Seasonal Variations of the Antioxidant Composition in Ground Bamboo Sasa argenteastriatus Leaves
Abstract
:1. Introduction
2. Results and Discussion
2.1. Seasonal Variation of the Active Components Content in Sasa argenteastriatus Leaves
2.2. Seasonal Variation in Antioxidant Activities of Bamboo Leaves
2.3. Correlation Analysis
2.4. RP-HPLC Analyses of Eight Characteristics Compounds in Bamboo Leaves
3. Experimental Section
3.1. Plant Material Collection and Extraction
3.2. Determination of TP, TF and TT Content
3.3. Determination of Antioxidant Activity
3.4. Eight Bamboo Characteristic Compounds Analysis by RP-HPLC
3.5. Statistical Analysis
4. Conclusions
Acknowledgments
References
- Martinez-Cayuela, M. Oxygen free radicals and human disease. Biochimie 1995, 77, 147–161. [Google Scholar]
- Halliwell, B. Antioxidant in human health and disease. Annu. Rev. Nutr 1996, 16, 33–50. [Google Scholar]
- Raha, S.; Robinson, B.H. Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem. Sci 2000, 25, 502–508. [Google Scholar]
- Choi, D.B.; Cho, K.A.; Na, M.S.; Choi, H.S.; Kim, Y.O.; Lim, D.H.; Cho, S.J.; Cho, H. Effect of bamboo oil on antioxidative activity and nitrite scavenging activity. J. Ind. Eng. Chem 2008, 14, 765–770. [Google Scholar]
- Vieira, F.G.K.; Borges, G.D.S.C.; Copetti, C.; Pietro, P.F.D.; Nuens, E.D.C.; Fett, R. Phenolic compounds and antioxidant activity of the apple flesh and peel of eleven cultivars grown in Brazil. Sci. Hortic 2011, 128, 261–266. [Google Scholar]
- Andarwulan, N.; Batari, R.; Sandrasari, D.A.; Bolling, B.; Wijaya, H. Flavonoid content and antioxidant activity of vegetables from Indonesia. Food Chem 2010, 121, 1231–1235. [Google Scholar]
- Liu, C.H.; Yen, M.H.; Tsang, S.F.; Gan, K.H.; Hsu, H.Y.; Lin, C.N. Antioxidant triterpenoids from the stems of Momordica charantia. Food Chem 2010, 118, 751–756. [Google Scholar]
- Lu, B.; Wu, X.; Tie, X.; Zhang, Y.; Zhang, Y. Toxicology and safety of anti-oxidant of bamboo leaves. Part 1: Acute and subchronic toxitiy studies on anti-oxidant of bamboo leaves. Food Chem. Toxicol 2005, 43, 783–792. [Google Scholar]
- Hu, C.; Zhang, Y.; Kitts, D.D. Evaluation of antioxidant and prooxidant activities of bamboo Phyllostachys nigra var. henonis leaf extraction in vitro. J. Agric. Food Chem 2000, 48, 3170–3176. [Google Scholar]
- Zhang, Y.; Jiao, J.; Liu, C.; Wu, X.; Zhang, Y. Isolation and purification of four flavone C-glycosides from antioxidant of bamboo leaves by macroporous resin column chromatography and preparative high-performance liquid chromatography. Food Chem 2008, 107, 1326–1336. [Google Scholar]
- He, Y.-J.; Yue, Y.-D. A review of the effective component and applications of extracts from bamboo leaves. Biomass Chem. Eng 2008, 3, 31–37. [Google Scholar]
- Zhang, Y.; Wu, X.Q.; Yu, Z.Y. Comparison study on total flavonoid content and anti-free radical activity of the leaves of bamboo, Phyllostachys nigra, and Ginkgo bilabo. China Pharm. J 2002, 27, 254–257. [Google Scholar]
