Plasmonic Molecular Nanohybrids—Spectral Dependence of Fluorescence Quenching
Abstract
:1. Introduction
2. Results and Discussion
2.1. Spectroscopic Characterization
2.2. Optical Properties of Atto-Au NP Conjugates
3. Experimental Section
3.1. Synthesis and Functionalization of Metallic Nanoparticles
Preparation of Au spherical nanoparticles coated with 3-mercapropropionic acid (AuNP–S–COOH) [20]
Functionalization of the gold nanoparticles with streptavidin
Covalent binding
Conjugation procedure
3.2. Spectroscopic Characterization of Hybrid Nanostructures in Solution
4. Conclusions
Acknowledgments
References
- Maier, S. Plasmonics: Fundamentals and Applications; Springer Science+Business Media LLC: New York, NY, USA, 2004. [Google Scholar]
- Anger, P.; Bharadwaj, P.; Novotny, L. Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett 2006, 96, 113002:1–113002:4. [Google Scholar]
- Komarala, V.K.; Rakovich, Y.P.; Bradley, A.L.; Byrne, S.J.; Corr, S.A.; Gun’ko, Y.K.; Eychmuller, A.; Gaponik, N. Off-resonance surface plasmon enhanced spontaneous emission from CdTe quantum dots. Appl. Phys. Lett 2006, 89, 253118:1–253118:3. [Google Scholar]
- Pons, T.; Medintz, I.L.; Sapsford, K.E.; Higashiya, S.; Grimes, A.F.; English, D.S.; Mattoussi, H. On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles. Nanoletters 2007, 7, 3157–3164. [Google Scholar]
- Dulkeith, E.; Morteani, A.; Niedereichholz, T.; Klar, T.; Feldmann, J.; Levi, S.; van Veggel, F.; Reinhoudt, D.; Möller, M.; Gittins, D. Fluorescence quenching of dye molecules near gold nanoparticles: Radiative and nonradiative effects. Phys. Rev. Lett 2002, 89, 203002:1–203002:4. [Google Scholar]
- Lee, J.; Javed, T.; Skeini, T.; Govorov, A.O.; Bryant, G.W.; Kotov, N.A. Bioconjugated Ag nanoparticles and CdTe nanowires: Luminescence enhancement in metamaterials due to field-enhanced light absorption. Angew. Chem. Int. Ed 2006, 45, 4819–4821. [Google Scholar]
- Ray, K.; Badugu, R.; Lakowicz, J. Metal-enhanced fluorescence from CdTe nanocrystals: A single-molecule fluorescence study. J. Am. Chem. Soc 2006, 128, 8998–8999. [Google Scholar]
- Shimizu, K.T.; Woo, W.K.; Fisher, B.R.; Eisler, H.J.; Bawendi, M.G. Surface-enhanced emission from single semiconductor nanocrystals. Phys. Rev. Lett 2002, 89, 117401:1–117401:4. [Google Scholar]
- Noginov, M.A.; Zhu, G.; Bahoura, M.; Small, C.E.; Davison, C.; Adegoke, J.; Drachev, V.P.; Nyga, P.; Shalaev, V.M. Enhancement of spontaneous and stimulated emission of a rhodamine 6G dye by an Ag aggregate. Phys. Rev. B 2006, 74, 184203:1–184203:8. [Google Scholar]
- Zhang, J.; Lakowicz, J.R. Metal-enhanced fluorescence of an organic fluorophore using gold particles. Opt. Express 2007, 15, 2598–2606. [Google Scholar]
- Kim, K.; Lee, Y.M.; Lee, J.W.; Shin, K.S. Metal-enhanced fluorescence of Rhodamine B isothiocyanate from micrometer-sized silver powders. Langmuir 2009, 25, 2641–2645. [Google Scholar]
