DNA Damage and Repair in Epithelium after Allogeneic Hematopoietic Stem Cell Transplantation
Abstract
:1. Introduction
2. What Does the MSI Found in Non-Neoplastic Tissues after Transplantation Point Out?
3. Possible Mechanisms Explaining Genomic Instability after Allo-HCT
3.1. Factors Inducing GI in the Allotransplanted Recipients
3.2. Failure of DNA Repair
3.3. Failure of DNA Damage Checkpoints
3.4. Growth Advantage of GI Clones in the Allotransplanted Recipients
4. Clinical Significance of GI in Allotransplanted Patients
5. Conclusions
Acknowledgments
- Conflict of InterestThe authors declare no conflict of interest.
References
- Bolan, C.D.; Carter, C.S.; Wesley, R.A.; Yau, Y.Y.; Barrett, A.J.; Childs, R.W.; Read, E.J.; Leitman, S.F. Prospective evaluation of cell kinetics, yields and donor experiences during a single large-volume apheresis versus two smaller volume consecutive day collections of allogeneic peripheral blood stem cells. Br. J. Haematol 2003, 120, 801–807. [Google Scholar]
- Little, M.T.; Storb, R. History of haematopoietic stem-cell transplantation. Nat. Rev. Cancer 2002, 2, 231–238. [Google Scholar]
- Copelan, E.A. Hematopoietic stem-cell transplantation. N. Engl. J. Med 2006, 354, 1813–1826. [Google Scholar]
- Lanzkron, S.M.; Collector, M.I.; Sharkis, S.J. Hematopoietic stem cell tracking in vivo: A comparison of short-term and long-term repopulating cells. Blood 1999, 93, 1916–1921. [Google Scholar]
- Zeiser, R.; Marks, R.; Bertz, H.; Finke, J. Immunopathogenesis of acute graft-versus-host disease: Implications for novel preventive and therapeutic strategies. Ann. Hematol 2004, 83, 551–565. [Google Scholar]
- Jiricny, J. Replication errors: Cha(lle)nging the genome. EMBO J 1998, 17, 6427–6436. [Google Scholar]
- Zhivotovsky, B.; Kroemer, G. Apoptosis and genomic instability. Nat. Rev. Mol. Cell Biol 2004, 5, 752–762. [Google Scholar]
- Sieber, O.M.; Heinimann, K.; Tomlinson, I.P. Genomic instability—The engine of tumorigenesis? Nat. Rev. Cancer 2003, 3, 701–708. [Google Scholar]
- Ellegren, H. Microsatellites: Simple sequences with complex evolution. Nat. Rev. Genet 2004, 5, 435–445. [Google Scholar]
- Spyridonidis, A.; Zeiser, R.; Wasch, R.; Bertz, H.; Finke, J. Capillary electrophoresis for chimerism monitoring by PCR amplification of microsatellite markers after allogeneic hematopoietic cell transplantation. Clin. Transplant 2005, 19, 350–356. [Google Scholar]
- Li, Y.C.; Korol, A.B.; Fahima, T.; Beiles, A.; Nevo, E. Microsatellites: Genomic distribution, putative functions and mutational mechanisms: A review. Mol. Ecol 2002, 11, 2453–2465. [Google Scholar]
- Mirkin, S.M. Expandable DNA repeats and human disease. Nature 2007, 447, 932–940. [Google Scholar]
- Slebos, R.J.; Oh, D.S.; Umbach, D.M.; Taylor, J.A. Mutations in tetranucleotide repeats following DNA damage depend on repeat sequence and carcinogenic agent. Cancer Res 2002, 62, 6052–6060. [Google Scholar]
