Involvement of Nitrogen on Flavonoids, Glutathione, Anthocyanin, Ascorbic Acid and Antioxidant Activities of Malaysian Medicinal Plant Labisia pumila Blume (Kacip Fatimah)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Total Flavonoid Profiling
2.2. Glutathione (GSH), Oxidised Glutathione (GSSG) and Ratio of GSH/GSSG Profiling
2.3. Anthocyanin and Their Profiling
2.4. Ascorbic Acid and Their Profiling
2.5. Radical Scavenging Activity
2.6. Reducing Ability
3. Experimental
3.1. Experimental Location, Plant Materials and Treatments
3.2. Total Flavonoids Quantification
3.3. Measurement of Glutathione (GSH) and Oxidized Glutathione (GSSG)
3.4. Ascorbic Acid Content
3.5. Anthocyanin Content
3.6. DPPH Radical Scavenging Assay
3.7. Reducing Ability (FRAP Assay)
3.8. Statistical Analysis
4. Conclusions
Acknowledgements
References
- Surh, Y.J. Cancer chemoprevention with dietary phytochemicals. Nat. Res 2003, 3, 768–780. [Google Scholar]
- Arts, I.C.W.; Hollman, P.C.H. Polyphenols and disease risk in epidemiological studies. Am. J. Clin. Nutr 2005, 81, 317–325. [Google Scholar]
- Gross, M. Flavonoids and cardiovascular disease. Pharm. Biol 2004, 42, 21–35. [Google Scholar]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Antioxidant properties of phenolic compounds. Trends Plant Sci 1997, 2, 152–159. [Google Scholar]
- Zhou, J.R. Awad, A.B., Bradford, P.G., Eds.; Flavonoids as Inhibitors of Tumor Metastasis. In Nutrition and Cancer Pre Ention; CRC: Boca Raton, FL, USA, 2006; pp. 325–349. [Google Scholar]
- Kohlmeirer, L.; Simonsen, N.; Mottus, K. Dietary modifiers of carcinogenesis. Environ. Health Perspect 1995, 103, 177–184. [Google Scholar]
- Christensen, L.P.; Brandt, K. Acetylenes and Psoralens. In Plant Secondary Metabolites: Occurrence, Structure, and Role in the Human Diet; Crozier, A., Clifford, M.N., Ashihara, H., Eds.; Wiley-Blackwell: Oxford, UK, 2006; pp. 147–163. [Google Scholar]
- Scalbert, A.; Williamson, G. Dietary intake and bioavailability of polyphenols. J. Nutr 2000, 130, 2073–2085. [Google Scholar]
- Beecher, G.R. Overview of dietary flavonoids: Nomenclature, occurrence and intake. J. Nutr 2003, 133, 3248–3254. [Google Scholar]
- Wong, C.C.; Li, H.B.; Cheng, K.W.; Chen, F. A systematic survey of antioxidant activity of 30 Chinese medicinal plants using the ferric reducing antioxidant power assay. Food Chem 2006, 97, 705–711. [Google Scholar]
- Marinova, D.; Ribarova, F.; Atanassova, M. Total phenolics and total flavonoids in Bulgarian fruits and vegetables. J. Univ. Chem. Technol. Metall 2005, 40, 255–260. [Google Scholar]
- Chanwitheesuk, A.; Teerawutgulrag, A.; Rakariyatham, N. Screening of antioxidant activity and antioxidant compounds of some edible plants of Thailand. Food Chem 2005, 92, 491–497. [Google Scholar]
- Longo, L.; Vasapollo, G. Extraction and identification of anthocyanins from Smilax aspera L. berries. Food Chem 2006, 94, 226–231. [Google Scholar]
- Harborne, J.B.; Williams, C.A. Advances in flavonoid research since 1992. Phytochemistry 2000, 55, 481–504. [Google Scholar]
