Plants versus Fungi and Oomycetes: Pathogenesis, Defense and Counter-Defense in the Proteomics Era
Abstract
:1. Introduction
2. Proteomic Analysis of Plant Defenses and Pathogen Counter-Defenses
2.1. Proteomics as a Tool to Characterize Plant Defenses
2.2. Proteomic Analysis of Plant Responses to Fungi and Oomycetes
2.2.1. Pathosystems Involving Biotrophs
2.2.2. Pathosystems Involving Necrotrophs
2.2.3. Pathosystems Involving Hemibiotrophs
2.3. Proteomics as a Tool to Examine Pathogenicity Determinants
3. The Future of Proteomics in Studying Plant-Pathogen Interactions
3.1. Going beyond the Model Systems
3.2. Resolving Unambiguous Protein Identification
3.3. Assigning Functions to Detected Proteins
3.3.1. Searching PAMPS
3.3.2. Characterizing Membrane Proteins and Receptors
3.3.3. Unveiling Wound-Healing Processes
3.3.4. Examining Further the Roles of Fungal and Oomycete Effectors
3.3.5. Deciphering Regulons and Operons
3.4. Studying Tripartite Interactions
3.5. Characterizing Pathogen Counter-Defenses
4. Concluding Remarks
Acknowledgments
Abbreviations
1 or 2D-PAGE | 1- or 2-dimensional polyacrylamide gel electrophoresis |
2-PCPGCA | 2-protocatechoylphloroglucinolcarboxylic acid |
ABA | Abscisic acid |
CWDEs | cell-wall degrading enzymes |
ESI- | Electrospray ionization |
ET | Ethylene |
ICAT | isotope-coded affinity-tag |
ICP- | Inductively coupled plasma |
IEF | Isoelectrofocusing of a protein |
ISR | systemic acquired resistance |
iTRAQ™ | isobaric tags for relative and absolute quantification |
JA | Jasmonic acid |
LC | liquid chromatography |
MALDI | Matrix-assisted laser desorption/ionization |
MRM | Multiple Reaction Monitoring |
MS/MS | tandem mass spectrometry |
m/z | mass over charge |
ORFs | open reading frames |
PGPRs | Plant Growth-Promoting Rhizobacteria |
PAMPs | pathogen-associated molecular patterns |
PRs | pathogenesis-related proteins |
Q-TOF | Quadrupole time-of-flight |
ROS | Reactive Oxygen Species |
SA | salicylic acid |
SAR | systemic acquired resistance |
SILAC | stable isotope labeling by amino acids in cell cultures |
References
- El Hadrami, A.; El Hadrami, I.; Daayf, F. Suppression of Induced Plant Defense Responses by Fungal Pathogens. In Molecular Plant-Microbe Interactions; Bouarab, K., Brisson, N., Daayf, F., Eds.; CABI: Oxfordshire, UK, 2009; pp. 231–268. [Google Scholar]
- El Hadrami, A.; Adam, L.R.; Daayf, F. Biocontrol treatments confer protection against Verticillium dahliae infection of potato by inducing anti-microbial metabolites. Mol. Plant Microbe Interact 2011, 24, 328–335. [Google Scholar]
- Van Loon, L.C.; Rep, M.; Pieterse, C.M.J. Significance of inducible defense-related proteins in infected plants. Annu. Rev. Phytopathol 2006, 44, 135–162. [Google Scholar]
- El-Bebany, A.F.; Rampitsch, C.; Daayf, F. Proteomic analysis of the phytopathogenic soilborne fungus Verticillium dahliae reveals differential protein expression in isolates that differ in aggressiveness. Proteomics 2010, 10, 289–303. [Google Scholar]
- Bhadauria, V.; Bannizam, S.; Wang, L.X.; Wei, Y.D.; Peng, Y.L. Proteomic studies of phytopathogenic fungi, oomycetes and their interactions with hosts. Eur. J. Plant Pathol 2010, 126, 81–95. [Google Scholar]
- Goodlett, D.R.; Yi, E.C. Proteomics without polyacrylamide: Qualitative and quantitative uses of tandem mass spectrometry in proteome analysis. Funct. Integr. Genomics 2002, 2, 138–153. [Google Scholar]
- Xing, T.; Rampitsch, C.; Sun, S.; Romanowski, A.; Conroy, C.; Stebbing, J.A.; Wang, X. TAB2, a nucleoside diphosphate protein kinase, as a component of the tMEK2 disease resistance pathway in tomato. Physiol. Mol. Plant Pathol 2009, 73, 33–39. [Google Scholar]
- Kunkel, B.N.; Brooks, D.M. Cross talk between signaling pathways in pathogen defense. Curr. Opin. Plant Biol 2002, 5, 325–331. [Google Scholar]