- Boland, C.R.; Thibodeau, S.N.; Hamilton, S.R.; Sidransky, D.; Eshleman, J.R.; Burt, R.W.; Meltzer, S.J.; Rodriguez-Bigas, M.A.; Fodde, R.; Ranzani, G.N.; et al. A national cancer institute workshop on microsatellite instability for cancer detection and familial predisposition: Development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res 1998, 58, 5248–5257. [Google Scholar]
- Sood, A.K.; Holmes, R.; Hendrix, M.J.; Buller, R.E. Application of the national cancer institute international criteria for determination of microsatellite instability in ovarian cancer. Cancer Res 2001, 61, 4371–4374. [Google Scholar]
- Xu, L.; Chow, J.; Bonacum, J.; Eisenberger, C.; Ahrendt, S.A.; Spafford, M.; Wu, L.; Lee, S.M.; Piantadosi, S.; Tockman, M.S.; et al. Microsatellite instability at AAAG repeat sequences in respiratory tract cancers. Int. J. Cancer 2001, 91, 200–204. [Google Scholar]
- Danaee, H.; Nelson, H.H.; Karagas, M.R.; Schned, A.R.; Ashok, T.D.; Hirao, T.; Perry, A.E.; Kelsey, K.T. Microsatellite instability at tetranucleotide repeats in skin and bladder cancer. Oncogene 2002, 21, 4894–4899. [Google Scholar]
- Chen, S.H.; Li, X.; Huang, X.J. Effect of recombinant human granulocyte colony-stimulating factor on T-lymphocyte function and the mechanism of this effect. Int. J. Hematol 2004, 79, 178–184. [Google Scholar]
- Sohn, S.K.; Kim, J.G.; Sung, W.J.; Kim, D.H.; Suh, J.S.; Lee, K.S.; Lee, K.B. Harvesting peripheral blood stem cells from healthy donors on 4th day of cytokine mobilization. J. Clin. Apher 2003, 18, 186–189. [Google Scholar]
- Willenbucher, R.F.; Aust, D.E.; Chang, C.G.; Zelman, S.J.; Ferrell, L.D.; Moore, D.H., II; Waldman, F.M. Genomic instability is an early event during the progression pathway of ulcerative-colitis-related neoplasia. Am. J. Pathol. 1999, 154, 1825–1830. [Google Scholar]
- Faber, P.; Fisch, P.; Waterhouse, M.; Schmitt-Graff, A.; Bertz, H.; Finke, J.; Spyridonidis, A. Frequent genomic alterations in epithelium measured by microsatellite instability following allogeneic hematopoietic cell transplantation in humans. Blood 2006, 107, 3389–3396. [Google Scholar]
- Themeli, M.; Petrikkos, L.; Waterhouse, M.; Bertz, H.; Lagadinou, E.; Zoumbos, N.; Finke, J.; Spyridonidis, A. Alloreactive microenvironment after human hematopoietic cell transplantation induces genomic alterations in epithelium through an ROS-mediated mechanism: in vivo and in vitro study and implications to secondary neoplasia. Leukemia 2010, 24, 536–543. [Google Scholar]
- Khan, F.M.; Sy, S.; Louie, P.; Ugarte-Torres, A.; Berka, N.; Sinclair, G.D.; Stewart, D.A.; Russell, J.A.; Storek, J. Genomic instability after allogeneic hematopoietic cell transplantation is frequent in oral mucosa, particularly in patients with a history of chronic graft-versus-host disease, and rare in nasal mucosa. Blood 2010, 116, 1803–1806. [Google Scholar]
- Sloand, E.M.; Pfannes, L.; Ling, C.; Feng, X.; Jasek, M.; Calado, R.; Tucker, Z.C.; Hematti, P.; Maciejewski, J.; Dunbar, C.; et al. Graft-versus-host disease: role of inflammation in the development of chromosomal abnormalities of keratinocytes. Biol. Blood Marrow Transplant 2010, 16, 1665–1673. [Google Scholar]