- Stewart, J.W.; Chapman, G.I.; Jenkins, I.; Graham, T.; Crozier, A. The effect of nitrogen and phosphorus deficiency on flavonol accumulation in plant tissues. Plant Cell Environ 2001, 24, 1189–1197. [Google Scholar]
- Kopsell, D.E.; Kopsell, D.A.; Randle, W.M.; Coolong, T.M.; Sams, C.E.; Celentano, J.C. Kale carotenoids remain stable while flavor compounds respond to changes in sulfur fertility. J. Agric. Food Chem. 2003, 51, 5319–5325. [Google Scholar]
- Aires, A.; Rosa, E.; Carvalho, R. Effect of nitrogen and sulfur fertilization on glucosinolates in the leaves and roots of broccoli sprouts (Brassica oleracea var. italica). J. Sci. Food Agric 2006, 86, 1512–1516. [Google Scholar]
- Bongue-Bartelsman, M.; Phillips, D.A. Nitrogen stress regulates gene expression of enzymes in the flavonoid biosynthetic pathway of tomato. Plant Physiol. Biochem 1995, 33, 539–546. [Google Scholar]
- Patil, B.S.; Alva, A.K. Enhancing citrus nutraceuticals through variable nutrient rates. Hort. Sci 1999, 34, 520–520. [Google Scholar]
- Awad, M.A.; de Jager, A. Relationship between fruit nutrients and concentrations of flavonoids and chlorogenic acid in ‘Elstar’ apple skin. Sci. Hort 2002, 92, 265–276. [Google Scholar]
- Ibrahim, M.H.; Jaafar, H.Z.E.; Rahmat, A.; Zaharah, A.R. The relationship between phenolics and flavonoid production with total non structural carbohydrate and photosynthetic rate in Labisia pumila Benth. under High CO2 and nitrogen fertilization. Molecules 2011, 16, 162–174. [Google Scholar]
- Jaafar, H.Z.E.; Mohamed, H.N.B.; Rahmat, A. Accumulation and partitioning of total phenols in two varieties of Labisia pumila Benth. under manipulation of greenhouse irradiance. Acta Hort 2008, 797, 387–392. [Google Scholar]
- Ibrahim, M.H.; Jaafar, H.Z.E. Enhancement of leaf gas exchange and primary metabolites under carbon dioxide enrichment up-regulates the production of secondary metabolites in Labisia pumila seedlings. Molecules 2011, 16, 3761–3777. [Google Scholar]
- Rozihawati, Z.; Aminah, H.; Lokman, N. Preliminary Trials on the Rooting Ability of Labisia pumila Cuttings. In Malaysia Science and Technology Congress 2003; Agricultural Sciences: Kuala Lumpur, Malaysia, 2003. [Google Scholar]
- Ibrahim, M.H.; Jaafar, H.Z.E. Effects of nitrogen fertilization on synthesis of primary and secondary metabolites in three varieties of kacip fatimah (Labisia Pumila Blume). Int. J. Mol. Sci 2011, 12, 5238–5254. [Google Scholar]
- Felgines, C.; Texier, O.; Morand, C.; Manach, C.; Scalbert, A.; Regerat, F.; Remesy, C. Bioavailability of the flavone naringenin and its glycosides in rats. Am. J. Physiol. Gastrointest. Liver Physiol 2000, 279, 1148–1154. [Google Scholar]
- Koricheva, J.; Larsson, S.; Haukioja, E.; Keinanen, M. Regulation of woody plant secondary metabolism by resource availability: Hypothesis means by meta-analysis. Oikos 1998, 83, 212–226. [Google Scholar]
- Bryant, J.P.; Chapin, F.S.; Klein, D.R. Carbon nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 1983, 40, 357–368. [Google Scholar]
- Ranelletti, F.O.; Maggiano, N.; Serra, F.G. Quercetin inhibits p21-ras expression in human colon cancer cell lines and in primary colorectal tumors. Int. J. Cancer 1999, 85, 438–445. [Google Scholar]
