tunisia. World J Microb Biot 2008, 24, 1289–1296. [Google Scholar]
- Igbinosa, O; Igbinosa, E; Aiyegoro, O. Antimicrobial activity and phytochemical screening of stem bark extracts from Jatropha curcas (Linn). Afr J Pharm Pharacol 2009, 3, 58–62. [Google Scholar]
- Atindehou, K; Kone, M; Terreaux, C; Traore, D; Hostettmann, K; Dosso, M. Evaluation of the antimicrobial potential of medicinal plants from the Ivory Coast. Phytother Res 2002, 16, 497–502. [Google Scholar]
- Cushnie, T; Lamb, A. Antimicrobial activity of flavonoids. Int J Antimicro Ag 2005, 26, 343–356. [Google Scholar]
- Chumkaew, P; Karalai, C; Ponglimanont, C; Chantrapromma, K. Antimycobacterial activity of phorbol esters from the fruits of Sapium indicum. J Nat Prod 2003, 66, 540–543. [Google Scholar]
- Ismail, HI; Chan, KW; Mariod, AA; Ismail, M. Phenolic content and antioxidant activity of cantaloupe (cucumis melo) methanolic extracts. Food Chem 2010, 119, 643–647. [Google Scholar]
- Crozier, A; Lean, M; McDonald, M; Black, C. Quantitative analysis of the flavonoid content of commercial tomatoes, onions, lettuce, and celery. J Agric Food Chem 1997, 45, 590–595. [Google Scholar]
- Boik, JC. Natural Compounds in Cancer Therapy; Oregon Medical Press: Princeton, MN, USA, 2001; pp. 149–190. [Google Scholar]
- Balaji, R; Rekha, N; Deecaraman, M; Manikandan, L. Antimetastatic and antiproliferative activity of methanolic fraction of Jatropha curcas against B16F10 melanoma induced lung metastasis in C57BL/6 mice. Afr J Pharm Pharacol 2009, 3, 547–555. [Google Scholar]
- Martinez-Herrera, J; Siddhuraju, P; Francis, G; Davila-Ortiz, G; Becker, K. Chemical composition, toxic/antimetabolic constituents, and effects of different treatments on their levels, in four provenances of Jatropha curcas L. from Mexico. J Food Chem 2006, 96, 80–89. [Google Scholar]
- Gulcin, I; Gungor Sat, I; Beydemir, S; Elmastas, M; Irfan Kufrevioglu, O. Comparison of antioxidant activity of clove (Eugenia caryophylata Thunb) buds and lavender (Lavandula stoechas L.). Food Chem 2004, 87, 393–400. [Google Scholar]
- AOAC, Official Methods of Analysis, 15th ed; Association of Official Analytical Chemists: Washington, DC, USA, 1990; pp. 64–87.
- Van Soest, PJ; Robertson, JB; Lewis, BA. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 1991, 74, 35–83. [Google Scholar]
- Hossain, M; Rahman, A. Chemical composition of bioactive compounds by GC-MS screening and anti-fungal properties of the crude extracts of cabbage samples. Asian J Biotechnol 2011, 3, 68–76. [Google Scholar]
- Yen, G; Chen, H. Antioxidant activity of various tea extracts in relation to their antimutagenicity. J Agric Food Chem 1995, 43, 27–32. [Google Scholar]
- Sharif, R; Ghazali, A; Rajab, N; Haron, H; Osman, F. Toxicological evaluation of some Malaysian locally processed raw food products. Food Chem Toxicol 2008, 46, 368–374. [Google Scholar]
- SAS, SAS, Statistical Analysis Institute (Version 9.1.3); SAS Institute Inc: Cary, NC, USA, 2003.
