Significance of Dietary Antioxidants for Health
Abstract
:1. Introduction
2. Plasma Antioxidant Capacity
2.1. Carotenoids
2.2. Flavonoids
3. Conclusion
References
- Duff, G.L.; McMillian, G.C. Pathology of atherosclerosis. Am. J. Med 1951, 11, 92–108. [Google Scholar]
- Keys, A. Atherosclerosis: A problem in newer public health. J. Mt. Sinai Hosp. N Y 1953, 20, 118–139. [Google Scholar]
- Law, M.R.; Morris, J.K. By how much does fruit and vegetable consumption reduce the risk of ischaemic heart disease? Eur. J. Clin. Nutr 1998, 52, 549–556. [Google Scholar]
- Leopoldini, M.; Russo, N.; Toscano, M. The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chem 2011, 125, 288–306. [Google Scholar]
- Omoni, A.O.; Aluko, R.E. The anti-carcinogenic and anti-atherogenic effects of lycopene: A review. Trends Food Sci. Technol 2005, 16, 344–350. [Google Scholar]
- Roberts, W.G.; Gordon, M.H.; Walker, A.F. Effects of enhanced consumption of fruit and vegetables on plasma antioxidant status and oxidative resistance of LDL in smokers supplemented with fish oil. Eur. J. Clin. Nutr 2003, 57, 1303–1310. [Google Scholar]
- Seidel, C.; Boehm, V.; Vogelsang, H.; Wagner, A.; Persin, C.; Glei, M.; Pool-Zobel, B.L.; Jahreis, G. Influence of prebiotics and antioxidants in bread on the immune system, antioxidative status and antioxidative capacity in male smokers and non-smokers. Br. J. Nutr 2007, 97, 349–356. [Google Scholar]
- Young, J.F.; Dragsted, L.O.; Haraldsdottir, J.; Daneshvar, B.; Kall, M.A.; Loft, S.; Nilsson, L.; Nielsen, S.E.; Mayer, B.; Skibsted, L.H.; et al. Green tea extract only affects markers of oxidative status postprandially: Lasting antioxidant effect of flavonoid-free diet. Br. J. Nutr 2002, 87, 343–355. [Google Scholar]
- Gomez-Juaristi, M.; Gonzalez-Torres, L.; Bravo, L.; Vaquero, M.P.; Bastida, S.; Sanchez-Muniz, F.J. Beneficial effects of chocolate on cardiovascular health. Nutr. Hosp 2011, 26, 289–292. [Google Scholar]
- Benzie, I.F.F.; Wachtel-Galor, S. Vegetarian diets and public health: Biomarker and redox connections. Antioxid. Redox Signal 2010, 13, 1575–1591. [Google Scholar]
- Duplancic, D.; Kukoc-Modun, L.; Modun, D.; Radic, N. simple and rapid method for the determination of uric acid-independent antioxidant capacity. Molecules 2011, 16, 7058–7067. [Google Scholar]
- Godycki-Cwirko, M.; Krol, M.; Krol, B.; Zwolinska, A.; Kolodziejczyk, K.; Kasielski, M.; Padula, G.; Grebocki, J.; Kazimierska, P.; Miatkowski, M.; et al. Uric acid but not apple polyphenols is responsible for the rise of plasma antioxidant activity after apple juice consumption in healthy subjects. J. Am. Coll. Nutr 2010, 29, 397–406. [Google Scholar]
- Strasak, A.M.; Kelleher, C.C.; Brant, L.J.; Rapp, K.; Ruttmann, E.; Concin, H.; Diem, G.; Pfeiffer, K.P.; Ulmer, H. Serum uric acid is an independent predictor for all major forms of cardiovascular death in 28,613 elderly women: A prospective 21-year follow-up study. Int. J. Cardiol 2008, 125, 232–239. [Google Scholar]
- Smith, J.L.; Hodges, R.E. Serum levels of vitamin C in relation to dietary and supplemental intake of vitamin C in smokers and non-smokers. Ann. N.Y. Acad. Sci 1987, 498, 144–152. [Google Scholar]