- Spoel, S.H.; Koornneef, A.; Claessens, S.M.C.; Korzelius, J.P.; van Pelt, J.A.; Mueller, M.J.; Buchala, A.J.; Métraux, J.P.; Brown, R.; Kazan, K.; et al. NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 2003, 15, 760–770. [Google Scholar]
- Mandelc, S.; Radisek, S.; Jamnik, P.; Javornik, B. Comparison of mycelial proteomes of two Verticillium albo-atrum pathotypes from hop. Eur. J. Plant Pathol 2009, 125, 159–171. [Google Scholar]
- Cao, T.; Kim, Y.M.; Kav, N.N.V.; Strelkov, S.E. A proteomic evaluation of Pyrenophora tritici-repentis, causal agent of tan spot of wheat, reveals major differences between virulent and avirulent isolates. Proteomics 2009, 9, 1177–1196. [Google Scholar]
- Kim, S.T.; Cho, K.S.; Yu, S.; Kim, S.G.; Hong, J.C.; Han, C.D.; Bae, D.W.; Nam, M.H.; Kang, K.Y. Proteomic analysis of differentially expressed proteins induced by rice blast fungus and elicitor in suspension-cultured rice cells. Proteomics 2003, 3, 2368–2378. [Google Scholar]
- Kim, S.T.; Kim, S.G.; Hwang, D.H.; Kang, S.Y.; Kim, H.J.; Lee, B.H.; Lee, J.J.; Kang, K.Y. Proteomic analysis of pathogen responsive proteins from rice leaves induced by rice blast fungus, Magnaporthe grisea. Proteomics 2004, 4, 3569–3578. [Google Scholar]
- Rampitsch, C.; Bykova, N.V.; McCallum, B.; Beimcik, E.; Ens, W. Analysis of the wheat and Puccinia triticina (leaf rust) proteomes during a susceptible hostpathogen interaction. Proteomics 2006, 6, 1897–1907. [Google Scholar]
- Mehta, A.; Brasileiro, A.C.; Souza, D.S.; Romano, E.; Campos, M.A.; Grossi-de-Sa, M.F.; Silva, M.S.; Franco, O.L.; Fragoso, R.R.; Bevitori, R.; Rocha, T.L. Plant-pathogen interactions: What is proteomics telling us? FEBS J 2008, 275, 3731–3746. [Google Scholar]
- Subramanian, B.; Bansal, V.K.; Kav, N.N. Proteome-level investigation of Brassica carinata-derived resistance to Leptosphaeria maculans. J. Agric. Food Chem 2005, 53, 313–324. [Google Scholar]
- Zhou, W.; Eudes, F.; Laroche, A. Identification of differentially regulated proteins in response to a compatible interaction between the pathogen Fusarium graminearum and its host, Triticum aestivum. Proteomics 2006, 6, 4599–4609. [Google Scholar]
- Jones, J.D.G.; Dangl, J.L. The plant immune system. Nature 2006, 444, 323–329. [Google Scholar]
- Rehmany, A.P.; Gordon, A.; Rose, L.E.; Allen, R.L.; Armstrong, M.R.; Whisson, S.C.; Kamoun, S.; Tylere, B.M.; Birch, P.R.J.; Beynon, J.L. Differential recognition of highly divergent downy mildew avirulence gene alleles by RPP1 resistance genes from two Arabidopsis lines. Plant Cell 2005, 17, 1839–1850. [Google Scholar]
- Stergiopoulos, I.; de Wit, P.J.G.M. Fungal effector proteins. Ann. Rev. Phytopathol 2009, 47, 233–263. [Google Scholar]
- Daayf, F.; Schmitt, A.; Bélanger, R.R. Evidence of phytoalexins in cucumber leaves infected with powdery mildew following treatment with leaf extracts of Reynoutria sacchalinensis. Plant Physiol 1997, 113, 719–727. [Google Scholar]
- Daayf, F.; Ongena, M.; Boulanger, R.; El Hadrami, I.; Bélanger, R.R. Induction of phenolic compounds in two cultivars of cucumber by treatment of healthy and powdery mildew-infected plants with extracts of Reynoutria sachalinensis. J. Chem. Ecol 2000, 26, 1579–1593. [Google Scholar]
- El Hadrami, A.; Daayf, F. Hydroxycinnamates induced in canola in response to weakly aggressive isolates of Leptosphaeria spp. help prevent further infections by highly aggressive isolates. Can. J. Plant Pathol 2009, 31, 393–406. [Google Scholar]
- Wang, X.; El Hadrami, A.; Adam, L.; Daayf, F. US-1 and US-8 genotypes of Phytophthora infestans differentially affect local, proximal and distal gene expression of phenylalanine ammonia-lyase and 3-hydroxy, 3-methylglutaryl CoA reductase in potato leaves. Physiol. Mol. Plant Pathol 2004, 65, 157–167. [Google Scholar]
- Wang, X.; El Hadrami, A.; Adam, L.R.; Daayf, F. Genes encoding pathogenesis-related proteins PR-2, PR-3 and PR-9, are differentially regulated in potato leaves inoculated with isolates from US-1 and US-8 genotypes of Phytophthora infestans (Mont.) de Bary. Physiol. Mol. Plant Pathol 2005, 67, 49–56. [Google Scholar]
