Optimization of Serine Protease Purification from Mango (Mangifera indica cv. Chokanan) Peel in Polyethylene Glycol/Dextran Aqueous Two Phase System
Abstract
:1. Introduction
2. Results and Discussions
2.1. Effect of PEG Molecular Weight on Partitioning of Serine Protease
2.2. Effect of TLL on Serine Protease Partitioning
2.3. Effect of pH on Partitioning of Serine Protease
2.4. Effect of NaCl on Partitioning of Serine Protease
2.5. Validation of Empirical Equation
3. Experimental Section
3.1. Materials
3.2. Extraction Procedure of Serine Protease from Mango Peel
3.3. Preparation of PEG/Dextran ATPS
3.4. Analytical Tests
3.4.1. Proteolytic Activity Assays
3.4.2. Bicinchoninic Acid Assay
3.4.3. Determination of Partition Coefficient, Purification Factor and Yield
3.5. Experimental Design and Statistical Analysis
3.6. Optimization and Validation Procedures
4. Conclusion
References
- Aehle, W. Enzymes in Industry: Production and Application; Wiley-VCH: New York, NY, USA, 2004. [Google Scholar]
- Tomar, R.; Kumqr, R.; Jagannadham, M.V. A stable serine protease, Wrightin, from the latex of the plant Wrightia tinctoria (Roxb.) R. Br.: Purification and biochemical properties. J. Agric. Food Chem 2008, 56, 1479–1487. [Google Scholar]
- Sumantha, A.; Larroche, C.; Pandey, A. Microbiology and industrial biotechnology of food-grade proteases: A perspective. Food Technol. Biotechnol 2006, 44, 211–220. [Google Scholar]
- Postharvest Management of Fruit and Vegetables in the Asia-Pacific Region; Rolle, R.S. (Ed.) Asian Productivity Organization: Tokyo, Japan, 2005.
- Ajila, C.M.; Naidu, K.A.; Bhat, S.G.; Prasada Rao, U.J.S. Valuable components of raw and ripe peels from two Indian mango varieties. Food Chem 2007, 102, 1006–1011. [Google Scholar]
- Negro, C.; Tommasi, L.; Miceli, A. Phenolic compounds and antioxidant activity from red grape mare extract. Bioresour. Technol 2003, 87, 41–44. [Google Scholar]
- Zhang, M.; Hub, P.; Liang, Q.; Yang, H.; Liu, Y.; Wang, G.L. Direct process integration of extraction and expanded bed adsorption in the recovery of crocetin derivatives from Fructus gardenia. J. Chromatogr. B 2007, 858, 220–226. [Google Scholar]
- Gupta, R.; Beg, Q.K.; Larenz, P. Bacterial alkaline proteases: Molecular approaches and industrial applications. Appl. Microbiol. Biotechnol 2002, 59, 15–32. [Google Scholar]
- Chen, J.P.; Lee, M.S. Enhanced production of Serratia marcescens chitinase in PEG/dextran aqueous two-phase systems. Enzym. Microb. Technol 1995, 17, 1021–1027. [Google Scholar]
- Andersson, E.; Hahn-Hägerdal, B. Bioconversions in aqueous two-phase systems. Enzym. Microb. Technol 1990, 12, 242–254. [Google Scholar]
- Tianwei, T.; Qing, H.; Qiang, L. Purification of glycyrrhizin from Glycyrrhiza uralensis fisch with ethanol/phosphate aqueous two phase system. Biotechnol. Lett 2002, 24, 1417–1420. [Google Scholar]
- Venâncio, A.; Almeida, C.; Teixeira, J. Enzyme purification with “aqueous two-phase systems” comparison between systems composed of pure polymers and systems composed of crude polymers. J. Chromatogr. B Biomed. Appl 1996, 680, 131–136. [Google Scholar]
- Kula, M.R. Using Aqueous Two-Phase Systems; Plenum Press: New York NY, USA, 1989. [Google Scholar]
- Sturesson, S.; Tjerneld, F.; Johansson, G. Partition of macromolecules and cell particles in aqueous two-phase systems based on hydroxypropyl starch and poly ethylene glycol. Appl. Biochem. Biotechnol 1990, 26, 281–295. [Google Scholar]