- Zhang, Y.; Gong, J.Y.; Li, D.; Xi, J.Y. Advanced research of bamboo leaf flavonoids(II): Reducing and protecting mechanism of bamboo leaf phenolic chemicals from acrylamideand its toxicity. China Food Addit 2009, 5. [Google Scholar]
- Lu, B.; Zhang, Y.; Wu, X. Advances in studies on antioxidative activity and cardio-cerebrovascular pharmacology of bamboo-leaf-flavonoids. Chem. Ind. Forest Prod 2005, 23, 120–124. [Google Scholar]
- Ni, Q.; Liu, Y.; Gong, L.; Lin, X.; Fang, W.; Zhang, Y. Active components in six kinds of ground bamboo leaves and their anti-oxidant activities. China Zhong Cao Yao 2011, 42, 2317–2321. [Google Scholar]
- Suyama, Y.; Obayashi, K.; Hayashi, I. Clonal structure in a dwarf bamboo (Sasa senanensis) population inferred from amplified fragment length polymorphism (AFLP) fingerprints. Mol. Ecol 2000, 9, 901–906. [Google Scholar]
- ItÔ, H.; Hino, T. Dwarf bamboo as an ecological filter for forest regeneration. Ecol. Res 2007, 22, 706–711. [Google Scholar]
- Huang, C.; Yao, Y.; Zhao, C. A study on the major nutrient components of new leaves of Shibataea hispida in anhui province. J. Bamboo Res 2004, 23, 42–46. [Google Scholar]
- Wang, B.; Ding, Y.; Wang, K.; Li, Q. Assessment of feeding value of leaves of Arundinaria argenteastriatus. Chin. Forest. Sci. Technol 2008, 22, 58–60. [Google Scholar]
- Toor, P.K.; Savage, G.P.; Lister, C.E. Seasonal variations in the antioxidant composition of greenhouse grown tomatoes. J. Food Compos. Anal 2006, 19, 1–10. [Google Scholar]
- Raffo, A.; Malfa, G.L.; Fogliano, V.; Maiani, G.; Quaglia, G. Seasonal variations in antioxidant components of cherry tomatoes (Lycopersicon esculentum cv. Naomi F1). J. Food Compos. Anal 2006, 19, 11–19. [Google Scholar]
- Zhang, Y.; Wu, X.Q.; Yu, Z.Y. Studies on seasonal variation of flavonoids and lactones in bamboo leaves. Chem. Ind. Forest Prod 2002, 22, 65–69. [Google Scholar]
- Smina, T.P.; Mathew, J.; Janardhanan, K.K.; Devasagayam, T.P. Antioxidant activity and toxicity profile of total triterpenes isolated from Ganoderma lucidum (Fr.) P. Karst occurring in South India. Environ. Toxicol. Pharmacol 2011, 32, 438–446. [Google Scholar]
- Zhang, G.; He, L.; Hu, M. Optimized ultrasonic-assisted extraction of flavonoids from Prunella vulgaris L. and evaluation of antioxidant activities in vitro. Innov. Food Sci. Emerg. Techonol 2011, 12, 18–25. [Google Scholar]
- Kunyanga, C.N.; Imungi, J.K.; Okoth, M.W.; Biesalski, H.K.; Vadivel, V. Total phenolic content, antioxidant and antidiabetic properties of methanolic extract of raw and traditionally processed Kenyan indigenous food ingredients. LWT Food Sci. Technol 2012, 45, 269–276. [Google Scholar]
- Dueñas, M.; Hernández, T.; Estrella, I. Assessemnt of in vitro antioxidant capacity of the seed coat and the cotyledon of legumes in relation to their phenolic contents. Food Chem 2006, 98, 95–103. [Google Scholar]