- Wang, X.; El Hadrami, A.; Adam, L.R.; Daayf, F. Local and distal gene expression of pr-1 and pr-5 in potato leaves inoculated with isolates from the old (US-1) and the new (US-8) genotypes of Phytophthora infestans (Mont.) de Bary. Environ. Exp. Bot 2006, 57, 70–79. [Google Scholar]
- El Hadrami, I.; Ramos, T.; El Bellaj, M.; El Idrissi-Tourane, A.; Macheïx, J.J. A sinapic derivative as an induced defense compound of date palm against Fusarium oxysporum f. sp. albedinis, the agent causing bayoud disease. J. Phytopathol 1997, 145, 329–333. [Google Scholar]
- Daayf, F.; El Bellaj, M.; El Hassni, M.; J’aiti, F.; El Hadrami, I. Elicitation of soluble phenolics in date palm (Phoenix dactylifera L.) callus by Fusarium oxysporum f. sp. albedinis culture medium. Env. Exp. Bot 2003, 49, 41–47. [Google Scholar]
- Hammerschmidt, R.; Kúc, J. Induced Resistance to Disease in Plants; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1995. [Google Scholar]
- Quirino, B.F.; Candido, E.S.; Campos, P.F.; Franco, O.L.; Krüger, R.H. Proteomic approaches to study plant-pathogen interactions. Phytochemistry 2010, 71, 351–362. [Google Scholar]
- Houterman, P.M.; Speijer, D.; Dekker, H.L.; de Koster, C.G.; Cornelissen, B.J.C.; Rep, M. The mixed xylem sap proteome of Fusarium oxysporum-infected tomato plants. Mol. Plant Pathol 2007, 8, 215–221. [Google Scholar]
- Coumans, J.V.F.; Poljak, A.; Raftery, M.J.; Backhouse, D.; Pereg-Gerk, L. Analysis of cotton (Gossypium hirsutum) root proteomes during a compatible interaction with the black root rot fungus. Proteomics 2009, 9, 335–349. [Google Scholar]
- Wang, F.X.; Ma, Y.P.; Yang, C.L.; Zhao, P.M.; Yao, Y.; Jian, G.L.; Luo, Y.M.; Xia, G.X. Proteomic analysis of the sea-island cotton roots infected by wilt pathogen Verticillium dahliae. Proteomics 2011, 11, 4296–4309. [Google Scholar]
- Kav, N.N.V.; Srivastava, S.; Yajima, W.; Sharma, N. Application of proteomics to investigate plant-microbe interactions. Curr. Proteomics 2007, 4, 28–43. [Google Scholar]
- Kamoun, S. A catalogue of the effector secretome of plant pathogenic oomycetes. Annu. Rev. Phytopathol 2005, 44, 41–60. [Google Scholar]
- Knogge, W.; Scheel, D. LysM receptors recognize friend and foe. Proc. Natl. Acad. Sci. USA 2006, 103, 10829–10830. [Google Scholar]
- Konishi, H.; Ishiguro, K.; Komatsu, S. A proteomics approach towards understanding blast fungus infection of rice grown under different levels of nitrogen fertilization. Proteomics 2001, 1, 1162–1171. [Google Scholar]
- Rakwal, R.; Agrawal, G.K. Rice proteomics: Current status and future perspectives. Electrophoresis 2003, 24, 3378–3389. [Google Scholar]
- Devos, S.; Laukens, K.; Deckers, P.; van der Straeten, D.; Beeckman, T.; Inze, D.; van Onckelen, H.; Witters, E.; Prinsen, E. A hormone and proteome approach to picturing the initial metabolic events during Plasmodiophora brassicae infection on Arabidopsis. Mol. Plant Microbe. Interact 2006, 19, 1431–1443. [Google Scholar]
- Cao, T.; Srivastava, S.; Rahman, M.H.; Kav, N.N.V.; Hotte, N.; Deyholos, M.K.; Strelkov, S.E. Proteome-level changes in the roots of Brassica napus as a result of Plasmodiophora brassicae infection. Plant Sci 2008, 174, 97–115. [Google Scholar]
- Meijer, H.J.G.; van de Vondervoort, P.J.I.; Yin, Q.Y.; de Koster, C.G.; Klis, F.M.; Govers, F.; de Groot, P.W.J. Identification of cell wall-associated proteins from Phytophthora ramorum. Mol. Plant Microbe Interact 2006, 19, 1348–1358. [Google Scholar]
- Gubler, F.; Hardham, A.R. Secretion of adhesive material during encystment of Phytophthora cinnamomi zoospores, characterized by immunogold labeling with monoclonal antibodies to components of peripheral vesicles. J. Cell Sci 1988, 90, 225–235. [Google Scholar]