- Mao, L.; Lee, D.J.; Tockman, M.S.; Erozan, Y.S.; Askin, F.; Sidransky, D. Microsatellite alterations as clonal markers for the detection of human cancer. Proc. Natl. Acad. Sci. USA 1994, 91, 9871–9875. [Google Scholar]
- Teshima, T.; Ferrara, J.L. Understanding the alloresponse: New approaches to graft-versus-host disease prevention. Semin. Hematol 2002, 39, 15–22. [Google Scholar]
- Kusunoki, Y.; Hamasaki, K.; Koyama, K.; Imai, K.; Hayashi, T.; Martin, P.J.; Nakachi, K. Increased DNA damage in hematopoietic cells of mice with graft-versus-host disease. Mutat. Res 2010, 689, 59–64. [Google Scholar]
- Wiseman, H.; Halliwell, B. Damage to DNA by reactive oxygen and nitrogen species: Role in inflammatory disease and progression to cancer. Biochem. J 1996, 313, 17–29. [Google Scholar]
- Gasche, C.; Chang, C.L.; Rhees, J.; Goel, A.; Boland, C.R. Oxidative stress increases frameshift mutations in human colorectal cancer cells. Cancer Res 2001, 61, 7444–7448. [Google Scholar]
- Chang, C.L.; Marra, G.; Chauhan, D.P.; Ha, H.T.; Chang, D.K.; Ricciardiello, L.; Randolph, A.; Carethers, J.M.; Boland, C.R. Oxidative stress inactivates the human DNA mismatch repair system. Am. J. Physiol. Cell Physiol 2002, 283, C148–C154. [Google Scholar]
- Seril, D.N.; Liao, J.; Yang, G.Y.; Yang, C.S. Oxidative stress and ulcerative colitis-associated carcinogenesis: studies in humans and animal models. Carcinogenesis 2003, 24, 353–362. [Google Scholar]
- Cerutti, P.A. Oxy-radicals and cancer. Lancet 1994, 344, 862–863. [Google Scholar]
- Jaiswal, M.; LaRusso, N.F.; Burgart, L.J.; Gores, G.J. Inflammatory cytokines induce DNA damage and inhibit DNA repair in cholangiocarcinoma cells by a nitric oxide-dependent mechanism. Cancer Res 2000, 60, 184–190. [Google Scholar]
- Seidelin, J.B.; Nielsen, O.H. Continuous cytokine exposure of colonic epithelial cells induces DNA damage. Eur. J. Gastroenterol. Hepatol 2005, 17, 363–369. [Google Scholar]
- Drobyski, W.R.; Keever, C.A.; Hanson, G.A.; McAuliffe, T.; Griffith, O.W. Inhibition of nitric oxide production is associated with enhanced weight loss, decreased survival, and impaired alloengraftment in mice undergoing graft-versus-host disease after bone marrow transplantation. Blood 1994, 84, 2363–2373. [Google Scholar]
- Flanagan, D.M.; Jennings, C.D.; Goes, S.W.; Caywood, B.E.; Gross, R.; Kaplan, A.M.; Bryson, J.S. Nitric oxide participates in the intestinal pathology associated with murine syngeneic graft-versus-host disease. J. Leukoc. Biol 2002, 72, 762–768. [Google Scholar]
- Choi, I.C.; Fung, P.C.; Leung, A.Y.; Lie, A.K.; Liang, R. Plasma nitric oxide is associated with the occurrence of moderate to severe acute graft-versus-host disease in haemopoietic stem cell transplant recipients. Haematologica 2001, 86, 972–976. [Google Scholar]
- Christmann, M.; Tomicic, M.T.; Roos, W.P.; Kaina, B. Mechanisms of human DNA repair: An update. Toxicology 2003, 193, 3–34. [Google Scholar]
- Boyer, J.C.; Yamada, N.A.; Roques, C.N.; Hatch, S.B.; Riess, K.; Farber, R.A. Sequence dependent instability of mononucleotide microsatellites in cultured mismatch repair proficient and deficient mammalian cells. Hum. Mol. Genet 2002, 11, 707–713. [Google Scholar]
