Synergistic Interactions of Methanolic Extract of Acacia mearnsii De Wild. with Antibiotics against Bacteria of Clinical Relevance
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
3.1. Collection of Plant Material
3.2. Extract Preparation
3.3. Bacterial Strain
3.4. Antibiotics Used in This Study
3.5. Antibiotic Susceptibility Testing—Agar Diffusion Method
3.6. Determination of Minimal Inhibitory Concentration (MIC)
3.7. Checkerboard Assay
4. Conclusions
Acknowledgments
References
- Murray, C.J.; Lopez, A.D. Mortality by cause for eight regions of the world: Global burden of disease study. Lancet 1997, 349, 1269–1276. [Google Scholar]
- Kochanek, K.D.; Murphy, S.L.; Anderson, R.N.; Scott, C. Division of Vital Statistics, Deaths: Final Data for 2002. In National Vital Statistics Report; Volume 53, 5, National Center for Health Statistics: Hyattsville, MD, USA, 2004. [Google Scholar]
- World Health Organization (WHO), The World Health Report 2003: Shaping the Future; WHO: Geneva, Switzerland, 2003.
- World Health Organization (WHO), Report on Infectious Diseases. Removing Obstacles to Healthy Development; WHO: Geneva, Switzerland, 1999.
- World Health Organization (WHO), The World Health Report 2002: Reducing Risks, Promoting Healthy Life; WHO: Geneva, Switzerland, 2002.
- Hotchkiss, R.S.; Karl, I.E. The pathophysiology and treatment of sepsis. N. Engl. J. Med 2003, 348, 138–150. [Google Scholar]
- Bone, R.C.; Balk, R.A.; Cerra, F.B.; Dellinger, R.P.; Fein, A.M.; Knaus, W.A.; Schein, R.M.; Sibbald, W.J. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee, American College of Chest Physicians/Society of Critical Care Medicine. Chest 1992, 101, 1644–1655. [Google Scholar]
- Kondo, S.; Sattaponpan, C.; Phongpaichit, S.; Srijan, A.; Itharat, A. Antibacterial activity of Thai medicinal plants Pikutbenjakul. J. Med. Assoc. Thail 2010, 93, S131–S135. [Google Scholar]
- Peters, N.K.; Dixon, D.M.; Holland, S.M.; Fauci, A.S. The research agenda of the National Institute of Allergy and Infectious Diseases for Antimicrobial Resistance. J. Infect. Dis 2008, 197, 1087–1093. [Google Scholar]
- Davies, J. Inactivation of antibiotics and the dissemination of resistance genes. Science 1994, 264, 375–382. [Google Scholar]
- Service, R.F. Antibiotics that resist resistance. Science 1995, 270, 724–727. [Google Scholar]
- Armstrong, D.; Neu, H.; Peterson, L.R.; Tomasz, A. The prospects of treatment failure in the chemotherapy of infectious diseases in the 1990s. Microb. Drug Resist 1995, 1, 1–4. [Google Scholar]
- Wenzel, R.P.; Edmond, M.B. Managing antibiotic resistance. N. Engl. J. Med 2000, 343, 1961–1963. [Google Scholar]
- D’Costa, V.M.; McGrann, K.M.; Hughes, D.W.; Wright, G.D. Sampling the antibiotic resistome. Science 2006, 311, 374–377. [Google Scholar]
- DeGirolani, P.C.; Eliopoulos, G. Antimicrobial susceptibility tests and their role in therapeutic drug monitoring. Clin. Lab. Med 1987, 7, 499–513. [Google Scholar]
- Isenberg, H.D. Antimicrobial susceptibility testing: A critical evaluation. J. Antimicrob. Chemother 1988, 22, 73–86. [Google Scholar]
- Peterson, L.R.; Shanholtzer, C.J. Tests for bactericidal effects of antimicrobial agents: Technical performance and clinical relevance. Clin. Microbiol. Rev 1992, 5, 420–432. [Google Scholar]
- Spellberg, B.; Powers, J.H.; Brass, E.P.; Miller, L.G.; Edwards, J.E., Jr. Trends in antimicrobial drug development: Implications for the future. Clin. Infect. Dis 2004, 38, 1279–1286. [Google Scholar]
- Gilbert, D.N.; Edwards, J.E., Jr. Is there hope for the prevention of future antimicrobial shortages? Clin. Infect. Dis 2002, 35, 215–216. [Google Scholar]
- Shlaes, D.M.; Moellering, R.C., Jr. The United States Food and Drug Administration and the end of antibiotics. Clin. Infect. Dis 2002, 3, 4420–4422. [Google Scholar]
- Smolinski, M.S.; Hamburg, M.A.; Lederberg, J. Microbial Threats to Health: Emergence, Detection, and Response; National Academy Press: Washington, DC, USA, 2003; Volume 181. [Google Scholar]
- DiMasi, J.A.; Hansen, R.W.; Grabowski, H.G. The price of innovation: New estimates of drug development costs. J. Health Econ 2003, 22, 151–185. [Google Scholar]
- Projan, S.J. Why is Big Pharma getting out of antibacterial drug discovery? Curr. Opin. Microbiol 2003, 6, 427–430. [Google Scholar]