Chemical Analyses (%)
| Phytochemical Analyses (mg/g DM)
| ||
---|---|---|---|
Dry Matter (DM) | 94.2 ± 0.53 | Total phenolic c | 3.9 ± 0.23 |
Crude Protein | 61.8 ± 0.11 | Total flavonoid d | 0.4 ± 0.15 |
Organic Matter | 91.6 ± 0.04 | Total saponin e | 19.0 ± 0.48 |
Ash | 8.3 ± 0.07 | Total phorbol esters f | 3.0 ± 0.16 |
NDF a | 9.7 ± 0.52 | ||
ADF b | 4.8 ± 0.21 | ||
Gross Energy (MJ/kg) | 17.7 ± 0.19 |
Sample | Phenolic (μg/g) | Flavonoid (μg/g) | Isoflavonoid (μg/g) | ||
---|---|---|---|---|---|
Gallic Acid | Pyrogallol | Rutin | Myricetin | Daidzein | |
J. curcas kernel meal | 581 ± 0.4 | 631 ± 0.5 | 48 ± 0.5 | 199 ± 0.3 | 298 ± 0.3 |
Methanolic Extract
| Hot Water Extract
| ||
---|---|---|---|
Compounds | Content (% w/w) | Compounds | Content (% w/w) |
2-(Hydroxymethyl)-2 nitro-1,3-propanediol | 23.1 | 2-Furancarboxaldehyde, 5-(hydroxymethy) | 29.7 |
β-sitosterol | 13.8 | Acetic acid | 16.2 |
2-Furancarboxaldehyde, 5-(hydroxymethy) | 8.9 | Furfural (2-furancarboxaldehyde) | 14.6 |
Acetic acid | 10.7 |
Microorganism | Zone of Inhibition (cm)
| ||||||
---|---|---|---|---|---|---|---|
Methanol | Hot Water | Kanamycin | Streptomycin | ||||
1.0 mg/disc | 1.5 mg/disc | 1.0 mg/disc | 1.5 mg/disc | 1.0 μg/disc | 1.0 μg/disc | S.E.M * | |
Gram negative | |||||||
Enterobacter aerogenes | 1.11 b | 1.21 b | 0.21 e | 0.60 d | 1.54 a | 0.96 c | 0.04 |
Klebsiella pneumoniae | 1.05 c | 1.20 b | 0.40 e | 0.62 d | 1.44 a | 1.04 c | 0.02 |
Escherichia coli | 1.25 c | 1.63 b | 0.75 e | 1.00 d | 1.70 a | 1.03 d | 0.02 |
Pseudomonas aeruginosa | 0.35 d | 0.58 b | 0.45 c | 0.37 c,d | 1.01 a | 0.41 c,d | 0.02 |
Gram positive | |||||||
Micrococcus luteus | 0.5 c | 1.20 a | 0.22 e | 0.30 d | 1.35 b | 1.10 b | 0.02 |
Bacillus subtilis | 1.10 b | 1.40 a | 0.65 d | 0.85 c | 1.23 b | 0.86 c | 0.04 |
Bacillus cereus | 1.00 d | 1.25 b | 0.00 f | 0.77 e | 1.49 a | 1.07 c | 0.02 |
Staphylococcus aureus | 1.15 b | 1.37 a | 0.30 e | 0.75 d | 1.33 a | 0.95 c | 0.04 |
Items | IC50 (mg/mL)
| |
---|---|---|
DPPH | FRAP | |
Methanolic extract | 1.6 b | 3.0 b |
Hot water extract | 5.0 a | >8 a |
Vitamin C | 0.3 c | 0.3 c |
BHT | 0.3 c | 0.3 c |
β-carotene | 1.5 b | 2.6 b |
* S.E.M | 0.09 | 0.07 |
P value | 0.05 | 0.05 |
Sample | CC50 value (μg/mL)
| ||
---|---|---|---|
MCF-7 | HeLa | Chang liver cell | |
Methanolic extract | 27.5 a | 56.4 a | 63.9 a |
Tamoxifen | 17.3 b | 8.89 b | 33.6 b |
* S.E.M | 0.35 | 0.42 | 0.64 |
P value | 0.0001 | 0.0001 | 0.0001 |
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Oskoueian, E.; Abdullah, N.; Ahmad, S.; Saad, W.Z.; Omar, A.R.; Ho, Y.W. Bioactive Compounds and Biological Activities of Jatropha curcas L. Kernel Meal Extract. Int. J. Mol. Sci. 2011, 12, 5955-5970. https://doi.org/10.3390/ijms12095955
Oskoueian E, Abdullah N, Ahmad S, Saad WZ, Omar AR, Ho YW. Bioactive Compounds and Biological Activities of Jatropha curcas L. Kernel Meal Extract. International Journal of Molecular Sciences. 2011; 12(9):5955-5970. https://doi.org/10.3390/ijms12095955
Chicago/Turabian StyleOskoueian, Ehsan, Norhani Abdullah, Syahida Ahmad, Wan Zuhainis Saad, Abdul Rahman Omar, and Yin Wan Ho. 2011. "Bioactive Compounds and Biological Activities of Jatropha curcas L. Kernel Meal Extract" International Journal of Molecular Sciences 12, no. 9: 5955-5970. https://doi.org/10.3390/ijms12095955
APA StyleOskoueian, E., Abdullah, N., Ahmad, S., Saad, W. Z., Omar, A. R., & Ho, Y. W. (2011). Bioactive Compounds and Biological Activities of Jatropha curcas L. Kernel Meal Extract. International Journal of Molecular Sciences, 12(9), 5955-5970. https://doi.org/10.3390/ijms12095955