- Doke, N.; Garas, N.; Kúc, J. Partial characterization and aspects of the mode of action of a hypersensitivity-inhibiting factor (HIF) from Phytophthora infestans. Physiol. Plant Pathol 1979, 15, 127–140. [Google Scholar]
- Shiraishi, T.; Yamada, T.; Saitoh, K.; Kato, T.; Toyoda, K.; Yoshioka, H.; Kim, H.M.; Ichinose, Y.; Tahara, M.; Oku, H. Suppressor: Determinants of specificity produced by plant pathogens. Plant Cell Physiol 1994, 35, 1107–1119. [Google Scholar]
- Andreu, A.; Tonón, C.; van Damme, M.; Huarte, M.; Daleo, G. Effect of glucans from different races of Phytophthora infestans on defense reactions in potato tuber. Eur. J. Plant Pathol 1998, 104, 777–783. [Google Scholar]
- Storti, E.; Pelucchini, D.; Tegli, S.; Scala, A. A potential defense mechanism of tomato against the late blight disease is suppressed by germinating sporangia-derived substances from Phytophthora infestans. J. Phytopathol 1988, 121, 275–282. [Google Scholar]
- Doke, N. Involvement of superoxide anion generation in the hypersensitive response of potato tuber tissue to infection with an incompatible race of Phytophthora infestans and to the hyphal wall components. Physiol. Plant Pathol 1983, 23, 345–357. [Google Scholar]
- Ozeretskovskaya, O.L.; Vasyukova, N.I.; Perekhod, E.A.; Chalenko, G.I.; Il’inskaya, L.I.; Gerasimova, N.G. Plant resistance suppressors in the pathosystem formed by potato and the causal agent of late blight. Appl. Biochem. Microbiol 2001, 37, 506–511. [Google Scholar]
- Wang, X.; El Hadrami, A.; Adam, L.R.; Daayf, F. Differential activation and suppression of potato defence responses by Phytophthora infestans isolates representing US-1 and US-8 genotypes. Plant Pathol 2008, 57, 1026–1037. [Google Scholar]
- Colditz, F.; Nyamsuren, O.; Niehaus, K.; Eubel, H.; Braun, H.P.; Krajinski, F. Proteomic approach: Identification of Medicago truncatula proteins induced in roots after infection with the pathogenic oomycete Aphanomyces euteiches. Plant Mol. Biol 2004, 55, 109–120. [Google Scholar]
- Arfaoui, A.; El Hadrami, A.; Mabrouk, Y.; Sifi, B.; Boudabous, A.; El Hadrami, I.; Daayf, F.; Chérif, M. Treatment of chickpea with Rhizobium isolates enhances the expression of phenylpropanoid defense-related genes in response to infection by Fusarium oxysporum f. sp. ciceris. Plant Physiol. Biochem 2007, 45, 470–479. [Google Scholar]
- Curto, M.; Camafeita, E.; Lopez, J.A.; Maldonado, A.M.; Rubiales, D.; Jorrín, J.V. A proteomic approach to study pea (Pisum sativum) responses to powdery mildew (Erysiphe pisi). Proteomics 2006, 6, S163–S174. [Google Scholar]
- Amey, R.C.; Schleicher, T.; Slinn, J.; Lewis, M.; Macdonald, H.; Neill, S.J.; Spencer-Phillips, P.T.N. Proteomic analysis of a compatible interaction between Pisum sativum (pea) and the downy mildew pathogen Peronospora viciae. Eur. J. Plant Pathol 2008, 122, 41–55. [Google Scholar]
- Lee, S.J.; Kelley, B.S.; Damasceno, C.M.B.; John, B.S.; Kim, B.S.; Kim, B.D.; Rose, J.K.C. A functional screen to characterize the secretomes of eukaryotic pathogens and their hosts in planta. Mol. Plant Microbe Interact 2006, 19, 1368–1377. [Google Scholar]
- Campo, S.; Carrascal, M.; Coca, M.; Abian, J.; San Segundo, B. The defence response of germinating maize embryos against fungal infection: A proteomics approach. Proteomics 2004, 4, 383–396. [Google Scholar]
- Paper, J.M.; Scott-Craig, J.S.; Adhikari, N.D.; Cuomo, C.A.; Walton, J.D. Comparative proteomics of extracellular proteins in vitro and in planta from the pathogenic fungus Fusarium graminearum. Proteomics 2007, 7, 3171–3183. [Google Scholar]
- Geddes, J.; Eudes, F.; Laroche, A.; Selinger, B. Differential expression of proteins in response to the interaction between the pathogen Fusarium graminearum and its host, Hordeum vulgare. Proteomics 2008, 8, 545–554. [Google Scholar]