- Bilyk, A.; Sapers, G.M. Varietal differences in the quercetin, kaempferol, and myricetin contents of highbush blueberry, cranberry, and thornless blackberry fruits. J. Agric. Food Chem 1986, 34, 585–588. [Google Scholar]
- Bilyk, A.; Cooper, P.L.; Sapers, G.M. Varietal differences in distribution of quercetin and kaempferol in onion (Allium cepa L.) tissue. J. Agric. Food Chem 1984, 32, 274–276. [Google Scholar]
- Heinonen, I.M.; Meyer, A.S.; Frankel, E.N. Antioxidant activity of berry phenolics on human low-density lipoprotein and liposome oxidation. J. Agric. Food Chem 1998, 46, 4107–4112. [Google Scholar]
- Hertog, M.G.L.; Katan, M.B. Quercetin in Foods, Cardiovascular Disease, and Cancer. In Flavonoids in Health and Disease; Rice-Evans, C.A., Packer, L., Eds.; Dekker: New York, NY, USA, 1998; pp. 447–467. [Google Scholar]
- Hertog, M.G.L.; Hollman, P.C.H.; Venema, D.P. Optimization of a quantitative HPLC determination of potentially anticarcinogenic flavonoids in vegetables and fruits. J. Agric. Food Chem 1992, 40, 1591–1598. [Google Scholar]
- Dalton, D.A.; Russell, S.A.; Hanus, F.J.; Pascoe, G.A.; Evans, H.J. Enzymatic reactions of ascorbate and glutathione that prevent peroxide damage in soybean root nodules. Proc. Natl. Acad. Sci. USA 1986, 83, 3811–3813. [Google Scholar]
- Wang, Y.S.H.; Bunce, A.J.; Maas, L.J. Elevated carbon dioxide increases contents of antioxidant compounds in field-grown strawberries. J. Agric. Food Chem 2003, 51, 4315–4320. [Google Scholar]
- Ziegler, D.M. Role of reversible oxidation reduction of enzyme thiols-disulfides in metabolic regulation. Annu. Rev. Biochem 1985, 54, 305–329. [Google Scholar]
- Lewis, N.G. Plant Phenolics. In Antioxidants in Higher Plants; Alscher, R.G., Hess, J.L., Eds.; CRC: Boca Roton, FL, USA, 1993; pp. 135–160. [Google Scholar]
- Larson, R.A. The antioxidants of higher plants. Phytochemistry 1988, 27, 969–978. [Google Scholar]
- Guo, R.; Yuan, G.; Wang, Q. Effects of sucrose and mannitol accumulation of health promoting component and activity of metabolic enzyme in brocolli sprout. Sci. Hort 2011, 128, 159–165. [Google Scholar]
- Brunetto, G.; Ceretta, C.A.; Kaminski, J.; de melo, G.W.B.; Lourenzi, C.R.; Furlanetto, V.; Moraes, A. Application of nitrogen in grapevines in the campaign of the Rio Grande do Sul: Productivity and chemical characteristics of the grape must. Cienc. Rural 2007, 37, 389–393. [Google Scholar]
- Delgado, R.; González, M.R.; Martín, P. Interaction effects of nitrogen and potassium fertilization on anthocyanin composition and chromatic features of tempranillo grapes. Int. J. Vine Wine Sci 2006, 40, 141–150. [Google Scholar]
- Wang, S.Y.; Jiao, H. Scavenging capacity of berry crops on superoxide radicals, hydrogen peroxide, hydroxyl radicals and singlet oxygen. J. Agric. Food Chem 2000, 48, 5677–5684. [Google Scholar]
- Wang, H.; Nair, M.G.; Strasburg, G.M.; Chang, Y.C.; Booren, A.M.; Gray, J.I.; DeWitt, D.L. Antioxidant and anti-inflammatory activities of anthocyanins and their aglycon, cyanidin, from tart cherries. J. Nat. Prod 1999, 62, 294–296. [Google Scholar]
