RETRACTED: Multiple Sclerosis: The Role of Cytokines in Pathogenesis and in Therapies
Abstract
:1. Introduction
2. The Role of T Cells-Associated Cytokines in MS Pathogenesis
2.1. Immunopathogenic Function of IL-17
2.2. Reciprocal Interactions of Cytokines Produced by T Cells
3. Cytokines and Innate Immune Cells in MS
4. Current and Future Clinical Applications of Cytokine-Mediated Treatments
- inhibits the function of S1PR, which facilitates the CC-chemokine receptor 7-(CCR7-) mediated retention of T cells in the lymph nodes, including naïve and memory T cells. In this way, it reduces the infiltration of inflammatory cells into the CNS [121,122] and reduces the numbers of autoreactive Th17 cells that are recirculating via the lymph and blood to the CNS [123–125].
5. Conclusions
Acknowledgements
References
- Noseworthy, J.H. Progress in determining the causes and treatment of multiple sclerosis. Nature 1999, 399, A40–A47. [Google Scholar]
- Giraudon, P.; Bernard, A. Chronic viral infections of the central nervous system: Aspects specific to multiple sclerosis. Rev. Neurol. (Paris) 2009, 165, 789–795. [Google Scholar]
- Billiau, A.; Edy, V.G.; Heremans, H.; van Damme, J.; Desmyter, J.; Georgiades, J.A.; de Somer, P. Human interferon: Mass production in a newly established cell line, MG-63. Antimicrob. Agents Chemother 1977, 12, 11–15. [Google Scholar]
- Weinstock-Guttman, B.; Ramanathan, M.; Zivadinov, R. Interferon-beta treatment for relapsing multiple sclerosis. Expert Opin. Biol. Ther 2008, 8, 1435–1447. [Google Scholar]
- Ebers, G.C.; Sadovnick, A.D. The geographic distribution of multiple sclerosis: A review. Neuroepidemiology 1993, 12, 1–5. [Google Scholar]
- Goris, A.; Epplen, C.; Fiten, P.; Andersson, M.; Murru, R.; Sciacca, F.L.; Ronsse, I.; Jäckel, S.; Epplen, J.T.; Marrosu, M.G.; et al. Analysis of an IFN-γ gene (IFNG) polymorphism in multiple sclerosis in Europe: Effect of population structure on association with disease. J. Interferon Cytokine Res 1999, 19, 1037–1046. [Google Scholar]
- Ebers, G.C.; Bulman, D.E.; Sadovnick, A.D.; Paty, D.W.; Warren, S.; Hader, W.; Murray, T.J.; Seland, T.P.; Duquette, P.; Grey, T.; et al. A population-based study of multiple sclerosis in twins. N. Engl. J. Med 1986, 315, 1638–1642. [Google Scholar]
- Murray, T.J. Multiple Sclerosis, the History of a Disease; Demos Medical Publishing: New York, NY, USA, 2005. [Google Scholar]
- Compston, A.; McDonald, I.; Noseworthy, J.; Lassmann, H.; Miller, D.; Smith, K.; Wekerle, H.; Confavreux, C. McAlpine’s Multiple Sclerosis, 4th ed; Churchill Livingstone: London, UK, 2005. [Google Scholar]
- Zuvich, R.L.; McCauley, J.L.; Pericak-Vance, M.A.; Haines, J.L. Genetics and pathogenesis of multiple sclerosis. Semin. Immunol 2009, 21, 328–333. [Google Scholar]
- Oksenberg, J.R.; Baranzini, S.E. Multiple sclerosis genetics—Is the glass half full, or half empty? Nat. Rev. Neurol 2010, 6, 429–437. [Google Scholar]
- Steinman, L.; Zamvil, S. Transcriptional analysis of targets in multiple sclerosis. Nat. Rev. Immunol 2003, 3, 483–492. [Google Scholar]
- Mariño, K.; Bones, J.; Kattla, J.J.; Rudd, P.M. A systematic approach to protein glycosylation analysis: A path through the maze. Nat. Chem. Biol 2010, 6, 713–723. [Google Scholar]
- Opdenakker, G.; van Damme, J. Cytokine-regulated proteases in autoimmune diseases. Immunol. Today 1994, 15, 103–107. [Google Scholar]
- Gijbels, K.; Masure, S.; Carton, H.; Opdenakker, G. Gelatinase in the cerebrospinal fluid of patients with multiple sclerosis and other inflammatory neurological disorders. J. Neuroimmunol 1992, 41, 29–34. [Google Scholar]
- Paemen, L.; Olsson, T.; Söderström, M.; van Damme, J.; Opdenakker, G. Evaluation of gelatinases and IL-6 in the cerebrospinal fluid of patients with optic neuritis, multiple sclerosis and other inflammatory neurological diseases. Eur. J. Neurol 1994, 1, 55–63. [Google Scholar]
- Pette, M.; Fujita, K.; Kitze, B.; Whitaker, J.N.; Albert, E.; Kappos, L.; Wekerle, H. Myelin basic protein specific T lymphocyte lines from MS patients and healthy individuals. Neurology 1990, 40, 1770–1776. [Google Scholar]