- Sharma, N.; Rahman, M.H.; Strelkov, S.E.; Thiagarajah, M.; Bansal, V.K.; Kav, N.N.V. Proteome-level changes in two Brassica napus lines exhibiting differential responses to the fungal pathogen Alternaria brassicae. Plant Sci 2007, 172, 95–110. [Google Scholar]
- Liang, Y.; Srivastava, S.; Rahman, M.H.; Strelkov, S.E.; Kav, N.N.V. Proteome changes in leaves of Brassica napus L. as a result of Sclerotinia sclerotiorum challenge. J. Agric. Food Chem 2008, 56, 1963–1976. [Google Scholar]
- Liang, Y.; Strelkov, S.E.; Kav, N.N.V. Oxalic acid mediated stress responses in Brassica napus L. Proteomics 2009, 9, 3156–3173. [Google Scholar]
- Fernández-Acero, F.J.; Jorge, I.; Calvo, E.; Vallejo, I.; Carbú, M.; Camafeita, E.; Garrido, C.; López, J.A.; Jorrin, J.; Cantoral, J.M. Proteomic analysis of phytopathogenic fungus Botrytis cinerea as a potential tool for identifying pathogenicity factors, therapeutic targets and for basic research. Arch. Microbiol 2007, 187, 207–215. [Google Scholar]
- El Oirdi, M.; Bouarab, K. Plant signalling components EDS1 and SGT1 enhance disease caused by the necrotrophic pathogen Botrytis cinerea. New Phytol 2007, 175, 131–139. [Google Scholar]
- El Oirdi, M.; Abd El Rahman, T.; Rigano, L.; El Hadrami, A.; Rodriguez, M.; Daayf, F.; Vojnov, A.; Bouarab, K. Botrytis cinerea manipulates the antagonistic effects between plant immune pathways to restore its disease. Plant Cell 2011, 23, 2405–2421. [Google Scholar]
- Rep, M.; Dekker, H.L.; Vossen, J.H.; de Boer, A.D.; Houterman, P.M.; Speijer, D.; Back, J.W.; de Koster, C.G.; Cornelissen, B.J. Mass spectrometric identification of isoforms of PR proteins in xylem sap of fungus-infected tomato. Plant Physiol 2002, 130, 904–917. [Google Scholar]
- El Hadrami, A.; El Idrissi-Tourane, A.; El Hassni, M.; Daayf, F.; El Hadrami, I. Toxin-based in vitro selection and its potential application to date palm for resistance to the bayoud Fusarium wilt. C. R. Biol 2005, 328, 732–744. [Google Scholar]
- El Hadrami, A.; Kone, D.; Lepoivre, P. Effect of juglone on active oxygen species and antioxidants in susceptible and partial resistant banana cultivars to black leaf streak disease. Eur. J. Plant Pathol 2005, 113, 241–254. [Google Scholar]
- Yajima, W.; Kav, N.N. The proteome of the phytopathogenic fungus Sclerotinia sclerotiorum. Proteomics 2006, 6, 5995–6007. [Google Scholar]
- Tudzynski, P.; Kokkelink, L. Botrytis cinerea: Molecular Aspects of a Necrotrophic Life Style. In The Mycota: Plant Relationships, 2nd ed; Springer: Berlin, Germany, 2009; Volume 5, pp. 29–50. [Google Scholar]
- Strelkov, S.E.; Lamari, L.; Ballance, G.M. Characterization of a host-specific protein toxin (Ptr ToxB) from Pyrenophora tritici-repentis. Mol. Plant Microbe Interact 1999, 12, 728–732. [Google Scholar]
- Wolpert, T.J.; Dunkle, L.D.; Ciuffetti, L.M. Host-selective toxins and avirulence determinants: What’s in a name? Annu Rev. Phytopathol 2002, 40, 251–285. [Google Scholar]
- Friesen, T.L.; Chu, C.-G.; Liu, Z.H.; Xu, S.S.; Halley, S.; Faris, J.D. Host-selective toxins produced by Stagonospora nodorum confer disease susceptibility in adult wheat plants under field conditions. Theor. Appl. Gen 2008, 118, 1489–1497. [Google Scholar]
- Horbach, R.; Navarro-Quesada, A.R.; Knogge, W.; Deising, H.B. When and how to kill a plant cell: Infection strategies of plant pathogenic fungi. J. Plant Physiol 2011, 168, 51–62. [Google Scholar]
- Koeck, M.; Hardham, A.R.; Dodds, P.N. The role of effectors of biotrophic and hemibiotrophic fungi in infection. Cell Microbiol 2011, 13, 1849–1857. [Google Scholar]
- De Wit, P.J.G.M.; Mehrabi, R.; van den Burg, H.A.; Stergiopoulos, I. Fungal effector proteins: Past, present and future. Mol. Plant Pathol 2009, 10, 735–747. [Google Scholar]
- Walton, J.D.; Avis, T.J.; Alfano, J.R.; Gijzen, M.; Spanu, P.; Hammond-Kosack, K.; Sánchez, F. Effectors, effectors et encore des effectors: The XIV international congress on molecular-plant microbe interactions, Quebec. Mol. Plant Microb Interact 2009, 22, 1479–1483. [Google Scholar]