- Tamura, H.; Yamagami, A. Antioxidative activity of monoacylated anthocyanins isolated from Muscat bailey A grape. J. Agric. Food Chem 1994, 42, 1612–1615. [Google Scholar]
- Wong, C.C.; Li, H.B.; Cheng, K.W.; Chen, F. A systematic survey of antioxidant activity of 30 Chinese medicinal plants using the ferric reducing antioxidant power assay. Food Chem 2006, 97, 705–711. [Google Scholar]
- Smirnoff, N. Ascorbic acid: Metabolism and functions of a multifacetted molecule. Curr. Opin. Plant Biol 2000, 3, 229–235. [Google Scholar]
- Salomez, J.; Hofman, G. Nitrogen nutrition effects on nitrate accumulation of soil grown greenhouse butterhead lettuce. Commun. Soil Sci. Plant Anal 2009, 40, 620–632. [Google Scholar]
- Staugaitis, G.; Viškelis, P.; Venskutonis, P.R. Optimization of application of nitrogen fertilizers to increase the yield and improve the quality of Chinese cabbage heads. Acta Agric. Scand. Sec. B 2008, 58, 176–181. [Google Scholar]
- Seung, K.L.; Adel, A.K. Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biol. Technol 2000, 20, 207–220. [Google Scholar]
- Frankel, E.N.; Huang, S.W.; Kanner, J.; German, J.B. Interfacial phenomena in the evaluation of antioxidants: Bulk oils versus emulsions. J. Agric. Food Chem 1994, 42, 1054–1059. [Google Scholar]
- Murakami, M.; Yamaguchi, T.; Takamura, H.; Matoba, T. Effects of ascorbic acid and tocopherol on antioxidant activity of polyphenolic compounds. Food Chem. Toxicol 2003, 68, 1622–1625. [Google Scholar]
- Benzie, I.F.; Strain, J.F. The ferric reducing ability of plasma (FRAP) as ameasure of “antioxidant power”: The FRAP assay. Anal. Biochem 1996, 239, 70–76. [Google Scholar]
- Luximon-Ramma, A.; Bahorun, T.; Soobrattee, A.M.; Aruoma, O.I. Antioxidant activities of phenolic, proanthocyanidin and flavonoid components in extracts of Acacia fistula. J. Agric. Food Chem 2005, 50, 5042–5047. [Google Scholar]
- Ibrahim, M.H.; Hawa, Z.E.J. Carbon dioxide fertilization enhanced antioxidant compounds in malaysian kacip fatimah (Labisia pumila Blume). Molecules 2011, 16, 6068–6081. [Google Scholar]
- Yen, G.C.; Duh, P.D. Scavenging effects of methanolic extract of peanut hulls on free-radical and active oxygen species. J. Agric. Food Chem 1994, 42, 629–632. [Google Scholar]
- Glenn, M.I.; Thomas-Barberan, F.T.; Hess-Pirce, B.; Kader, A.A. Antioxidant capacities, phenolic compounds, carotenoids and vitamin C contents of nectarine, peach and plum cultivars from California. J. Agric. Food Chem 2002, 50, 4976–4982. [Google Scholar]
- Ibrahim, M.H.; Jaafar, H.Z.E. Involvement of carbohydrate, protein and phenylanine ammonia lyase in up-regulation of secondary metabolites in labisia pumila under various CO2 and N2 levels. Molecules 2011, 16, 4172–4190. [Google Scholar]
- Castillo, F.J.; Greppin, H. Extracellular ascorbic acid and enzyme activities related to ascorbic acid metabolism in Sedum album L. leaves after ozone exposure. Envrion. Exp. Bot 1988, 28, 232–233. [Google Scholar]