- Schluesener, H.J.; Wekerle, H. Autoaggressive T lymphocyte lines recognizing the encephalitogenic region of myelin basic protein: In vitro selection from unprimed rat T lymphocyte populations. J. Immunol 1985, 135, 3128–3133. [Google Scholar]
- Genain, C.P.; Lee-Parritz, D.; Nguyen, M.H.; Massacesi, L.; Joshi, N.; Ferrante, R.; Hoffman, K.; Moseley, M.; Letvin, N.L.; Hauser, S.L. In healthy primates, circulating autoreactive T cells mediate autoimmune disease. J. Clin. Invest 1994, 94, 1339–1345. [Google Scholar]
- Ben-Nun, A.; Wekerle, H.; Cohen, I.R. The rapid isolation of clonable antigen-specific T lymphocyte lines capable of mediating autoimmune encephalomyelitis. Eur. J. Immunol 1981, 11, 195–199. [Google Scholar]
- Anderson, A.C.; Nicholson, L.B.; Legge, K.L.; Turchin, V.; Zaghouani, H.; Kuchroo, V.K. High frequency of autoreactive myelin proteolipid protein-specific T cells in the periphery of naive mice: mechanisms of selection of the selfreactive repertoire. J. Exp. Med 2000, 191, 761–770. [Google Scholar]
- Fort, M.M.; Cheung, J.; Yen, D.; Li, J.; Zurawski, S.M.; Lo, S.; Menon, S.; Clifford, T.; Hunte, B.; Lesley, R.; et al. IL-25 Induces IL- 4, IL-5, and IL-13 and Th2-associated pathologies in vivo. Immunity 2001, 15, 985–995. [Google Scholar]
- Kuchroo, V.K.; Anderson, A.C.; Waldner, H.; Munder, M.; Bettelli, E.; Nicholson, L.B. T cell response in experimental autoimmune encephalomyelitis (EAE): Role of self and cross-reactive antigens in shaping, tuning, and regulating the autopathogenic T cell repertoire. Ann. Rev. Immunol 2002, 20, 101–123. [Google Scholar]
- Imam, S.A.; Guyton, M.K.; Haque, A.; Vandenbark, A.; Tyor, W.R.; Ray, S.K.; Banik, N.L. Increased calpain correlates with Th1 cytokine profile in PBMCs from MS patients. J. Neuroimmunol 2007, 190, 139–145. [Google Scholar]
- Panitch, H.S.; Hirsch, R.L.; Schindler, J.; Johnson, K.P. Treatment of multiple sclerosis with gamma interferon: Exacerbations associated with activation of the immune system. Neurology 1987, 37, 1097–1102. [Google Scholar]
- Neukirch, F.; Lyon-Caen, O.; Clanet, M.; Bousquet, J.; Feingold, J.; Druet, P. Asthma, nasal allergies, andmultiple sclerosis. J. Allergy Clin. Immunol 1997, 99, 270–271. [Google Scholar]
- Ando, D.G.; Clayton, J.; Kono, D.; Urban, J.L.; Sercarz, E.E. Encephalitogenic T cells in the B10.PL model of experimental allergic encephalomyelitis (EAE) are of the Th-1 lymphokine subtype. Cell. Immunol 1989, 124, 132–143. [Google Scholar]
- Zamvil, S.S.; Steinman, L. The T lymphocyte in experimental allergic encephalomyelitis. Ann. Rev. Immunol 1990, 8, 579–621. [Google Scholar]
- Yura, M.; Takahashi, I.; Serada, M.; Koshio, T.; Nakagami, K.; Yuki, Y.; Kiyono, H. Role of MOG stimulated th1 type “light up” (GFP+) CD4+ T cells for the development of experimental autoimmune encephalomyelitis (EAE). J. Autoimmun 2001, 17, 17–25. [Google Scholar]
- Mosmann, T.R.; Coffman, R.L. TH1 and TH2 cells: Different patterns of lymphokine secretion lead to different functional properties. Ann. Rev. Immunol 1989, 7, 145–173. [Google Scholar]
- Adorini, L.; Guéry, J.C.; Trembleau, S. Manipulation of the Th1/Th2 cell balance: An approach to treat human autoimmune diseases? Autoimmunity 1996, 23, 53–68. [Google Scholar]
- Krakowski, M.; Owens, T. Interferon-γ confers resistance to experimental allergic encephalomyelitis. Eur. J. Immunol 1996, 26, 1641–1646. [Google Scholar]
- Tran, E.H.; Prince, E.N.; Owens, T. IFN-γ shapes immune invasion of the central nervous system via regulation of chemokines. J. Immunol 2000, 164, 2759–2768. [Google Scholar]
- Gran, B.; Zhang, G.X.; Yu, S.; Li, J.; Chen, X.H.; Ventura, E.S.; Kamoun, M.; Rostami, A. IL-12p35-deficient mice are susceptible to experimental autoimmune encephalomyelitis: Evidence for redundancy in the IL-12 system in the induction of central nervous system autoimmune demyelination. J. Immunol 2002, 169, 7104–7110. [Google Scholar]
- Zhang, G.X.; Gran, B.; Yu, S.; Li, J.; Siglienti, I.; Chen, X.; Kamoun, M.; Rostami, A. Induction of experimental autoimmune encephalomyelitis in IL-12 receptor-β2-deficient mice: IL-12 responsiveness is not required in the pathogenesis of inflammatory demyelination in the central nervous system. J. Immunol 2003, 170, 2153–2160. [Google Scholar]