- Tsantili, E.; Konstantinidis, K.; Christopoulos, M.V.; Roussos, P.A. Total phenolics and flavonoids and total antioxidant capacity in pistachio (Pistachia vera L.) nuts in relation to cultivars and storage conditions. Sci. Hortic 2011, 129, 694–701. [Google Scholar]
- Hasegawa, T.; Tanaka, A.; Hosoda, A.; Takano, F.; Ohta, T. Antioxidant C-glycosyl flavones from the leaves of Sasa kurilensis var. gigantean. Phytochemistry 2008, 69, 1419–1424. [Google Scholar]
- Kweon, M.H.; Hwang, H.J.; Sung, H.C. Identification and antioxidant activity of novel chlorogenic acid derivatives from bamboo (Phyllostachys edulis). J. Agric. Food Chem 2001, 49, 4646–4655. [Google Scholar]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-cocalteu reagent. Methods Enzymol 1999, 299, 152–178. [Google Scholar]
- Jia, Z.; Tang, M.; Wu, J. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 1999, 64, 555–559. [Google Scholar]
- Juan, M.Y.; Chou, C.C. Enhancement of antioxidant activity, total phenolic and flavonoid content of black soybeans by solid state fermentation with Bacillus subtilis BCRC 14715. Food Microbiol 2010, 27, 586–591. [Google Scholar]
- Xiang, Z.B.; Tang, C.H.; Chen, G.; Shi, Y.S. Studies on colorimetric determination of oleanolic acid in Chinese quince. Nat. Prod. Res. Dev 2001, 13, 23–26. [Google Scholar]
- Chen, Y.; Xie, M.Y.; Gong, X.F. Microwave-assisted extraction used for the isolation of total triterpenoid saponins from Ganoderma atrum. J. Food Eng 2007, 81, 162–170. [Google Scholar]
- Brand-williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol 1995, 28, 25–30. [Google Scholar]
- Rawat, S.; Bhatt, I.D.; Rawal, R.S. Total phenolic compounds and antioxidant potential of Hedychium spicatum Buch. Ham. Ex D. Don in west Himalaya, India. J. Food Compos. Anal 2011, 24, 574–579. [Google Scholar]
- Benzie, I.F.; Strains, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “Antioxidant Power”: The FRAP assay. Anal. Biochem 1996, 239, 70–76. [Google Scholar]
- Zhou, H.C.; Lin, Y.M.; Li, Y.Y.; Li, M.; Wei, S.D.; Chai, W.M.; Tam, N.F. Antioxidant properties of polymeric proanthocyanidins from fruit stones and pericarps of Litchi chinensis Sonn. Food Res. Int 2011, 44, 613–620. [Google Scholar]
- Nicolai, A.; Filser, J.; Lenz, R.; Bertrand, C.; Charrier, M. Adjustment of metabolite composition in the haemolymph to seasonal variations in the land snail Helix pomatia. J. Comp. Physiol. B 2011, 181, 457–466. [Google Scholar]
- SPSS, version 16.0; SPSS Inc. Prentice Hall: Chicago, IL, USA, 2007.
Month of Harvest | Caffeic Acid (μg/g, DW) | Orientin (μg/g, DW) | p-Coumaric Acid (μg/g, DW) | Homovitexin (μg/g, DW) | Ferulic Acid (μg/g, DW) |
---|---|---|---|---|---|
January | 0.37 ± 0.003 | 1.78 * ± 0.012 | 0.98 * ± 0.005 | 1.04 * ± 0.018 | 0.17 ± 0.002 |