- Davies, S.H.R.; Masten, S.J. Spectrophotometric method for ascorbic acid using dichlorophenolindophenol: Elimination of the interference due to iron. Anal. Chim. Acta 1991, 248, 225–227. [Google Scholar]
- Bharti, A.K.; Khurana, J.P. Molecular characterization of transparent testa (tt) mutants of Arabidopsis thaliana (ecotype Estland) impaired in flavonoid biosynthesic pathway. Plant Sci 2003, 165, 1321–1332. [Google Scholar]
- Joyeux, M.; Lobstein, A.; Mortier, F. Comparative antilipoperoxidant, antinecrotic and scavenging properties of terpenes and biflavones from Gingko and some flavonoids. Planta Medica 1995, 61, 126–129. [Google Scholar]
- Ibrahim, M.H.; Jaafar, H.Z.E. The relationship of nitrogen and C/N ratio with secondary metabolites levels and antioxidant activities in three varieties of malaysian kacip fatimah (Labisia pumila Blume). Molecules 2011, 16, 5514–5526. [Google Scholar]
- Ibrahim, M.H.; Jaafar, H.Z.E.; Haniff, M.H.; Raffi, M.Y. Changes in growth and photosynthetic patterns of oil palm seedling exposed to short term CO2 enrichment in a closed top chamber. Acta Physiol. Plant 2010, 32, 305–313. [Google Scholar]
- Ibrahim, M.H.; Jaafar, H.Z.E. Photosynthetic capacity, photochemical efficiency and chlorophyll content of three varieties of Labisia pumila Benth. exposed to open field and greenhouse growing conditions. Acta Physiol. Plant 2011, 33, 2179–2185. [Google Scholar]
Nitrogen levels | Plant parts | Total flavonoids (TF) (mg quercetin/g dry weight) |
---|---|---|
0 kg N/ha | Leaf | 0.90 ± 0.02 a |
Stem | 0.77 ± 0.12 a | |
Root | 0.55 ± 0.02 c | |
90 kg N/ha | Leaf | 0.77 ± 0.03 a |
Stem | 0.67 ± 0.04 b | |
Root | 0.52 ± 0.06 c | |
180 kg N/ha | Leaf | 0.70 ± 0.07 b |
Stem | 0.63 ± 0.05 b | |
Root | 0.50 ± 0.02 c | |
270 kg N/ha | Leaf | 0.68 ± 0.04 b |
Stem | 0.44 ± 0.08 d | |
Root | 0.34 ± 0.01 e |
Nitrogen levels | Plant parts | GSH (nmol/g dry wt) | GSSG (nmol/g dry weight) | GSH/GSSG |
---|---|---|---|---|
0 kg N/ha | Leaf | 876.2 ± 11.2 a | 200.6 ± 9.8 a | 4.4 ± 0.6 d |
Stem | 766.5 ± 9.8 b | 145.2 ± 9.8 b | 5.3 ± 0.1 b | |
Root | 435.2 ± 11.2 d | 87.7 ± 7.6 d | 5.0 ± 0.9 c | |
90 kg N/ha | Leaf | 778.2 ± 8.6 b | 187.5 ± 8.7 a | 4.2 ± 0.4 d |
Stem | 665.3 ± 13.5 c | 123.6 ± 9.5 c | 5.4 ± 0.7 b | |
Root | 412.3 ± 6.8 d | 76.6 ± 6.7 e | 5.4 ± 0.6 b | |
180 kg N/ha | Leaf | 700.3 ± 7.8 b | 178.6 ± 7.3 a | 4.0 ± 0.1 e |
Stem | 612.3 ± 9.8 c | 121.5 ± 7.2 c | 5.0 ± 0.2 c | |
Root | 399.6 ± 10.3 d | 65.7 ± 9.3 e | 6.0 ± 0.1 a | |
270 kg N/ha | Leaf | 689.5 ± 11.3 c | 156.7 ± 5.6 b | 4.4 ± 0.2 d |
Stem | 598.6 ± 9.8 c | 112.3 ± 6.8 d | 5.3 ± 0.3 b | |
Root | 398.5 ± 13.3 d | 54.6 ± 7.3 d | 7.3 ± 0.2 a |
Parameters | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
1 Flavonoid | 1.000 | ||||||
2.GSSG | 0.823 ** | 1.000 | |||||
3.GSH | 0.715 | 0.812 * | 1.000 | ||||
4.Antocyanin | 0.845 * | 0.749 * | 0.771 * | 1.000 | |||
5. Vitamin C | 0.816 * | 0.864 * | 0.749 * | 0.736 * | 1.000 | ||
6. DPPH | 0.923 * | 0.940 * | 0.849 * | 0.711 * | 0.756 * | 1.000 | |
7. FRAP | 0.912 * | 0.826 * | 0.546 | 0.726 * | 0.745 * | 0.918 ** | 1.000 |
Nitrogen levels | Plant parts | Anthocyanin (mg/g fresh weight) | Ascorbic acid (mg/g fresh weight) |