- Gutcher, I.; Urich, E.; Wolter, K.; Prinz, M.; Becher, B. Interleukin 18-independent engagement of interleukin 18 receptor-α is required for autoimmune inflammation. Nat. Immunol 2006, 7, 946–953. [Google Scholar]
- Ferber, I.A.; Brocke, S.; Taylor-Edwards, C.; Ridgway, W.; Dinisco, C.; Steinman, L.; Dalton, D.; Fathman, C.G. Mice with a disrupted IFN-γ gene are susceptible to the induction of experimental autoimmune encephalomyelitis (EAE). J. Immunol 1996, 156, 5–7. [Google Scholar]
- Cua, D.J.; Sherlock, J.; Chen, Y.; Murphy, C.A.; Joyce, B.; Seymour, B.; Lucian, L.; To, W.; Kwan, S.; Churakova, T.; et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 2003, 421, 744–748. [Google Scholar]
- Aggarwal, S.; Ghilardi, N.; Xie, M.H.; de Sauvage, F.J.; Gurney, A.L. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J. Biol. Chem 2003, 278, 1910–1914. [Google Scholar]
- Langrish, C.L.; Chen, Y.; Blumenschein, W.M.; Mattson, J.; Basham, B.; Sedgwick, J.D.; McClanahan, T.; Kastelein, R.A.; Cua, D.J. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med 2005, 201, 233–240. [Google Scholar]
- Park, H.; Li, Z.; Yang, X.O.; Chang, S.H.; Nurieva, R.; Wang, Y.H.; Wang, Y.; Hood, L.; Zhu, Z.; Tian, Q.; et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol 2005, 6, 1133–1141. [Google Scholar]
- Harrington, L.E.; Hatton, R.D.; Mangan, P.R.; Turner, H.; Murphy, T.L.; Murphy, K.M.; Weaver, C.T. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol 2005, 6, 1123–1132. [Google Scholar]
- Annunziato, F.; Cosmi, L.; Santarlasci, V.; Maggi, L.; Liotta, F.; Mazzinghi, B.; Parente, E.; Filì, L.; Ferri, S.; Frosali, F.; et al. Phenotypic and functional features of human Th17 cells. J. Exp. Med 2007, 204, 1849–1861. [Google Scholar]
- Hedegaard, C.J.; Krakauer, M.; Bendtzen, K.; Lund, H.; Sellebjerg, F.; Nielsen, C.H. T helper cell type 1 (Th1, Th2 and Th17 responses to myelin basic protein and disease activity inmultiple sclerosis. Immunology 2008, 125, 161–169. [Google Scholar]
- Parham, C.; Chirica, M.; Timans, J.; Vaisberg, E.; Travis, M.; Cheung, J.; Pflanz, S.; Zhang, R.; Singh, K.P.; Vega, F.; et al. A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rβ1 and a novel cytokine receptor subunit, IL-23R. J. Immunol 2002, 168, 5699–5708. [Google Scholar]
- Mangan, P.R.; Harrington, L.E.; O’Quinn, D.B.; Helms, W.S.; Bullard, D.C.; Elson, C.O.; Hatton, R.D.; Wahl, S.M.; Schoeb, T.R.; Weaver, C.T. Transforming growth factor-β induces development of the TH17 lineage. Nature 2006, 441, 231–234. [Google Scholar]
- Bettelli, E.; Carrier, Y.; Gao, W.; Korn, T.; Strom, T.B.; Oukka, M.; Weiner, H.L.; Kuchroo, V.K. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006, 441, 235–238. [Google Scholar]
- Yang, L.; Anderson, D.E.; Baecher-Allan, C.; Hastings, W.D.; Bettelli, E.; Oukka, M.; Kuchroo, V.K.; Hafler, D.A. IL-21 and TGF-β are required for differentiation of human TH17 cells. Nature 2008, 454, 350–352. [Google Scholar]
- Korn, T.; Bettelli, E.; Gao, W.; Awasthi, A.; Jäger, A.; Strom, T.B.; Oukka, M.; Kuchroo, V.K. IL-21 initiates an alternative pathway to induce proinflammatory T H17 cells. Nature 2007, 448, 484–487. [Google Scholar]
- Lock, C.; Hermans, G.; Pedotti, R.; Brendolan, A.; Schadt, E.; Garren, H.; Langer-Gould, A.; Strober, S.; Cannella, B.; Allard, J.; et al. Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat. Med 2002, 8, 500–508. [Google Scholar]
- Korn, T.; Bettelli, E.; Oukka, M.; Kuchroo, V.K. IL-17 and Th17 cells. Ann. Rev. Immunol 2009, 27, 485–517. [Google Scholar]
- Matusevicius, D.; Kivisäkk, P.; He, B.; Kostulas, N.; Ozenci, V.; Fredrikson, S.; Link, H. Interleukin-17 mRNA expression in blood and CSF mononuclear cells is augmented inmultiple sclerosis. Mult. Scler 1999, 5, 101–104. [Google Scholar]
- Lees, J.R.; Iwakura, Y.; Russell, J.H. Host T cells are the main producers of IL-17 within the central nervous system during initiation of experimental autoimmune encephalomyelitis induced by adoptive transfer of Th1 cell lines. J. Immunol 2008, 180, 8066–8072. [Google Scholar]
- Sutton, C.; Brereton, C.; Keogh, B.; Mills, K.H.G.; Lavelle, E.C. A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. J. Exp. Med 2006, 203, 1685–1691. [Google Scholar]