- Boyer, J.C.; Umar, A.; Risinger, J.I.; Lipford, J.R.; Kane, M.; Yin, S.; Barrett, J.C.; Kolodner, R.D.; Kunkel, T.A. Microsatellite instability, mismatch repair deficiency, and genetic defects in human cancer cell lines. Cancer Res 1995, 55, 6063–6070. [Google Scholar]
- Liu, J.; Albarracin, C.T.; Chang, K.H.; Thompson-Lanza, J.A.; Zheng, W.; Gershenson, D.M.; Broaddus, R.; Luthra, R. Microsatellite instability and expression of hMLH1 and hMSH2 proteins in ovarian endometrioid cancer. Mod. Pathol 2004, 17, 75–80. [Google Scholar]
- Yao, Y.; Tao, H.; Kim, J.J.; Burkhead, B.; Carloni, E.; Gasbarrini, A.; Sepulveda, A.R. Alterations of DNA mismatch repair proteins and microsatellite instability levels in gastric cancer cell lines. Lab. Invest 2004, 84, 915–922. [Google Scholar]
- Kane, M.F.; Loda, M.; Gaida, G.M.; Lipman, J.; Mishra, R.; Goldman, H.; Jessup, J.M.; Kolodner, R. Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res 1997, 57, 808–811. [Google Scholar]
- Fleisher, A.S.; Esteller, M.; Wang, S.; Tamura, G.; Suzuki, H.; Yin, J.; Zou, T.T.; Abraham, J.M.; Kong, D.; Smolinski, K.N.; et al. Hypermethylation of the hMLH1 gene promoter in human gastric cancers with microsatellite instability. Cancer Res 1999, 59, 1090–1095. [Google Scholar]
- Valeri, N.; Gasparini, P.; Fabbri, M.; Braconi, C.; Veronese, A.; Lovat, F.; Adair, B.; Vannini, I.; Fanini, F.; Bottoni, A.; et al. Modulation of mismatch repair and genomic stability by miR-155. Proc. Natl. Acad. Sci. USA 2010, 107, 6982–6987. [Google Scholar]
- Hofseth, L.J.; Khan, M.A.; Ambrose, M.; Nikolayeva, O.; Xu-Welliver, M.; Kartalou, M.; Hussain, S.P.; Roth, R.B.; Zhou, X.; Mechanic, L.E.; et al. The adaptive imbalance in base excision-repair enzymes generates microsatellite instability in chronic inflammation. J. Clin. Invest 2003, 112, 1887–1894. [Google Scholar]
- Yamada, N.A.; Farber, R.A. Induction of a low level of microsatellite instability by overexpression of DNA polymerase Beta. Cancer Res 2002, 62, 6061–6064. [Google Scholar]
- Bergoglio, V.; Pillaire, M.J.; Lacroix-Triki, M.; Raynaud-Messina, B.; Canitrot, Y.; Bieth, A.; Gares, M.; Wright, M.; Delsol, G.; Loeb, L.A.; et al. Deregulated DNA polymerase beta induces chromosome instability and tumorigenesis. Cancer Res 2002, 62, 3511–3514. [Google Scholar]
- Arora, M.; Lindgren, B.; Basu, S.; Nagaraj, S.; Gross, M.; Weisdorf, D.; Thyagarajan, B. Polymorphisms in the base excision repair pathway and graft-versus-host disease. Leukemia 2010, 24, 1470–1475. [Google Scholar]
- Kenyon, J.; Fu, P.; Lingas, K.; Thomas, E.; Saurastri, A.; Santos Guasch, G.; Wald, D.; Gerson, S.L. Humans accumulate microsatellite instability with acquired loss of MLH1 protein in hematopoietic stem and progenitor cells as a function of age. Blood 2012. [Google Scholar] [CrossRef]
- Ahrendt, S.A.; Decker, P.A.; Doffek, K.; Wang, B.; Xu, L.; Demeure, M.J.; Jen, J.; Sidransky, D. Microsatellite instability at selected tetranucleotide repeats is associated with p53 mutations in non-small cell lung cancer. Cancer Res 2000, 60, 2488–2491. [Google Scholar]