- Gianfreda, L.; Greco, G. The stabilizing effect of soluble macromolecules on enzyme performance. Biotechnol. Lett 1981, 3, 33–38. [Google Scholar]
- Lee, Y.H.; Chang, H.N. Production of alkaline protease by Bacillus licheniformis in an aqueous two-phase system. Ferment. Bioeng 1990, 69, 89–92. [Google Scholar]
- Amid, M.; Chin Ping, T.; Mirhosseini, H.; Norashikin, A.; Tau Chuan, L. Optimisation of serine protease extraction from mango peel (Mangifera indica cv. Chokanan). Food Chem 2011, 124, 666–671. [Google Scholar]
- Grossman, P.D.; Gainer, J.L. Correlation of aqueous two-phase partitioning of proteins with changes in free volume. Biotechnol. Prog 1988, 4, 6–11. [Google Scholar]
- Rito-Palomares, M.; Hernandez, M. Influence of system and process parameters on partitioning of cheese whey proteins in aqueous two-phase systems. J. Chromatogr. B Biomed. Sci. Appl 1998, 711, 81–90. [Google Scholar]
- Zaslavsky, B.Y. Aqueous Two-Phase Partitioning: Physical Chemistry and Bioanalytical Applications; Marcel Dekker: New York, NY, USA, 1995. [Google Scholar]
- Joglekar, A.M.; May, A.T. Product excellence through design of experiments. Cereal Foods World 1987, 32, 857–868. [Google Scholar]
- Montgomery, D.C. Design and Analysis of Experiments; John Wiley & Sons: New York, NY, USA, 2001. [Google Scholar]
- Albertsson, P.A. Partition of Cell Particles and Macromolecules; Wiley Interscience: New York, NY, USA, 1987. [Google Scholar]
- Draginja, M.P.; Senka, M.P.; Ljiljana, R.P. Optimization of conditions for acid protease partitioning and purification in aqueous two-phase systems using response surface methodology. Biotechnol. Lett 2009, 31, 43–47. [Google Scholar]
- Ling, Y.Q.; Nie, H.L.; Su, S.N.; White, C.B.; Zhu, L.M. Optimization of affinity partitioning conditions of papain in aqueous two-phase system using response surface methodology. Sep. Purif. Technol 2010, 73, 343–348. [Google Scholar]
- Dosoretz, C.G.; Chen, H.C.; Grethlein, H.E. Effect of environmental conditions on extracellular protease activity in lignolytic cultures of Phanerochaete chrysosporium. Appl. Environ. Microbiol 1995, 56, 395–400. [Google Scholar]
- Costa, M.J.L.; Cunha, M.T.; Cabral, J.M.S.; Aires-Barros, M.R. Scale-up of recombinant cutinase recovery by whole broth extraction with PEG-phosphate aqueous two-phase. Bioseparation 2005, 9, 231–238. [Google Scholar]
- Mirjana, G.; Draginja, M.; Milica, G. Aqueous two-phase partitioning of xylanase produced by solid-state cultivation of Polyporus squamosus. Process Biochem 2006, 41, 232–325. [Google Scholar]
- Ahmad, A.L.; Derek, C.J.C.; Zulkali, M.M.D. Optimization of thaumatin extraction by aqueous two-phase system (ATPS) using response surface methodology (RSM). Sep. Purif. Technol 2008, 62, 702–708. [Google Scholar]
- Kelany, S.; Nascimento, P.A.J.; Rosa, K.S.; Nascimento, B.S.; Cavada, A.M.; Azevedo, M.R. Partitioning and recovery of Canavalia brasiliensis lectin by aqueous two-phase systems using design of experiments methodology. Sep. Purif. Technol 2010, 75, 48–54. [Google Scholar]
Variables | Main effects | Quadratic effects | Interaction effects | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
x1 | x2 | x3 | x4 | x12 | x22 | x32 | x42 | x1x2 | x1x3 | x1x4 | x2x3 | x2x4 | x3x4 | ||
Partition | p-value | 0.000 a | 0.001 a | _ | _ | _ | 0.002 a | _ | _ | 0.001a | _ | _ | _ | _ | _ |
coefficient (Y1) | F-ratio | 404.01 | 225.00 | _ | _ | _ | 151.29 | _ | _ | 104.04 | _ | _ | _ | _ | _ |
Purification | p-value | _ | _ | 0.003 a | 0.001 a | _ | _ | 0.010 a | 0.002 a | _ | _ | _ | _ | 0.000 a | _ |