- De Jonga, B.A.; Huizingab, T.W.J.; Bollenc, E.L.E.M.; Uitdehaagd, B.M.J.; Bosmae, G.P.Th.; van Bucheme, M.A.; Remarquef, E.J.; Burgmansa, A.C.S.; Kalkersg, N.F.; Polmand, C.H.; et al. Production of IL-1β and IL-1Ra as risk factors for susceptibility and progression of relapse-onset multiple sclerosis. J. Neuroimmunol 2006, 126, 172–179. [Google Scholar]
- Broberg, E.K.; Salmi, A.A.; Hukkanen, V. IL-4 is the key regulator in herpes simplex virus-based gene therapy of BALB/c experimental autoimmune encephalomyelitis. Neurosci. Lett 2004, 364, 173–178. [Google Scholar]
- Haas, J.; Hug, A.; Viehöver, A.; Fritzsching, B.; Falk, C.S.; Filser, A.; Vetter, T.; Milkova, L.; Korporal, M.; Fritz, B.; et al. Reduced suppressive effect of CD4+CD25 high regulatory T cells on the T cell immune response against myelin oligodendrocyte glycoprotein in patients with multiple sclerosis. Eur. J. Immunol 2005, 35, 3343–3352. [Google Scholar]
- Singh, S.P.; Zhang, H.H.; Foley, J.F.; Hedrick, M.N.; Farber, J.M. Human T cells that are able to produce IL-17 express the chemokine receptor CCR6. J. Immunol 2008, 180, 214–221. [Google Scholar]
- Haak, S.; Croxford, A.L.; Kreymborg, K.; Heppner, F.L.; Pouly, S.; Becher, B.; Waisman, A. IL-17A and IL-17F do not contribute vitally to autoimmune neuroinflammation in mice. J. Clin. Invest 2009, 119, 61–69. [Google Scholar]
- Liu, X.; Yun, S.L.; Yu, C.R.; Egwuagu, C.E. Loss of STAT3 in CD4+ T cells prevents development of experimental autoimmune diseases. J. Immunol 2008, 180, 6070–6076. [Google Scholar]
- Stromnes, I.M.; Cerretti, L.M.; Liggitt, D.; Harris, R.A.; Goverman, J.M. Differential regulation of central nervous system autoimmunity by TH1 and TH17 cells. Nat. Med 2008, 14, 337–342. [Google Scholar]
- Zhou, L.; Ivanov, I.I.; Spolski, R.; Min, R.; Shenderov, K.; Egawa, T.; Levy, D.E.; Leonard, W.J.; Littman, D.R. IL-6 programs TH-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat. Immunol 2007, 8, 967–974. [Google Scholar]
- Zhang, Z.; Rosenbaum, J.T.; Zhong, W.; Lim, C.; Hinrichs, D.J. Costimulation of Th17 cells: Adding fuel or putting out the fire in the inflamed gut? Semin. Immunopathol 2010, 32, 55–70. [Google Scholar]
- Vollmer, T.L.; Liu, R.; Price, M.; Rhodes, S.; La Cava, A.; Shi, F.D. Differential effects of IL-21 during initiation and progression of autoimmunity against neuroantigen. J. Immunol 2005, 174, 2696–2701. [Google Scholar]
- Chen, Z.; O’Shea, J.J. Th17 cells: A new fate for differentiating helper T cells. Immunol. Res 2008, 41, 87–102. [Google Scholar]
- Pot, C.; Jin, H.; Awasthi, A.; Liu, S.M.; Lai, C.Y.; Madan, R.; Sharpe, A.H.; Karp, C.L.; Miaw, S.C.; Ho, I.C.; et al. Cutting edge: IL-27 induces the transcription factor c-Maf, cytokine IL-21, and the costimulatory receptor ICOS that coordinately act together to promote differentiation of IL-10-producing Tr1 cells. J. Immunol 2009, 183, 797–801. [Google Scholar]
- Fitzgerald, D.C.; Ciric, B.; Touil, T.; Harle, H.; Grammatikopolou, J.; Das Sarma, J.; Gran, B.; Zhang, G.X.; Rostami, A. Suppressive effect of IL-27 on encephalitogenic Th17 cells and the effector phase of experimental autoimmune encephalomyelitis. J. Immunol 2007, 179, 3268–3275. [Google Scholar]
- Jäger, A.; Dardalhon, V.; Sobel, R.A.; Bettelli, E.; Kuchroo, V.K. Th1, Th17, and Th9 effector cells induce experimental autoimmune encephalomyelitis with different pathological phenotypes. J. Immunol 2009, 183, 7169–7177. [Google Scholar]
- Mueller, A.M.; Pedré, X.; Killian, S.; David, M.; Steinbrecher, A. The Decoy Receptor 3 (DcR3, TNFRSF6B) suppresses Th17 immune responses and is abundant in human cerebrospinal fluid. J. Neuroimmunol 2009, 209, 57–64. [Google Scholar]
- Nowak, E.C.; Weaver, C.T.; Turner, H.; Begum-Haque, S.; Becher, B.; Schreiner, B.; Coyle, A.J.; Kasper, L.H.; Noelle, R.J. IL-9 as a mediator of Th17-driven inflammatory disease. J. Exp. Med 2009, 206, 1653–1660. [Google Scholar] [Green Version]
- Ransohoff, R.M.; Kivisäkk, P.; Kidd, G. Three or more routes for leukocyte migration into the central nervous system. Nat. Rev. Immunol 2003, 3, 569–581. [Google Scholar]
- Xiao, B.G.; Diab, A.; Zhu, J.; van der Meide, P.; Link, H. Astrocytes induce hyporesponses of myelin basic proteinreactive T and B cell function. J. Neuroimmunol 1998, 89, 113–121. [Google Scholar]