- Thatcher, L.F.; Manners, J.M.; Kazan, K. Fusarium oxysporum hijicks COI1-mediated jasmonate signaling in order to promote disease development in Arabidopsis. Plant J 2009, 58, 927–939. [Google Scholar]
- Alkher, H.; El Hadrami, A.; Rashid, K.Y.; Adam, L.R.; Daayf, F. Cross-pathogenicity of Vertcillium dahliae between potato and sunflower. Eur. J. Plant Pathol 2009, 124, 505–519. [Google Scholar]
- El Hadrami, A.; Fernando, W.G.D.; Daayf, F. Variations in relative humidity modulate Leptospaheria spp. pathogenicity and interfere with canola mechanisms of defence. Eur. J. Plant Pathol 2010, 126, 187–202. [Google Scholar]
- Vincent, D.; Balesdent, M.H.; Gibon, J.; Claverol, S.; Lapaillerie, D.; Lomenech, A.M.; Blaise, F.; Rouxel, T.; Martin, F.; Bonneu, M.; et al. Hunting down fungal secretomes using liquid-phase IEF prior to high resolution 2-DE. Electrophoresis 2009, 30, 4118–4136. [Google Scholar]
- Lamari, L.; Bernier, C.C. Genetics of tan necrosis and extensive chlorosis in tan spot of wheat caused by Pyrenophora tritici-repentis. Phytopathology 1991, 81, 1092–1095. [Google Scholar]
- Böhmer, M.; Colby, T.; Bohmer, C.; Brautigam, A.; Schmidt, J.; Boker, M. Proteomic analysis of dimorphic transition in the phytopathogenic fungus Ustilago maydis. Proteomics 2007, 7, 675–685. [Google Scholar]
- Noir, S.; Colby, T.; Harzen, A.; Schmidt, J.; Panstruga, R. A proteomic analysis of powdery mildew (Blumeria graminis f.sp. hordei) conidiospores. Mol. Plant Pathol 2008, 10, 223–236. [Google Scholar]
- Bolton, M.D.; van Esse, H.P.; Vossen, J.H.; de Jonge, R.; Stergiopoulos, I.; Stulemeijer, I.; van den Berg, G.C.; Borrás-Hidalgo, O.; Dekker, H.L.; de Koster, C.G.; et al. The novel Cladosporium fulvum lysin motif effector Ecp6 is a virulence factor with orthologues in other fungal species. Mol. Microbiol 2008, 69, 119–136. [Google Scholar]
- Krämer, R.; Freytag, S.; Schmelzer, E. In vitro formation of infection structures of Phytophthora infestans is associated with synthesis of stage specific polypeptides. Eur. J. Plant Pathol 1997, 103, 43–53. [Google Scholar]
- Shepherd, S.J.; van West, P.; Gow, N.A.R. Proteomic analysis of asexual development of Phytophthora palmivora. Mycol. Res 2003, 107, 395–400. [Google Scholar]
- Ebstrup, T.; Saalbach, G.; Egsgaard, H. A proteomics study of in vitro cyst germination and appressoria formation in Phytophthora infestans. Proteomics 2005, 5, 2839–2848. [Google Scholar]
- Shimizu, M.; Yuda, N.; Nakamura, T.; Tanaka, H.; Wariishi, H. Metabolic regulation at the tricarboxylic acid and glyoxylate cycles of the lignin-degrading basidiomycetes Phanerochaete chrysosporium against exogenous addition of vanillin. Proteomics 2005, 5, 3919–3931. [Google Scholar]
- Matsuzaki, F.; Shimizu, M.; Wariishi, H. Proteomic and metabolomic analyses of the white-rot fungus Phanerochaete chrysosporium exposed to exogenous benzoic acid. J. Proteome Res 2008, 7, 2342–2350. [Google Scholar]
- Gonzalez-Fernandez, R.; Jorrin-Novo, J.V. Contribution of proteomics to the study of plant pathogenic fungi. J. Proteome Res 2012, 11, 3–16. [Google Scholar]
- Cordwell, S.J.; Thingholm, T.E. Technologies for plasma membrane proteomics. Proteomics 2010, 10, 611–627. [Google Scholar]
- Agrawal, G.K.; Pedreschi, R.; Barkla, B.J.; Bindschedler, L.V.; Cramer, R.; Sarkar, A.; Renaut, J.; Job, D.; Rakwal, R. Translational plant proteomics: A perspective review article. J. Proteomics 2012, in press. [Google Scholar]
- Anderson, L.; Hunter, C.L. Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins. Mol. Cell. Proteomics 2006, 5, 573–588. [Google Scholar]
- Casado-Vela, J.; Martínez-Esteso, M.J.; Rodriguez, E.; Borrás, E.; Elortza, F.; Bru-Martínez, R. iTRAQ-based quantitative analysis of protein mixtures with large fold change and dynamic range. Proteomics 2010, 10, 343–347. [Google Scholar]
