Improved Production of Cyclodextrins by Alkalophilic Bacilli Immobilized on Synthetic or Loofa Sponges
Abstract
:1. Introduction
2. Results and Discussion
2.1. β-Cyclodextrin Production by Bacillus firmus Strain 7B Cells Immobilized on Synthetic Sponge and Bacillus sphaericus Strain 41 Cells Immobilized on Loofa Sponge
2.2. Storage Stability
2.3. Single Production Batch
2.4. Operational Stability
2.5. Scanning Electron Microscopy (SEM)
3. Experimental Section
3.1. Microorganisms and Culture Conditions
3.2. Microorganism Reactivation
3.3. Cell Flocculation
3.4. Cell Immobilization Procedure
3.5. Cyclodextrin Production from Immobilized Microorganisms
3.6. Operational Stability
3.7. Storage Stability
3.8. Scanning Electron Microscopy (SEM)
3.9. Determination of β-Cyclodextrin
3.10. Statistical Analysis
4. Conclusions
Acknowledgments
References
- Del Valle, E.M.M. Cyclodextrins and their uses: A review. Process Biochem 2004, 39, 1033–1046. [Google Scholar]
- Szente, L.; Szejtli, J. Cyclodextrins as food ingredients. Trends Food Sci. Technol 2004, 15, 137–142. [Google Scholar]
- Matioli, G.; Zanin, G.M.; Moraes, F.F. Characterization of cyclodextrin glycosyltransferase from Bacillus firmus strain nº 37. Appl. Biochem. Biotechnol 2001, 91–93, 643–654. [Google Scholar]
- Szerman, N.; Schroh, I.; Rossi, A.L.; Rosso, A.M.; Krymkiewicz, N.; Ferrarotti, S.A. Cyclodextrin production by cyclodextrin glycosyltransferase from Bacillus circulans DF 9R. Bioresour. Technol 2007, 98, 2886–2891. [Google Scholar]
- Arya, S.K.; Srivastava, S.K. Kinetics of immobilized cyclodextrin glucanotransferase produced by Bacillus macerans ATCC 8244. Enzyme Microb. Technol 2006, 39, 507–510. [Google Scholar]
- Kunamneni, A.; Prabhakar, T.; Jyothi, B.; Ellaiah, P. Investigation of continuous cyclodextrin glucanotransferase production by the alginate-immobilized cells of alkalophilic Bacillus sp. in an airlift reactor. Enzyme Microb. Technol 2007, 40, 1538–1542. [Google Scholar]
- Kweon, D.; Kim, S.; Han, N.S.; Lee, J.H. Immobilization of Bacillus macerans cyclodextrin glycosyltransferase fused with poly-lysine using cation exchanger. Enzyme Microb. Technol 2005, 36, 571–578. [Google Scholar]
- Mazzer, C.; Ferreira, L.R.; Rodella, J.R.T.; Moriwaki, C.; Matioli, G. Cyclodextrin production by Bacillus firmus strain 37 immobilized on inorganic matrices and alginate gel. Biochem. Eng. J 2008, 41, 79–86. [Google Scholar]
- Moriwaki, C.; Pelissari, F.M.; Gonçalves, R.A.C.; Gonçalves, J.E.; Matioli, G. Immobilization of Bacillus firmus strain 37 in inorganic matrix for cyclodextrin production. J. Mol. Catal. B 2007, 49, 1–7. [Google Scholar]
- Karel, S.F.; Libicki, S.B.; Robertson, C.R. The immobilization of whole cells: Engineering principles. Chem. Eng. Sci 1985, 40, 1321–1354. [Google Scholar]
- Konsoula, Z.; Liakopoulou-Kiriakides, M. Thermostable α-amylase production by Bacillus subtilis entrapped in calcium alginate gel capsules. Enzyme Microb. Technol 2006, 39, 690–696. [Google Scholar]
- Park, J.K.; Chang, H.N. Microencapsulation of microbial cells. Biotechnol. Adv 2000, 18, 303–319. [Google Scholar]
- Akhtar, N.; Iqbal, J.; Iqbal, M. Removal and recovery of nickel (II) from aqueous solution by loofa sponge-immobilized biomass of Chlorella sorokiniana: Characterization studies. J. Hazard. Mater 2004, 108, 85–94. [Google Scholar]
- Kumar, P.; Satyanarayana, T. Production of thermostable and neutral glucoamylase using immobilized Thermomucor indicae-seudaticae. World J. Microbiol. Biotechnol 2007, 23, 509–517. [Google Scholar]
- Meleigy, S.A.; Khalaf, M.A. Biosynthesis of gibberellic acid from milk permeate in repeated batch operation by a mutant Fusarium moniliforme cells immobilized on loofa sponge. Bioresour. Technol 2009, 100, 374–379. [Google Scholar]
- Ogbonna, J.C.; Mashima, H.; Liu, Y.C.; Tanaka, H. Scale up of fuel ethanol production from sugar beet juice using loofa sponge immobilized bioreactor. Bioresour. Technol 2001, 76, 1–8. [Google Scholar]
- Saeed, A.; Iqbal, M.; Zafar, S.I. Immobilization of Trichoderma viride for enhanced methylene blue biosorption: Batch and column studies. J. Hazard. Mater 2009, 168, 406–415. [Google Scholar]
- Ogbonna, J.C.; Tomiyama, S.; Tanaka, H. Development of a method for immobilization of non-flocculating cells in loofa (Luffa cylindrica) sponge. Process Biochem 1996, 31, 737–744. [Google Scholar]