- Dijkstra, C.D.; De Groot, C.J.A.; Huitinga, I. The role of macrophages in demyelination. J. Neuroimmunol 1992, 40, 183–188. [Google Scholar]
- Deshpande, P.; King, I.L.; Segal, B.M. Cutting edge: CNS CD11c+ cells, from mice with encephalomyelitis polarize Th17 cells, and support CD25+CD4+ T cell-mediated immunosuppression, suggesting dual roles in the disease process. J. Immunol 2007, 178, 6695–6699. [Google Scholar]
- Hemmer, B.; Nessler, S.; Zhou, D.; Kieseier, B.; Hartung, H.P. Immunopathogenesis and immunotherapy of multiple sclerosis. Nat. Clin. Pract. Neurol 2006, 2, 201–211. [Google Scholar]
- Neumann, H.; Cavalie, A.; Jenne, D.E.; Wekerle, H. Induction of MHC class I genes in neurons. Science 1995, 269, 549–552. [Google Scholar]
- Dandekar, A.A.; Wu, G.F.; Pewe, L.; Perlman, S. Axonal damage is T cell mediated and occurs concomitantly with demyelination in mice infected with a neurotropic coronavirus. J. Virol 2001, 75, 6115–6120. [Google Scholar]
- Probert, L.; Eugster, H.P.; Akassoglou, K.; Bauer, J.; Frei, K.; Lassmann, H.; Fontana, A. TNFR1 signalling is critical for the development of demyelination and the limitation of T-cell responses during immunemediated CNS disease. Brain 2000, 123, 2005–2019. [Google Scholar]
- Tzartos, J.S.; Friese, M.A.; Craner, M.J.; Palace, J.; Newcombe, J.; Esiri, M.M.; Fugger, L. Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis. Am. J. Pathol 2008, 172, 146–155. [Google Scholar]
- Li, Y.; Chu, N.; Hu, A.; Gran, B.; Rostami, A.; Zhang, G.X. Increased IL-23p19 expression in multiple sclerosis lesionsand its induction in microglia. Brain 2007, 130, 490–501. [Google Scholar]
- Larochelle, C.; Alvarez, J.I.; Prat, A. How do immune cells overcome the blood-brain barrier in multiple sclerosis? FEBS Lett 2011, 585, 3770–3780. [Google Scholar]
- Linker, R.A.; Lühder, F.; Kallen, K.J.; Lee, D.H.; Engelhardt, B.; Rose-John, S.; Gold, R. IL-6 transsignalling modulates the early effector phase of EAE and targets the blood-brain barrier. J. Neuroimmunol 2008, 205, 64–72. [Google Scholar]
- Ifergan, I.; Kébir, H.; Bernard, M.; Wosik, K.; Dodelet-Devillers, A.; Cayrol, R.; Arbour, N.; Prat, A. The blood-brain barrier induces differentiation of migrating monocytes into Th17-polarizing dendritic cells. Brain 2008, 131, 785–799. [Google Scholar]
- Miljkovic, D.; Momcilovic, M.; Stojanovic, I.; Stosic-Grujicic, S.; Ramic, Z.; Mostarica-Stojkovic, M. Astrocytes stimulate interleukin-17 and interferon-γ production in vitro. J. Neurosci. Res 2007, 85, 3598–3606. [Google Scholar]
- Das Sarma, J.; Ciric, B.; Marek, R.; Sadhukhan, S.; Caruso, M.L.; Shafagh, J.; Fitzgerald, D.C.; Shindler, K.S.; Rostami, A. Functional interleukin-17 receptor A is expressed in central nervous system glia and upregulated in experimental autoimmune encephalomyelitis. J. Neuroinflamm 2009, 6. [Google Scholar] [CrossRef]
- Ma, X.; Reynolds, S.L.; Baker, B.J.; Li, X.; Benveniste, E.N.; Qin, H. IL-17 enhancement of the IL-6 signaling cascade in astrocytes. J. Immunol 2010, 184, 4898–4906. [Google Scholar]
- Kang, Z.; Altuntas, C.Z.; Gulen, M.F.; Liu, C.; Giltiay, N.; Qin, H.; Liu, L.; Qian, W.; Ransohoff, R.M.; Bergmann, C.; et al. Astrocyte restricted ablation of interleukin-17-induced act1-mediated signaling ameliorates autoimmune encephalomyelitis. Immunity 2010, 32, 414–425. [Google Scholar]
- Merkler, D.; Böscke, R.; Schmelting, B.; Czéh, B.; Fuchs, E.; Brück, W.; Stadelmann, C. Differential macrophage/microglia activation in neocortical EAE lesions in the marmoset monkey. Brain Pathol 2006, 16, 117–123. [Google Scholar]
- Wiendl, H.; Toyka, K.V.; Rieckmann, P.; Gold, R.; Hartung, H.P.; Hohlfeld, R. Basic and escalating immunomodulatory treatments in multiple sclerosis: current therapeutic recommendations. J. Neurol 2008, 255, 1449–1463. [Google Scholar]
- Bielekova, B.; Becker, B.L. Monoclonal antibodies in MS: Mechanisms of action. Neurology 2010, 74, S31–S40. [Google Scholar]
- Bates, D. Alemtuzumab. Int. MS J. MS Forum 2009, 16, 75–76. [Google Scholar]