- Baginsky, S.; Gruissem, W. Current Status of Arabidopsis thaliana Proteomics. In Plant Proteomics; Šamaj, J., Thelen, J., Eds.; Springer: Berlin, Germany, 2007; pp. 105–120. [Google Scholar]
- Carpentier, S.C.; Panis, B.; Vertommen, A.; Swennen, R.; Sergeant, K.; Renaut, J.; Laukens, K.; Witters, E.; Samyn, B.; Devreese, B. Proteome analysis of nonmodel plants: A challenging but powerful approach. Mass. Spectrom. Rev 2008, 27, 354–377. [Google Scholar]
- Gygi, S.P.; Rist, B.; Gerber, S.A.; Turecek, F.; Gelb, M.H.; Aebersold, R. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol 1999, 17, 994–999. [Google Scholar]
- Turecek, F. Mass spectrometry in coupling with affinity capture-release and isotope-coded affinity tags for quantitative protein analysis. J. Mass Spectrom 2002, 37, 1–14. [Google Scholar]
- Hansen, K.C.; Schmitt-Ulms, G.; Chalkley, R.J.; Hirsch, J.; Baldwin, M.A.; Burlingame, A.L. Mass spectrometric analysis of protein mixtures at low levels using cleavable 13C-isotope-coded affinity tag and multidimensional chromatography. Mol. Cell Proteom 2003, 2, 299–314. [Google Scholar]
- Barnidge, D.R.; Hall, G.D.; Stocker, J.L.; Muddiman, D.C. Evaluation of a cleavable stable isotope labeled synthetic peptide for absolute protein quantification using LC-MS/MS. J. Proteome Res 2004, 3, 658–661. [Google Scholar]
- Ong, S.E.; Blagoev, B.; Kratchmarova, I.; Kristensen, D.B.; Steen, H.; Pandey, A.; Mann, M. Isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics 2002, 1, 376–386. [Google Scholar]
- Ross, P.L.; Huang, Y.N.; Marchese, J.N.; Williamson, B.; Parker, K.; Hattan, S.; Khainovski, N.; Pillai, S.; Dey, S.; Daniels, S.; et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteomics 2004, 3, 1154–1169. [Google Scholar]
- Taylor, R.D.; Saparno, A.; Blackwell, B.; Anoop, V.; Gleddie, S.; Tinker, N.A.; Harris, L.J. Proteomic analyses of Fusarium graminearum grown under mycotoxin-inducing conditions. Proteomics 2008, 8, 2256–2265. [Google Scholar]
- Gaulin, E.; Dramé, N.; Lafitte, C.; Torto-Alalibo, T.; Martinez, Y.; Ameline-Torregrosa, C.; Khatib, M.; Mazarguil, H.; Villalba-Mateos, F.; Kamoun, S.; et al. Cellulose binding domains of a Phytophthora cell wall protein are novel pathogen-associated molecular patterns. Plant Cell 2006, 18, 1766–1777. [Google Scholar]
- Brunner, F.; Rosahl, S.; Lee, J.; Rudd, J.J.; Geiler, C.; Kauppinen, S.; Rasmussen, G.; Scheel, D.; Nürnberger, T. Pep-13, a plant defense-inducing pathogen-associated pattern from Phytophthora transglutaminases. EMBO J 2002, 21, 6681–6688. [Google Scholar]
- Halim, V.A.; Hunger, A.; Macioszek, V.; Landgraf, P.; Nürnberger, T.; Scheel, D.; Rosahl, S. The oligopeptide elicitor Pep-13 induces salicylic acid-dependent and –independent defense reactions in potato. Physiol. Mol. Plant Pathol 2004, 64, 311–318. [Google Scholar]
- Santoni, V. Plant plasma membrane protein extraction and solubilization for proteomic analysis. Meth. Mol. Biol 2006, 355, 93–109. [Google Scholar]
- Sazuka, T.; Keta, S.; Shiratake, K.; Yamaki, S.; Shibata, D. A proteomic approach to identification of transmembrane proteins and membrane-anchored proteins of Arabidopsis thaliana by peptide sequencing. DNA Res 2004, 11, 101–113. [Google Scholar]
- Elortza, F.; Nühse, T.S.; Foster, L.J.; Stensballe, A.; Peck, S.C.; Jensen, O.N. Proteomic analysis of glycosylphosphatidylinositol-anchored membrane proteins. Mol. Cell. Proteomics 2003, 2, 1261–1270. [Google Scholar]
- Tan, S.; Tan, H.T.; Chung, M.C.M. Membrane proteins and membrane proteomics. Proteomics 2008, 8, 3924–3932. [Google Scholar]
- Chaves, I.; Pinheiro, C.; Paiva, J.A.P.; Planchon, S.; Sergeant, K.; Renaut, J.; Graça, J.A.; Costa, G.; Coelho, A.V.; Pinto Ricardo, C.P. Proteomic evaluation of wound-healing processes in potato (Solanum tuberosum L.) tuber tissue. Proteomics 2009, 9, 4154–4175. [Google Scholar]
- Barel, G.; Ginzberg, I. Potato skin proteome is enriched with plant defence components. J. Exp. Bot 2008, 59, 3347–3357. [Google Scholar]