- Ogbonna, J.C.; Tomiyama, S.; Liu, Y.C.; Tanaka, H. Efficient production of ethanol by cells immobilized in loofa (Luffa cylindrica) sponge. J. Ferment. Bioeng 1997, 84, 271–274. [Google Scholar]
- Phisalaphong, M.; Budiraharj, R.; Bangrak, P.; Mongkolkajit, J.; Limtong, S. Alginate-loofa as carrier matrix for ethanol production. J. Biosci. Bioeng 2007, 104, 214–217. [Google Scholar]
- Couto, S.R.; Sanromán, M.A.; Hofer, D.; Gübitz, G.M. Stainless steel sponge: A novel carrier for the immobilization of the white-rot fungus trametes hirsuta for decolourization of textile dyes. Bioresour. Technol 2004, 95, 67–72. [Google Scholar]
- Couto, S.R.; López, E.; Sanromán, M.A. Utilisation of grape seeds for laccase production in solid-state fermentors. J. Food. Eng 2006, 74, 263–267. [Google Scholar]
- Domíngues, A.; Rivela, I.; Couto, S.R.; Sanromán, M.A. Design of a new rotating drum bioreactor for ligninolytic enzyme production by Phanerochaete chrysosporium grown on an inert support. Process Biochem 2001, 37, 549–554. [Google Scholar]
- Moldes, D.; Couto, S.R.; Sanromán, M.A. Study of the degradation of dyes by MnP of Phanerochaete chrysosporium produced in a fixed-bed bioreactor. Chemosphere 2003, 51, 295–303. [Google Scholar]
- Pazzetto, R.; Delani, T.C.O.; Fenelon, V.C.; Matioli, G. Cyclodextrin production by Bacillus firmus strain 37 cells immobilized on loofa sponge. Process Biochem 2011, 46, 46–51. [Google Scholar]
- Anisha, G.S.; Prema, P. Cell immobilization technique for the enhanced production of α-galactosidase by Streptomyces griseoloalbus. Bioresour. Technol 2008, 99, 3325–3330. [Google Scholar]
- Saudagar, P.S.; Shaligram, N.S.; Singhal, R.S. Immobilization of Streptomyces clavuligerus on loofa sponge for the production of clavulanic acid. Bioresour. Technol 2008, 99, 2250–2253. [Google Scholar]
- Atanasova, N.; Kitayska, T.; Yankov, D.; Safarikova, M.; Tonkova, A. Cyclodextrin glucanotransferase production by cell biocatalysts of alkaliphilicBacilli. Biochem. Eng. J 2009, 45, 278–285. [Google Scholar]
- Safarikova, M.; Atanasova, N.; Ivanova, V.; Weyda, F.; Tonkova, A. Cyclodextrin glucanotransferase synthesis by semicontinuous cultivation of magnetic biocatalysts from cells of Bacillus circulans ATCC 21783. Process Biochem 2007, 42, 1454–1459. [Google Scholar]
- Moriwaki, C.; Costa, G.L.; Pazzetto, R.; Zanin, G.M.; Moraes, F.F.; Portilho, M.; Matioli, G. Production and characterization of a new cyclodextrin glycosyltransferase from Bacillus firmus isolated from Brazilian soil. Process Biochem 2007, 42, 1384–1390. [Google Scholar]
- Moriwaki, C.; Ferreira, L.R.; Rodella, J.R.T.; Matioli, G. A novel cyclodextrin glycosyltransferase from Bacillus sphaericus strain 41: Production, characterization and catalytic properties. Biochem. Eng. J 2009, 48, 124–131. [Google Scholar]
- Vignoli, J.A.; Celligoi, M.A.P.C.; Silva, R.S.F. Development of a statistical model for sorbitol production by free and immobilized Zymomonas mobilis in loofa sponge Luffa cylindrical. Process Biochem 2006, 41, 240–243. [Google Scholar]
© 2012 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Delani, T.C.D.O.; Pazzetto, R.; Mangolim, C.S.; Carvalho Fenelon, V.; Moriwaki, C.; Matioli, G. Improved Production of Cyclodextrins by Alkalophilic Bacilli Immobilized on Synthetic or Loofa Sponges. Int. J. Mol. Sci. 2012, 13, 13294-13307. https://doi.org/10.3390/ijms131013294
Delani TCDO, Pazzetto R, Mangolim CS, Carvalho Fenelon V, Moriwaki C, Matioli G. Improved Production of Cyclodextrins by Alkalophilic Bacilli Immobilized on Synthetic or Loofa Sponges. International Journal of Molecular Sciences. 2012; 13(10):13294-13307. https://doi.org/10.3390/ijms131013294
Chicago/Turabian StyleDelani, Tieles Carina De Oliveira, Rúbia Pazzetto, Camila Sampaio Mangolim, Vanderson Carvalho Fenelon, Cristiane Moriwaki, and Graciette Matioli. 2012. "Improved Production of Cyclodextrins by Alkalophilic Bacilli Immobilized on Synthetic or Loofa Sponges" International Journal of Molecular Sciences 13, no. 10: 13294-13307. https://doi.org/10.3390/ijms131013294
APA StyleDelani, T. C. D. O., Pazzetto, R., Mangolim, C. S., Carvalho Fenelon, V., Moriwaki, C., & Matioli, G. (2012). Improved Production of Cyclodextrins by Alkalophilic Bacilli Immobilized on Synthetic or Loofa Sponges. International Journal of Molecular Sciences, 13(10), 13294-13307. https://doi.org/10.3390/ijms131013294