- Lykkesfeldt, J.; Poulsen, H.E. Is vitamin C supplementation beneficial? Lessons learned from randomised controlled trials. Br. J. Nutr 2010, 103, 1251–1259. [Google Scholar]
- Yeum, K.J.; Russell, R.M. Carotenoid bioavailability and bioconversion. Ann. Rev. Nutr 2002, 22, 483–504. [Google Scholar]
- Tyssandier, V.; Lyan, B.; Borel, P. Main factors governing the transfer of carotenoids from emulsion lipid droplets to micelles. Biochim. Biophys. Acta 2001, 1533, 285–292. [Google Scholar]
- Yonekura, L.; Nagao, A. Intestinal absorption of dietary carotenoids. Mol. Nutr. Food Res 2007, 51, 107–115. [Google Scholar]
- Novotny, J.A.; Kurilich, A.C.; Britz, S.J.; Clevidence, B.A. Plasma appearance of labeled beta-carotene, lutein, and retinol in humans after consumption of isotopically labeled kale. J. Lipid Res 2005, 46, 1896–1903. [Google Scholar]
- Rowe, P.M. CARET and ATBC refine conclusions about beta-carotene. Lancet 1996, 348, 1369–1369. [Google Scholar]
- Thurnham, D.I. Macular zeaxanthins and lutein—a review of dietary sources and bioavailability and some relationships with macular pigment optical density and age-related macular disease. Nutr. Res. Rev 2007, 20, 163–179. [Google Scholar]
- Pryor, W.A.; Stahl, W.; Rock, C.L. Beta carotene: From biochemistry to clinical trials. Nutr. Rev 2000, 58, 39–53. [Google Scholar]
- Del Rio, D.; Borges, G.; Crozier, A. Berry flavonoids and phenolics: Bioavailability and evidence of protective effects. Br. J. Nutr 2010, 104, S67–S90. [Google Scholar]
- Manach, C.; Williamson, G.; Morand, C.; Scalbert, A.; Remesy, C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am. J. Clin. Nutr 2005, 81, 230S–242S. [Google Scholar]
- Mullen, W.; Edwards, C.A.; Crozier, A. Absorption, excretion and metabolite profiling of methyl-, glucuronyl-, glucosyl- and sulpho-conjugates of quercetin in human plasma and urine after ingestion of onions. Br. J. Nutr 2006, 96, 107–116. [Google Scholar]
- Jaganath, I.B.; Mullen, W.; Edwards, C.A.; Crozier, A. The relative contribution of the small and large intestine to the absorption and metabolism of rutin in man. Free Radic. Res 2006, 40, 1035–1046. [Google Scholar]
- Lambert, J.D.; Hong, J.; Lu, H.; Meng, X.; Lee, M.-J.; Yang, C.S. Bioavailabilities of Tea Polyphenols in Humans and Rodents. In Protective Effects of Tea on Human Health, 1st ed; Jain, N.K., Siddiqi, M., Weisburger, J., Eds.; CABI: Oxfordshire, UK, 2006; pp. 25–33. [Google Scholar]
- Stalmach, A.; Mullen, W.; Pecorari, M.; Serafini, M.; Crozier, A. Bioavailability of C-linked dihydrochalcone and flavanone glucosides in humans following ingestion of unfermented and fermented rooibos teas. J. Agric. Food Chem 2009, 57, 7104–7111. [Google Scholar]
- Mullen, W.; Archeveque, M.-A.; Edwards, C.A.; Matsumoto, H.; Crozier, A. Bioavailability and metabolism of orange juice flavanones in humans: Impact of a full-fat yogurt. J. Agric. Food Chem 2008, 56, 11157–11164. [Google Scholar]