- Hawker, K.; O’Connor, P.; Freedman, M.S.; Calabresi, P.A.; Antel, J.; Simon, J.; Hauser, S.; Waubant, E.; Vollmer, T.; Panitch, H. Rituximab in patients with primary progressive multiple sclerosis: Results of a randomized double-blind placebo-controlled multicenter trial. Ann. Neurol 2009, 66, 460–471. [Google Scholar]
- Bielekova, B.; Howard, T.; Packer, A.N.; Richert, N.; Blevins, G.; Ohayon, J.; Waldmann, T.A.; McFarland, H.F.; Martin, R. Effect of anti-CD25 antibody daclizumab in the inhibition of inflammation and stabilization of disease progression in multiple sclerosis. Arch. Neurol 2009, 66, 483–489. [Google Scholar]
- Dhib-Jalbut, S. Mechanisms of action of interferons and glatiramer acetate in multiple sclerosis. Neurology 2002, 58, S3–S9. [Google Scholar]
- Krakauer, M.; Sorensen, P.; Khademi, M.; Olsson, T.; Sellebjerg, F. Increased IL-10 mRNA and IL-23 mRNA expression in multiple sclerosis: Interferon-β treatment increases IL-10 mRNA expression while reducing IL-23 mRNA expression. Mult. Scler 2008, 14, 622–630. [Google Scholar]
- Ramgolam, V.S.; Sha, Y.; Jin, J.; Zhang, X.; Markovic-Plese, S. IFN-β inhibits human Th17 cell differentiation. J. Immunol 2009, 183, 5418–5427. [Google Scholar]
- Sweeney, C.M.; Lonergan, R.; Basdeo, S.A.; Kinsella, K.; Dungan, L.S.; Higgins, S.C.; Kelly, P.J.; Costelloe, L.; Tubridy, N.; Mills, K.H.; et al. IL-27 mediates the response to IFN-β therapy in multiple sclerosis patients by inhibiting Th17 cells. Brain Behav. Immun 2011, 25, 1170–1181. [Google Scholar]
- Axtell, R.C.; Raman, C.; Steinman, L. Interferon-β exacerbates Th17-mediated inflammatory disease. Trends Immunol 2011, 32, 272–277. [Google Scholar]
- Conti, L.; de Palma, R.; Rolla, S.; Boselli, D.; Rodolico, G.; Kaur, S.; Silvennoinen, O.; Niccolai, E.; Amedei, A.; Ivaldi, F.; et al. Th17 cells in multiple sclerosis express higher levels of JAK2, which increases their surface expression of IFN-γR2. J. Immunol 2012, 188, 1011–1018. [Google Scholar]
- Antel, J.; Bar-Or, A. Roles of immunoglobulins and B cells in multiple sclerosis: From pathogenesis to treatment. J. Neuroimmunol 2006, 180, 3–8. [Google Scholar]
- Fillatreau, S.; Gray, D.; Anderton, S.M. Not always the bad guys: B cells as regulators of autoimmune pathology. Nat. Rev. Immunol 2008, 8, 391–397. [Google Scholar]
- Valenzuela, R.M.; Costello, K.; Chen, M.; Said, A.; Johnson, K.P.; Dhib-Jalbut, S. Clinical response to glatirameracetate correlates with modulation of IFN-γ and IL-4 expression in multiple sclerosis. Mult. Scler 2007, 13, 754–762. [Google Scholar]
- Ramgolam, V.S.; Sha, Y.; Marcus, K.L.; Choudhary, N.; Troiani, L.; Chopra, M.; Markovic-Plese, S. B cells as a therapeutic target for IFN-β in relapsing-remitting multiple sclerosis. J. Immunol 2011, 186, 4518–4526. [Google Scholar]
- Hong, J.; Li, N.; Zhang, X.; Zheng, B.; Zhang, J.Z. Induction of CD4+CD25+ regulatory T cells by copolymer-I through activation of transcription factor Foxp3. Proc. Natl. Acad. Sci. USA 2005, 102, 6449–6454. [Google Scholar]
- Vieira, P.L.; Heystek, H.C.; Wormmeester, J.; Wierenga, E.A.; Kapsenberg, M.L. Glatiramer acetate (copolymer-1,copaxone) promotes Th2 cell development and increased IL-10 production through modulation of dendritic cells. J. Immunol 2003, 170, 4483–4488. [Google Scholar]
- Jung, S.; Siglienti, I.; Grauer, O.; Magnus, T.; Scarlato, G.; Toyka, K. Induction of IL-10 in rat peritoneal macrophages and dendritic cells by glatiramer acetate. J. Neuroimmunol 2004, 148, 63–73. [Google Scholar]
- Hartung, H.P.; Gonsette, R.; König, N.; Kwiecinski, H.; Guseo, A.; Morrissey, S.P.; Krapf, H.; Zwingers, T. Mitoxantrone in Multiple Sclerosis Study Group (MIMS). Mitoxantrone in progressive multiple sclerosis: A placebo-controlled, doubleblind, randomised, multicentre trial. Lancet 2002, 360, 2018–2025. [Google Scholar]
- Vogelgesang, A.; Rosenberg, S.; Skrzipek, S.; Broker, B.M.; Dressel, A. Mitoxantrone treatment in multiple sclerosis induces TH2-type cytokines. Acta Neurol. Scand 2010, 122, 237–243. [Google Scholar]
- Hohlfeld, R. Multiple sclerosis: Cladribine-a contentious therapeutic contender for MS. Nat. Rev. Neurol 2011, 7, 425–427. [Google Scholar]
- Matloubian, M.; Lo, C.G.; Cinamon, G.; Lesneski, M.J.; Xu, Y.; Brinkmann, V.; Allende, M.L.; Proia, R.L.; Cyster, J.G. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 2004, 427, 355–360. [Google Scholar]