factor (Y2) | F-ratio | _ | _ | 100.80 | 129.96 | _ | _ | 25.50 | 53.39 | _ | _ | _ | _ | 88.36 | _ |
Yield | p-value | _ | 0.000 a | _ | 0.002 a | _ | 0.001 a | _ | 0.000 a | 0.000 a | 0.020 a | 0.023 a | _ | _ | _ |
(Y3, %) | F-ratio | _ | 146.06 | _ | 178.22 | _ | 310.81 | _ | 79.03 | 395.61 | 17.64 | 12.78 | _ | _ | _ |
Regression coefficient | Partition coefficient (Y1) | Purification factor (Y2) | Yield (Y3 %) |
---|---|---|---|
β0 | 23.33 | 69.42 | 97.04 |
β1 | 4.50 | _ | _ |
β2 | 3.00 | _ | 33.55 |
β3 | _ | 4.22 | _ |
β4 | _ | 5.75 | 14.55 |
β12 | _ | _ | _ |
β22 | 5.61 | 3.85 | 46.71 |
β32 | _ | _ | _ |
β42 | _ | 1.78 | 3.76 |
β12 | 1.62 | _ | 18.50 |
β13 | _ | _ | 12.34 |
β14 | _ | _ | 14.80 |
β23 | _ | _ | _ |
β24 | _ | 8.82 | _ |
β34 | _ | _ | _ |
R2 | 0.997 | 0.993 | 0.996 |
R2 (adj.) | 0.993 | 0.991 | 0.992 |
Regression(p-value) | 0.001 a | 0.000 a | 0.000 a |
Treatment runs | Blocks | PEG molecular mass (g·mol−1) | TLL [% (w w−1)] | NaCl [% (w·w−1)] | pH |
---|---|---|---|---|---|
1 | 1 | 8000 | 17.20 | 11.5 | 7.5 |
2 | 1 | 8000 | 17.20 | −2.5 | 7.5 |
3 | 1 | 8000 | 17.20 | 4.5 | 4.5 |
4 | 1 | 8000 | −3.42 | 4.5 | 7.5 |
5 | 1 | 8000 | 35.27 | 4.5 | 7.5 |
6 c | 1 | 8000 | 17.20 | 4.5 | 7.5 |
7 | 1 | 12,000 | 17.20 | 4.5 | 7.5 |
8 | 1 | 8000 | 17.20 | 4.5 | 7.5 |
9 | 1 | 8000 | 17.20 | 4.5 | 10.5 |
10 c | 1 | 4000 | 17.20 | 4.5 | 7.5 |
11 | 2 | 10,000 | 6.25 | 1.0 | 6.0 |
12 | 2 | 6000 | 6.25 | 8.0 | 6.0 |
13 | 2 | 10,000 | 25.60 | 8.0 | 6.0 |
14 | 2 | 6000 | 25.60 | 1.0 | 6.0 |
15 c | 2 | 10,000 | 25.60 | 1.0 | 9.0 |
16 | 2 | 8000 | 17.20 | 4.5 | 7.5 |
17 | 2 | 8000 | 17.20 | 4.5 | 7.5 |
18 | 2 | 6000 | 6.25 | 1.0 | 9.0 |
19 | 2 | 6000 | 25.60 | 8.0 | 9.0 |
20 c | 2 | 10,000 | 6.25 | 8.0 | 9.0 |
21 | 3 | 8000 | 17.20 | 4.5 | 7.5 |
22 | 3 | 10,000 | 25.60 | 1.0 | 6.0 |
23 | 3 | 10,000 | 6.25 | 1.0 | 9.0 |
24 | 3 | 6000 | 6.25 | 8.0 | 9.0 |
25 | 3 | 6000 | 6.25 | 1.0 | 6.0 |
26 | 3 | 8000 | 17.20 | 4.5 | 7.5 |
27 | 3 | 10,000 | 25.60 | 8.0 | 9.0 |
28 c | 3 | 6000 | 25.60 | 1.0 | 9.0 |
29 | 3 | 10,000 | 6.25 | 8.0 | 6.0 |
30 c | 3 | 6000 | 25.6 | 8.0 | 6.0 |
© 2012 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Mehrnoush, A.; Mustafa, S.; Sarker, M.Z.I.; Yazid, A.M.M. Optimization of Serine Protease Purification from Mango (Mangifera indica cv. Chokanan) Peel in Polyethylene Glycol/Dextran Aqueous Two Phase System. Int. J. Mol. Sci. 2012, 13, 3636-3649. https://doi.org/10.3390/ijms13033636
Mehrnoush A, Mustafa S, Sarker MZI, Yazid AMM. Optimization of Serine Protease Purification from Mango (Mangifera indica cv. Chokanan) Peel in Polyethylene Glycol/Dextran Aqueous Two Phase System. International Journal of Molecular Sciences. 2012; 13(3):3636-3649. https://doi.org/10.3390/ijms13033636
Chicago/Turabian StyleMehrnoush, Amid, Shuhaimi Mustafa, Md. Zaidul Islam Sarker, and Abdul Manap Mohd Yazid. 2012. "Optimization of Serine Protease Purification from Mango (Mangifera indica cv. Chokanan) Peel in Polyethylene Glycol/Dextran Aqueous Two Phase System" International Journal of Molecular Sciences 13, no. 3: 3636-3649. https://doi.org/10.3390/ijms13033636
APA StyleMehrnoush, A., Mustafa, S., Sarker, M. Z. I., & Yazid, A. M. M. (2012). Optimization of Serine Protease Purification from Mango (Mangifera indica cv. Chokanan) Peel in Polyethylene Glycol/Dextran Aqueous Two Phase System. International Journal of Molecular Sciences, 13(3), 3636-3649. https://doi.org/10.3390/ijms13033636