February | 0.41 ± 0.008 | 0.98 * ± 0.007 | 0.73 ± 0.009 | 1.08 * ± 0.023 | 0.12 ± 0.001 |
March | 0.39 ± 0.003 | 0.30 ± 0.002 | 0.41 ± 0.004 | 1.06 * ± 0.013 | 0.15 ± 0.001 |
April | 0.37 ± 0.002 | 0.45 ± 0.004 | 0.50 ± 0.007 | 1.16 * ± 0.021 | 0.12 ± 0.001 |
May | 0.72 ** ± 0.007 | 1.41 * ± 0.009 | 1.33 ** ± 0.007 | 0.58 ± 0.008 | 0.14 ± 0.001 |
June | 0.64 ** ± 0.004 | 2.32 ** ± 0.016 | 1.47 ** ± 0.012 | 0.67 ± 0.006 | 0.17 ± 0.003 |
July | 0.43 ± 0.003 | 3.04 ** ± 0.019 | 1.39 ** ± 0.019 | 0.79 ± 0.011 | 0.18 ± 0.003 |
August | 0.47 * ± 0.004 | 2.76 ** ± 0.013 | 1.04 * ± 0.016 | 0.61 ± 0.005 | 0.18 ± 0.002 |
September | 0.40 ± 0.008 | 4.55 ** ± 0.018 | 0.58 ± 0.008 | 1.19 * ± 0.020 | 0.39 * ± 0.009 |
October | 0.41 ± 0.006 | 6.23 ** ± 0.025 | 0.48 ± 0.006 | 1.59 ** ± 0.025 | 0.44 * ± 0.006 |
November | 0.39 ± 0.003 | 3.44 ** ± 0.037 | 0.55 ± 0.009 | 1.63 ** ± 0.017 | 0.34 * ± 0.005 |
December | 0.38 ± 0.004 | 4.66 ** ± 0.052 | 0.88 * ± 0.013 | 1.55 ** ± 0.029 | 0.30 * ± 0.002 |
Compounds | Retention Time (min) | Equations | r | Linear Range (μg/mL) | Precision, RSD% | Repeatability, RSD% | Stability, RSD% | Recovery%, RSD% |
---|---|---|---|---|---|---|---|---|
Chlorogenic acid | 7.827 | 0.9997 | 2.75~55.0 | 1.49 | 1.58 | 2.06 | 102.65, 1.94 | |
Caffeic acid | 11.985 | 0.9965 | 4.5~90.0 | 0.93 | 1.03 | 1.29 | 101.97, 1.58 | |
Isoorientin | 15.927 | 0.9993 | 3.0~60.0 | 1.32 | 0.89 | 1.07 | 99.21, 1.12 | |
Orientin | 17.366 | 0.9979 | 6.55~131.0 | 1.17 | 1.27 | 1.54 | 103.11, 1.89 | |
p-coumaric acid | 21.069 | 0.9979 | 3.75~75.0 | 1.86 | 1.51 | 1.87 | 98.26, 2.04 | |
Vitexin | 23.015 | 0.9984 | 2.75~55.0 | 1.05 | 0.95 | 1.74 | 99.56, 1.75 | |
Homovitexin | 23.649 | 0.9995 | 2.5~50.0 | 2.47 | 1.35 | 2.01 | 101.97, 1.47 | |
Ferulic acid | 23.971 | 0.9999 | 2.75~55.0 | 0.93 | 1.16 | 1.96 | 97.75, 1.92 |
© 2012 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Ni, Q.; Xu, G.; Wang, Z.; Gao, Q.; Wang, S.; Zhang, Y. Seasonal Variations of the Antioxidant Composition in Ground Bamboo Sasa argenteastriatus Leaves. Int. J. Mol. Sci. 2012, 13, 2249-2262. https://doi.org/10.3390/ijms13022249
Ni Q, Xu G, Wang Z, Gao Q, Wang S, Zhang Y. Seasonal Variations of the Antioxidant Composition in Ground Bamboo Sasa argenteastriatus Leaves. International Journal of Molecular Sciences. 2012; 13(2):2249-2262. https://doi.org/10.3390/ijms13022249
Chicago/Turabian StyleNi, Qinxue, Guangzhi Xu, Zhiqiang Wang, Qianxin Gao, Shu Wang, and Youzuo Zhang. 2012. "Seasonal Variations of the Antioxidant Composition in Ground Bamboo Sasa argenteastriatus Leaves" International Journal of Molecular Sciences 13, no. 2: 2249-2262. https://doi.org/10.3390/ijms13022249
APA StyleNi, Q., Xu, G., Wang, Z., Gao, Q., Wang, S., & Zhang, Y. (2012). Seasonal Variations of the Antioxidant Composition in Ground Bamboo Sasa argenteastriatus Leaves. International Journal of Molecular Sciences, 13(2), 2249-2262. https://doi.org/10.3390/ijms13022249