- Hussain, S.P.; Amstad, P.; Raja, K.; Ambs, S.; Nagashima, M.; Bennett, W.P.; Shields, P.G.; Ham, A.J.; Swenberg, J.A.; Marrogi, A.J.; et al. Increased p53 mutation load in noncancerous colon tissue from ulcerative colitis: A cancer-prone chronic inflammatory disease. Cancer Res 2000, 60, 3333–3337. [Google Scholar]
- Inazuka, M.; Tahira, T.; Horiuchi, T.; Harashima, S.; Sawabe, T.; Kondo, M.; Miyahara, H.; Hayashi, K. Analysis of p53 tumour suppressor gene somatic mutations in rheumatoid arthritis synovium. Rheumatology (Oxford) 2000, 39, 262–266. [Google Scholar]
- Deeg, H.J.; Socie, G. Malignancies after hematopoietic stem cell transplantation: many questions, some answers. Blood 1998, 91, 1833–1844. [Google Scholar]
- Hirata, T.; Yamamoto, H.; Taniguchi, H.; Horiuchi, S.; Oki, M.; Adachi, Y.; Imai, K.; Shinomura, Y. Characterization of the immune escape phenotype of human gastric cancers with and without high-frequency microsatellite instability. J. Pathol 2007, 211, 516–523. [Google Scholar]
- Kloor, M.; Becker, C.; Benner, A.; Woerner, S.M.; Gebert, J.; Ferrone, S.; von Knebel Doeberitz, M. Immunoselective pressure and human leukocyte antigen class I antigen machinery defects in microsatellite unstable colorectal cancers. Cancer Res 2005, 65, 6418–6424. [Google Scholar]
- Li, Y.C.; Korol, A.B.; Fahima, T.; Nevo, E. Microsatellites within genes: Structure, function, and evolution. Mol. Biol. Evol 2004, 21, 991–1007. [Google Scholar]
- Ecker, J.R.; Bickmore, W.A.; Barroso, I.; Pritchard, J.K.; Gilad, Y.; Segal, E. Genomics: ENCODE explained. Nature 2012, 489, 52–55. [Google Scholar]
- Curtis, R.E.; Metayer, C.; Rizzo, J.D.; Socie, G.; Sobocinski, K.A.; Flowers, M.E.; Travis, W.D.; Travis, L.B.; Horowitz, M.M.; Deeg, H.J. Impact of chronic GVHD therapy on the development of squamous-cell cancers after hematopoietic stem-cell transplantation: An international case-control study. Blood 2005, 105, 3802–3811. [Google Scholar]
© 2012 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Themeli, M.; Spyridonidis, A. DNA Damage and Repair in Epithelium after Allogeneic Hematopoietic Stem Cell Transplantation. Int. J. Mol. Sci. 2012, 13, 15813-15825. https://doi.org/10.3390/ijms131215813
Themeli M, Spyridonidis A. DNA Damage and Repair in Epithelium after Allogeneic Hematopoietic Stem Cell Transplantation. International Journal of Molecular Sciences. 2012; 13(12):15813-15825. https://doi.org/10.3390/ijms131215813
Chicago/Turabian StyleThemeli, Maria, and Alexandros Spyridonidis. 2012. "DNA Damage and Repair in Epithelium after Allogeneic Hematopoietic Stem Cell Transplantation" International Journal of Molecular Sciences 13, no. 12: 15813-15825. https://doi.org/10.3390/ijms131215813
APA StyleThemeli, M., & Spyridonidis, A. (2012). DNA Damage and Repair in Epithelium after Allogeneic Hematopoietic Stem Cell Transplantation. International Journal of Molecular Sciences, 13(12), 15813-15825. https://doi.org/10.3390/ijms131215813