- Ehling, R.; Berger, T.; Reindl, M. Multiple sclerosis—Established and novel therapeutic approaches. Cent. Nerv. Syst. Agents Med. Chem 2010, 10, 3–15. [Google Scholar]
- Strader, C.R.; Pearce, C.J.; Oberlies, N.H. Fingolimod FTY720: A recently approved multiple sclerosis drug based on a fungal secondary metabolite. J. Nat. Prod 2011, 74, 900–907. [Google Scholar]
- Lim, S.Y.; Constantinescu, C.S. Current and future disease-modifying therapies in multiple sclerosis. Int. J. Clin. Pract 2010, 64, 637–650. [Google Scholar]
- Harada, J.; Foley, M.; Moskowitz, M.A.; Waeber, C. Sphingosine-1-phosphate induces proliferation and morphological changes of neural progenitor cells. J. Neurochem 2004, 88, 1026–1039. [Google Scholar]
- Allende, M.L.; Proia, R.L. Sphingosine-1-phosphate receptors and the development of the vascular system. Biochim. Biophys. Acta 2002, 1582, 222–227. [Google Scholar]
- Jolly, P.S.; Bektas, M.; Olivera, A.; Gonzalez-Espinosa, C.; Proia, R.L.; Rivera, J.; Milstien, S.; Spiegel, S. Transactivation of sphingosine-1-phosphate receptors by FcɛRI triggering is required for normal mast cell degranulation and chemotaxis. J. Exp. Med 2004, 199, 959–970. [Google Scholar]
- Donati, C.; Meacci, E.; Nuti, F.; Becciolini, L.; Farnararo, M.; Bruni, P. Sphingosine 1-phosphate regulates myogenic differentiation: A major role for S1P2 receptor. FASEB J 2005, 19, 449–451. [Google Scholar]
- Krump-Konvalinkova, V.; Yasuda, S.; Rubic, T.; Makarova, N.; Mages, J.; Erl, W.; Vosseler, C.; Kirkpatrick, C.J.; Tigyi, G.; Siess, W. Stable knock-down of the sphingosine 1-phosphate receptor S1P1 influences multiple functions of human endothelial cells. Arterioscler. Thromb. Vasc. Biol 2005, 25, 546–552. [Google Scholar]
- Halin, C.; Scimone, M.L.; Bonasio, R.; Gauguet, J.M.; Mempel, T.R.; Quackenbush, E.; Proia, R.L.; Mandala, S.; von Andrian, U.H. The S1Panalog FTY720 differentially modulates T-cell homing via HEV: T-cell-expressed S1P1 amplifies integrin activation in peripheral lymph nodes but not in Peyer patches. Blood 2005, 106, 1314–1322. [Google Scholar]
- Tao, R.; Hoover, H.E.; Zhang, J.; Honbo, N.; Alano, C.C.; Karliner, J.S. Cardiomyocyte S1P1 receptor-mediated extracellular signal-related kinase signaling and desensitization. J. Cardiovasc. Pharmacol 2009, 53, 486–494. [Google Scholar]
- Brinkmann, V.; Davis, M.D.; Heise, C.E.; Albert, R.; Cottens, S.; Hof, R.; Bruns, C.; Prieschl, E.; Baumruker, T.; Hiestand, P.; et al. The immune modulator FTY720 targets sphingosine 1-phosphate receptors. J. Biol. Chem 2002, 277, 21453–21457. [Google Scholar]
- Kataoka, H.; Sugahara, K.; Shimano, K.; Teshima, K.; Koyama, M.; Fukunari, A.; Chiba, K. FTY720, sphingosine 1-phosphate receptor modulator, ameliorates experimental autoimmune encephalomyelitis by inhibition of T cell infiltration. Cell. Mol. Immunol 2005, 2, 439–448. [Google Scholar]
- Brinkmann, V. FTY720 (fingolimod) in multiple sclerosis: Therapeutic effects in the immune and the central nervous system. Br. J. Pharmacol 2009, 158, 1173–1182. [Google Scholar]
- Mehling, M.; Lindberg, R.; Raulf, F.; Kuhle, J.; Hess, C.; Kappos, L.; Brinkmann, V. Th17 central memory T cells are reduced by FTY720 in patients with multiple sclerosis. Neurology 2010, 75, 403–410. [Google Scholar]
- Webb, M.; Tham, C.S.; Lin, F.F.; Lariosa-Willingham, K.; Yu, N.; Hale, J.; Mandala, S.; Chun, J.; Rao, T.S. Sphingosine 1-phosphate receptor agonists attenuate relapsing-remitting experimental autoimmune encephalitis in SJL mice. J. Neuroimmunol 2004, 153, 108–121. [Google Scholar]
- Van Doorn, R.; van Horssen, J.; Verzijl, D.; Witte, M.; Ronken, E.; van Het Hof, B.; Lakeman, K.; Dijkstra, C.D.; van der Valk, P.; Reijerkerk, A.; et al. Phingosine 1-phosphate receptor 1 and 3 are upregulated in multiple sclerosis lesions. GLIA 2010, 58, 1465–1476. [Google Scholar]
- Rouach, N.; Pébay, A.; Même, W.; Cordier, J.; Ezan, P.; Etienne, E.; Giaume, C.; Tencé, M. S1P inhibits gap junctions in astrocytes: Involvement of G and Rho GTPase/ROCK. Eur. J. Neurosci 2006, 23, 1453–1464. [Google Scholar]
- Beutler, E. Cladribine (2-chlorodeoxyadenosine). Lancet 1992, 340, 952–956. [Google Scholar]