- Rufer, C.E.; Bub, A.; Moseneder, J.; Winterhalter, P.; Stuertz, M.; Kulling, S.E. Pharmacokinetics of the soybean isoflavone daidzein in its aglycone and glucoside form: A randomized, double-blind, crossover study. Am. J. Clin. Nutr 2008, 87, 1314–1323. [Google Scholar]
- Wiczkowski, W.; Romaszko, E.; Piskula, M.K. Bioavailability of cyanidin glycosides from natural chokeberry (Aronia melanocarpa) juice with dietary-relevant dose of anthocyanins in humans. J. Agric. Food Chem 2010, 58, 12130–12136. [Google Scholar]
- Vari, R.; D’Archivio, M.; Filesi, C.; Carotenuto, S.; Scazzocchio, B.; Santangelo, C.; Giovannini, C.; Masella, R. Protocatechuic acid induces antioxidant/detoxifying enzyme expression through JNK-mediated Nrf2 activation in murine macrophages. J. Nutr. Biochem 2011, 22, 409–417. [Google Scholar]
- Kim, J.-E.; Son, J.E.; Jung, S.K.; Kang, N.J.; Lee, C.Y.; Lee, K.W.; Lee, H.J. Cocoa polyphenols suppress TNF-α-induced vascular endothelial growth factor expression by inhibiting phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase kinase-1 (MEK1) activities in mouse epidermal cells. Br. J. Nutr 2010, 104, 957–964. [Google Scholar]
- Manach, C.; Scalbert, A.; Morand, C.; Remesy, C.; Jimenez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr 2004, 79, 727–747. [Google Scholar]
- Yang, C.S.; Sang, S.; Lambert, J.D.; Lee, M.J. Bioavailability issues in studying the health effects of plant polyphenolic compounds. Mol. Nutr. Food Res 2008, 52, S139–S151. [Google Scholar]
- Lotito, S.B.; Zhang, W.-J.; Yang, C.S.; Crozier, A.; Frei, B. Metabolic conversion of dietary flavonoids alters their anti-inflammatory and antioxidant properties. Free Radic. Biol. Med 2011, 51, 454–463. [Google Scholar]
Flavonoid | Occurrence | Time to maximum plasma concentration | maximum plasma concentration | Recovery in urine | Reference |
---|---|---|---|---|---|
Flavan-3-ols e.g. epicatechin, epigallocatechin gallate | Green tea | 1.6–2.3 h | 50–125 nmol/L | 8.1% | [28] |
Flavanones— hesperetin-rutinoside, naringeninin-rutinoside | Orange juice | 4.4 h | 900 nmol/L | 17.3% | [29] |
Flavonol rutinosides | Tomato juice | 5h | <12 nmol/L | 0.02–2.8% | [26] |
Flavonol glucosides | onions | <1 h | <665 nmol/L | 4.7% | [25] |
Isoflavones— daidzein-7-O-glucosides | soya | 8–9 h | <3 μmol/L | 20–50% | [24,30] |
Anthocyanins Cyanidin-3-galactoside | Chokeberry juice | 1.3 h | 32 nmol/L | <0.25% | [31] |
© 2012 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Gordon, M.H. Significance of Dietary Antioxidants for Health. Int. J. Mol. Sci. 2012, 13, 173-179. https://doi.org/10.3390/ijms13010173
Gordon MH. Significance of Dietary Antioxidants for Health. International Journal of Molecular Sciences. 2012; 13(1):173-179. https://doi.org/10.3390/ijms13010173
Chicago/Turabian StyleGordon, Michael H. 2012. "Significance of Dietary Antioxidants for Health" International Journal of Molecular Sciences 13, no. 1: 173-179. https://doi.org/10.3390/ijms13010173
APA StyleGordon, M. H. (2012). Significance of Dietary Antioxidants for Health. International Journal of Molecular Sciences, 13(1), 173-179. https://doi.org/10.3390/ijms13010173