- Mackowski, S.; Wörmke, S.; Maier, A.J.; Brotosudarmo, T.H.P.; Harutyunyan, H.; Hartschuh, A.; Govorov, A.O.; Scheer, H.; Bräuchle, C. Metal-enhanced fluorescence of chlorophylls in single light-harvesting complexes. Nano Lett 2008, 8, 558–564. [Google Scholar]
- Nieder, J.; Bittl, R.; Brecht, M. Fluorescence studies into the effect of plasmonic interactions on protein function. Angew. Chem. Int. Ed 2010, 49, 10217–10220. [Google Scholar]
- Bujak, L.; Czechowski, N.; Piatkowski, D.; Litvin, R.; Mackowski, S.; Brotosudarmo, T.; Cogdell, R.; Pichler, S.; Heiß, W. Fluorescence enhancement of light-harvesting comple × 2 from purple bacteria coupled to spherical gold nanoparticles. Appl. Phys. Lett 2011, 99, 173701:1–173701:3. [Google Scholar]
- Carmeli, I.; Liberman, I.; Kraverski, L.; Fan, Z.; Govorov, A.; Markovich, G.; Richter, S. Broad band enhancement of light absorption in photosystem I by metal nanoparticle antennas. Nanoletters 2010, 10, 2069–2074. [Google Scholar]
- Chen, Y.; Munechika, K.; Ginger, D.S. Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles. Nanoletters 2007, 7, 690–696. [Google Scholar]
- Lee, J.; Hernandez, P.; Lee, J.; Govorov, A.O.; Kotov, N.A. Exciton-plasmon interactions in molecular spring assemblies of nanowires and wavelength-based protein detection. Nat. Mater 2007, 6, 291–295. [Google Scholar]
- Zhang, J.; Badugu, R.; Lakowicz, J.R. Fluorescence quenching of CdTe nanocrystals by bound gold nanoparticles in aqueous solution. Plasmonics 2008, 3, 3–11. [Google Scholar]
- Czechowski, N.; Nyga, P.; Schmidt, M.; Brotosudarmo, T.; Scheer, H.; Piatkowski, D.; Mackowski, S. Absorption enhancement in peridinin-chlorophyll-protein light-harvesting complexes coupled to semicontinuous silver film. Plasmonics 2011, in press. [Google Scholar]
- Chen, S.; Kimura, K. Synthesis and characteriazation of carboxylate-modified gold nanoparticle powders dispersible in water. Langmuir 1999, 15, 1075–1082. [Google Scholar]
- Krajnik, B.; Schulte, T.; Piątkowski, D.; Czechowski, N.; Hofmann, E.; Mackowski, S. SIL-based confocal fluorescence microscope for investigating individual nanostructures. Cent. Eur. J. Phys 2011, 9, 293–299. [Google Scholar]
© 2012 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Olejnik, M.; Bujak, Ł.; Mackowski, S. Plasmonic Molecular Nanohybrids—Spectral Dependence of Fluorescence Quenching. Int. J. Mol. Sci. 2012, 13, 1018-1028. https://doi.org/10.3390/ijms13011018
Olejnik M, Bujak Ł, Mackowski S. Plasmonic Molecular Nanohybrids—Spectral Dependence of Fluorescence Quenching. International Journal of Molecular Sciences. 2012; 13(1):1018-1028. https://doi.org/10.3390/ijms13011018
Chicago/Turabian StyleOlejnik, Maria, Łukasz Bujak, and Sebastian Mackowski. 2012. "Plasmonic Molecular Nanohybrids—Spectral Dependence of Fluorescence Quenching" International Journal of Molecular Sciences 13, no. 1: 1018-1028. https://doi.org/10.3390/ijms13011018
APA StyleOlejnik, M., Bujak, Ł., & Mackowski, S. (2012). Plasmonic Molecular Nanohybrids—Spectral Dependence of Fluorescence Quenching. International Journal of Molecular Sciences, 13(1), 1018-1028. https://doi.org/10.3390/ijms13011018