---|---|---|---|
0 kg N/ha | Leaf | 0.71 ± 0.01 a | 0.061 ± 0.001 a |
Stem | 0.67 ± 0.02 a | 0.060 ± 0.021 a | |
Root | 0.60 ± 0.03 a | 0.057 ± 0.012 a | |
90 kg N/ha | Leaf | 0.58 ± 0.12 b | 0.049 ± 0.021 b |
Stem | 0.51 ± 0.23 b | 0.045 ± 0.011 b | |
Root | 0.47 ± 0.12 b | 0.041 ± 0.017 b | |
180 kg N/ha | Leaf | 0.38 ± 0.03 c | 0.029 ± 0.024 c |
Stem | 0.37 ± 0.03 c | 0.027 ± 0.009 c | |
Root | 0.31 ± 0.02 c | 0.021 ± 0.013 c | |
270 kg N/ha | Leaf | 0.19 ± 0.04 d | 0.017 ± 0.027 d |
Stem | 0.16 ± 0.04 d | 0.015 ± 0.012 d | |
Root | 0.11 ± 0.02 d | 0.013 ± 0.007 d |
Nitrogen levels | Extract source | Inhibition % a |
---|---|---|
0 kg N/ha | Leaves | 61.3 ± 1.6 c |
Stems | 57.1 ± 1.1 c | |
Roots | 51.2 ± 1.0 c | |
90 kg N/ha | Leaves | 50.8 ± 1.0 d |
Stems | 48.1 ± 0.9 d | |
Roots | 46.7 ± 0.4 d | |
180 kg N/ha | Leaves | 46.4 ± 0.2 e |
Stems | 42.7 ± 0.9 e | |
Roots | 40.2 ± 1.2 e | |
270 kg N/ha | Leaves | 37.2 ± 2.2 f |
Stems | 32.1 ± 1.2 f | |
Roots | 30.6 ± 3.2 f | |
Controls | BHT | 65.6 ± 1.3 b |
α-tocopherol | 76.3 ± 1.2 a |
Nitrogen levels | Extract source | FRAP a |
---|---|---|
0 kg N/ha | Leaves | 890.3 ± 11.2 c |
Stems | 870.1 ± 13.5 c | |
Roots | 810.2 ± 21.3 c | |
90 kg N/ha | Leaves | 768.0 ± 27.9 d |
Stems | 713.8 ± 34.5 d | |
Roots | 701.4 ± 78.1 d | |
180 kg N/ha | Leaves | 617.3 ± 24.7 e |
Stems | 589.2 ± 11.3 e | |
Roots | 534.1 ± 23.3 e | |
270 kg N/ha | Leaves | 435.2 ± 24.1 f |
Stems | 412.3 ± 11.2 f | |
Roots | 399.4 ± 24.5 f | |
Controls | BHT | 81.3 ± 56.3 g |
α-tocopherol | 953.0 ± 45.6 b | |
Vitamin C | 3301.2 ± 34.6 a |
Nitrogen (kg N/Ha) 1,2 | Total nitrogen fertilizer per plant 3 (g) |
---|---|
0 | 0.00 |
90 | 0.36 |
180 | 0.72 |
270 | 1.08 |
© 2012 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Ibrahim, M.H.; Jaafar, H.Z.E.; Rahmat, A.; Rahman, Z.A. Involvement of Nitrogen on Flavonoids, Glutathione, Anthocyanin, Ascorbic Acid and Antioxidant Activities of Malaysian Medicinal Plant Labisia pumila Blume (Kacip Fatimah). Int. J. Mol. Sci. 2012, 13, 393-408. https://doi.org/10.3390/ijms13010393
Ibrahim MH, Jaafar HZE, Rahmat A, Rahman ZA. Involvement of Nitrogen on Flavonoids, Glutathione, Anthocyanin, Ascorbic Acid and Antioxidant Activities of Malaysian Medicinal Plant Labisia pumila Blume (Kacip Fatimah). International Journal of Molecular Sciences. 2012; 13(1):393-408. https://doi.org/10.3390/ijms13010393
Chicago/Turabian StyleIbrahim, Mohd Hafiz, Hawa Z. E. Jaafar, Asmah Rahmat, and Zaharah Abdul Rahman. 2012. "Involvement of Nitrogen on Flavonoids, Glutathione, Anthocyanin, Ascorbic Acid and Antioxidant Activities of Malaysian Medicinal Plant Labisia pumila Blume (Kacip Fatimah)" International Journal of Molecular Sciences 13, no. 1: 393-408. https://doi.org/10.3390/ijms13010393
APA StyleIbrahim, M. H., Jaafar, H. Z. E., Rahmat, A., & Rahman, Z. A. (2012). Involvement of Nitrogen on Flavonoids, Glutathione, Anthocyanin, Ascorbic Acid and Antioxidant Activities of Malaysian Medicinal Plant Labisia pumila Blume (Kacip Fatimah). International Journal of Molecular Sciences, 13(1), 393-408. https://doi.org/10.3390/ijms13010393