- Bernards, M.A.; Fleming, W.D.; Llewellyn, D.B.; Priefer, R.; Yang, X.; Sabatino, A.; Plourde, G.L. Biochemical characterization of the suberization-associated anionic peroxidase of potato. Plant Physiol 1999, 121, 135–146. [Google Scholar]
- Win, J.; Morgan, W.; Bos, J.; Krasileva, K.V.; Cano, L.M.; Chaparro-Garcia, A.; Ammar, R.; Staskawicz, B.J.; Kamoun, S. Adaptive evolution has targeted the C-terminal domain of the RXLR effectors of plant pathogenic Oomycetes. Plant Cell 2007, 19, 2349–2369. [Google Scholar]
- Osbourn, A.E.; Field, B. Operons. Cell. Mol. Life Sci 2009, 66, 3755–3775. [Google Scholar]
- Williams, R.M.; Primig, M.; Washburn, B.K.; Winzeler, E.A.; Bellis, M.; Sarrauste de Menthiere, C.; Davis, R.W.; Esposito, R.E. The Ume6 regulon coordinates metabolic and meiotic gene expression in yeast. Proc. Natl. Acad. Sci. USA 2002, 99, 13431–13436. [Google Scholar]
- Pelechano, V.; Jimeno-González, S.; Rodríguez-Gil, A.; García-Martínez, J.; Pérez-Ortín, J.E.; Chávez, S. Regulon-specific control of transcription elongation across the yeast genome. PLoS Gen 2009, 5. [Google Scholar] [CrossRef]
- Haas, B.J.; Kamoun, S.; Zody, M.C.; Jiang, R.H.; Handsaker, R.E.; Cano, L.M.; Grabherr, M.; Kodira, C.D.; Raffaele, S.; Torto-Alalibo, T.; et al. Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature 2009, 461, 393–398. [Google Scholar]
- Thurston, G.; Regan, S.; Rampitsch, C.; Xing, T. Proteomic and phosphoproteomic approaches to understand plant-pathogen interactions. Physiol. Mol. Plant Pathol 2005, 66, 3–11. [Google Scholar]
- Marra, R.; Ambrosino, P.; Carbone, V.; Vinale, F.; Woo, S.L.; Ruocco, M.; Ciliento, R.; Lanzuise, S.; Ferraioli, S.; Soriente, I.; et al. Study of the three-way interaction between Trichoderma atroviride, plant and fungal pathogens by using a proteomic approach. Curr. Genet 2006, 50, 307–321. [Google Scholar]
- Jennings, D.B.; Ehrenshaft, M.; Mason Pharr, D.; Williamson, J.D. Roles for mannitol and mannitol dehydrogenase in active oxygen-mediated plant defense. Proc. Natl. Acad. Sci. USA 1998, 95, 15129–15133. [Google Scholar]
- Cessna, S.G.; Sears, V.E.; Dickma, M.B.; Low, P.S. Oxalic acid, a pathogenicity factor for Sclerotinia sclerotiorum, suppresses the oxidative burst of the host plant. Plant Cell 2000, 12, 2191–2199. [Google Scholar]
- Govrin, E.M.; Levine, A. The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Curr. Biol 2000, 10, 751–757. [Google Scholar]
- Mayer, A.M.; Staples, R.C.; Gilad, N.L. Mechanisms of survival of necrotrophic fungal plant pathogens in hosts expressing the hypersensitive response. Phytochemistry 2001, 58, 33–41. [Google Scholar]
© 2012 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
El Hadrami, A.; El-Bebany, A.F.; Yao, Z.; Adam, L.R.; El Hadrami, I.; Daayf, F. Plants versus Fungi and Oomycetes: Pathogenesis, Defense and Counter-Defense in the Proteomics Era. Int. J. Mol. Sci. 2012, 13, 7237-7259. https://doi.org/10.3390/ijms13067237
El Hadrami A, El-Bebany AF, Yao Z, Adam LR, El Hadrami I, Daayf F. Plants versus Fungi and Oomycetes: Pathogenesis, Defense and Counter-Defense in the Proteomics Era. International Journal of Molecular Sciences. 2012; 13(6):7237-7259. https://doi.org/10.3390/ijms13067237
Chicago/Turabian StyleEl Hadrami, Abdelbasset, Ahmed F. El-Bebany, Zhen Yao, Lorne R. Adam, Ismail El Hadrami, and Fouad Daayf. 2012. "Plants versus Fungi and Oomycetes: Pathogenesis, Defense and Counter-Defense in the Proteomics Era" International Journal of Molecular Sciences 13, no. 6: 7237-7259. https://doi.org/10.3390/ijms13067237
APA StyleEl Hadrami, A., El-Bebany, A. F., Yao, Z., Adam, L. R., El Hadrami, I., & Daayf, F. (2012). Plants versus Fungi and Oomycetes: Pathogenesis, Defense and Counter-Defense in the Proteomics Era. International Journal of Molecular Sciences, 13(6), 7237-7259. https://doi.org/10.3390/ijms13067237