- Carson, D.A.; Wasson, D.B.; Taetle, R.; Yu, A. Specific toxicity of 2-chlorodeoxyadenosine toward resting and proliferating human lymphocytes. Blood 1983, 62, 737–743. [Google Scholar]
- Yates, D. Multiple sclerosis: Orally administered cladribine displays efficacy in multiple sclerosis trial. Nat. Rev. Neurol 2010, 6, 182. [Google Scholar]
- Giovannoni, G.; Cook, S.; Rammohan, K.; Rieckmann, P.; Sørensen, P.S.; Vermersch, P.; Hamlett, A.; Viglietta, V.; Greenberg, S. CLARITY study group. Sustained disease-activity-free status in patients with relapsingremitting multiple sclerosis treated with cladribine tablets in the CLARITY study: A post-hoc and subgroup analysis. Lancet Neurol 2011, 10, 329–337. [Google Scholar]
- Giovannoni, G.; Comi, G.; Cook, S.; Rammohan, K.; Rieckmann, P.; Soelberg Sørensen, P.; Vermersch, P.; Chang, P.; Hamlett, A.; Musch, B.; et al. A placebocontrolled trial of oral cladribine for relapsing multiple sclerosis. N. Engl. J. Med 2010, 362, 416–426. [Google Scholar]
- Barten, L.J.; Allington, D.R.; Procacci, K.A.; Rivey, M.P. New approaches in the management of multiple sclerosis. Drug Des. Dev. Ther 2010, 4, 343–366. [Google Scholar]
- Minagar, A.; Alexander, J.S.; Sahraian, M.A.; Zivadinov, R. Alemtuzumab and multiple sclerosis: Therapeutic application. Expert Opin. Biol. Ther 2010, 10, 421–429. [Google Scholar]
- Lopez-Diego, R.S.; Weiner, H.L. Novel therapeutic strategies for multiple sclerosis—A multifaceted adversary. Nat. Rev. Drug Discovery 2008, 7, 909–925. [Google Scholar]
- Zabad, R.K.; Metz, L.M.; Todoruk, T.R.; Zhang, Y.; Mitchell, J.R.; Yeung, M.; Patry, D.G.; Bell, R.B.; Yong, V.W. The clinical response to minocycline in multiple sclerosis is accompanied by beneficial immune changes: A pilot study. Mult. Scler 2007, 13, 517–526. [Google Scholar]
- Korn, T. Pathophysiology of multiple sclerosis. J. Neurol 2008, 255, 2–6. [Google Scholar]
- Komiyama, Y.; Nakae, S.; Matsuki, T.; Nambu, A.; Ishigame, H.; Kakuta, S.; Sudo, K.; Iwakura, Y. IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J. Immunol 2006, 177, 566–573. [Google Scholar]
- Steinman, L. Mixed results with modulation of TH-17 cells in human autoimmune diseases. Nat. Immunol 2010, 11, 41–44. [Google Scholar]
- Edwards, L.J.; Robins, R.A.; Constantinescu, C.S. Th17/Th1 phenotype in demyelinating disease. Cytokine 2010, 50, 19–23. [Google Scholar]
- Murphy, A.C.; Lalor, S.J.; Lynch, M.A.; Mills, K.H.G. Infiltration of Th1 and Th17 cells and activation of microglia in the CNS during the course of experimental autoimmune encephalomyelitis. Brain Behav. Immun 2010, 24, 641–651. [Google Scholar]
- Fletcher, J.M.; Lalor, S.J.; Sweeney, C.M.; Tubridy, N.; Mills, K.H.G. T cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Clin. Exp. Immunol 2010, 162, 1–11. [Google Scholar]
- Lovett-Racke, A.E.; Yang, Y.; Racke, M.K. Th1 versus Th17: Are T cell cytokines relevant in multiple sclerosis? Biochim. Biophys. Acta 2011, 1812, 246–251. [Google Scholar]
- Naismith, R.T.; Piccio, L.; Lyons, J.A.; Lauber, J.; Tutlam, N.T.; Parks, B.J.; Trinkaus, K.; Song, S.K.; Cross, A.H. Rituximab addon therapy for breakthrough relapsing multiple sclerosis: A 52-week phase II trial. Neurology 2010, 74, 1860–1867. [Google Scholar]
© 2012 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Amedei, A.; Prisco, D.; D’Elios, M.M. RETRACTED: Multiple Sclerosis: The Role of Cytokines in Pathogenesis and in Therapies. Int. J. Mol. Sci. 2012, 13, 13438-13460. https://doi.org/10.3390/ijms131013438
Amedei A, Prisco D, D’Elios MM. RETRACTED: Multiple Sclerosis: The Role of Cytokines in Pathogenesis and in Therapies. International Journal of Molecular Sciences. 2012; 13(10):13438-13460. https://doi.org/10.3390/ijms131013438
Chicago/Turabian StyleAmedei, Amedeo, Domenico Prisco, and Mario Milco D’Elios. 2012. "RETRACTED: Multiple Sclerosis: The Role of Cytokines in Pathogenesis and in Therapies" International Journal of Molecular Sciences 13, no. 10: 13438-13460. https://doi.org/10.3390/ijms131013438
APA StyleAmedei, A., Prisco, D., & D’Elios, M. M. (2012). RETRACTED: Multiple Sclerosis: The Role of Cytokines in Pathogenesis and in Therapies. International Journal of Molecular Sciences, 13(10), 13438-13460. https://doi.org/10.3390/ijms131013438