- Lewis, W.H.; Elvin-Lewis, M. Basic Quantitative and Experimental Research Phases of Future Ethnobotany with Reference to the Medicinal Plants of South America. In Ethnobotany and the Search for New Drugs; Chadwick, D.J., Marsh, J., Eds.; John Wiley and Sons: New York, NY, USA, 1994; pp. 60–78. [Google Scholar]
- Elvin-Lewis, M.; Lewis, W.H. New Concepts and Medical and Dental Ethnobotany. In Ethnobotany, Evolution of a Discipline; Schultes, R., von Reis, S., Eds.; Dioscorides Press: Portland, OR, USA, 1995; pp. 303–310. [Google Scholar]
- Juliani, H.R.; Simon, J.E. Antioxidant Activity of Basil. In Trends in New Crops and New Uses; Janick, J., Whipkey,, A., Eds.; ASHS Press: Alexandria, VA, USA, 2002; pp. 575–579. [Google Scholar]
- Falerio, M.L.; Miguel, M.G.; Laderio, F.; Venâncio, F.; Tavares, R.; Brito, J.C.; Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G. Antimicrobial activity of essential oils isolated from Portuguese endemic species of Thymus. Lett. Appl. Microbiol 2003, 36, 35–40. [Google Scholar]
- Kalemba, D.; Kunicka, A. Antibacterial and antifungal properties of essential oils. Curr. Med. Chem 2003, 10, 813–829. [Google Scholar]
- Lu, Y.; Zhao, Y.P.; Wang, Z.C.; Chen, S.Y.; Fu, C.X. Composition and antimicrobial activity of the essential oil of Actinidia macrosperma from China. Nat. Prod. Res 2007, 21, 227–233. [Google Scholar]
- Mbwambo, Z.H.; Moshi, M.J.; Masimba, P.J.; Kapingu, M.C.; Nondo, R.S. Antimicrobial activity and brine shrimp toxicity of extracts of Terminalia brownii roots and stem. BMC Complement. Altern. Med 2007, 7. [Google Scholar] [CrossRef] [Green Version]
- Kassler, W.J.; Blanc, P.; Greenblatt, R. The use of medicinal herbs by human immunodeficiency virus-infected patients. Arch. Int. Med 1991, 151, 2281–2288. [Google Scholar]
- Buchness, M.R. Alternative medicine and dermatology. Semin. Cutan. Med. Surg 1998, 17, 284–290. [Google Scholar]
- Donaldson, K. Introduction to the healing herbs. ORL Head Neck Nurs 1998, 16, 9–16. [Google Scholar]
- Borchers, A.T.; Hackman, R.M.; Keen, C.L.; Stern, J.S.; Gershwin, M.E. Complementary medicine, a review of immunomodulatory effects of Chinese herbal medicines. Am. J. Clin. Nutr 1997, 66, 1302–1312. [Google Scholar]
- Cherry, M. South Africa—serious about biodiversity science. PLoS Biol 2005, 3. [Google Scholar] [CrossRef] [Green Version]
- Shah, P.M. The need for new therapeutic agents: What is in the pipeline? Clin. Microbiol. Infect 2005, 11, 36–42. [Google Scholar]
- Machado, T.B.; Pinto, A.V.; Pinto, M.C.; Leal, I.C.; Silva, M.G.; Amaral, A.C.; Kuster, R.M.; Netto-dosSantos, K.R. In vitro activity of Brazilian medicinal plants, naturally occurring naphthoquinones and their analogues, against methicillin-resistant Staphylococcus aureus. Int. J. Antimicrob. Agents 2003, 21, 279–284. [Google Scholar]
- Zaidan, M.R.; Noor, R.A.; Badrul, A.R.; Adlin, A.; Norazah, A.; Zakiah, I. In vitro screening of five local medicinal plants for antibacterial activity using disc diffusion method. Trop. Biomed 2005, 22, 165–170. [Google Scholar]
- Saklani, A.; Kutty, S.K. Plant-derived compounds in clinical trials. Drug Discov. Today 2008, 13, 161–171. [Google Scholar]
- Fabricant, D.S.; Farnsworth, N.R. The value of plants used in traditional medicine for drug discovery. Environ. Health Perspect 2001, 109(Suppl 1), 69–75. [Google Scholar]
- Guinet, P.; Vassal, J. Hypotheses on the differentiation of the major groups in the genus Acacia (Leguminosae). Kew Bull 1978, 32, 509–527. [Google Scholar]
- Ross, J.H. An analysis of the African Acacia species: Their distribution, possible origins and relationships. Bothalia 1981, 13, 389–413. [Google Scholar]
- Sherry, S.P. The Black Wattle (Acacia mearnsii De Wild); University of Natal Press: Pietermaritzburg, South Africa, 1971. [Google Scholar]
- Olajuyigbe, O.O.; Afolayan, A.J. In vitro antibacterial activities of crude aqueous and ethanolic extracts of Acacia mearnsii De Wild. Afr. J. Pharm. Pharmacol 2011, 5, 1234–1240. [Google Scholar]
- Clinical and Laboratory Standard Institute (CLSI), Performance Standards for Antimicrobial Susceptibility Testing Eighteenth Informational Supplement; M100-S18; CLSI: Wayne, PA, USA, 2008.
- Eliopoulos, G.M.; Eliopoulos, C.T. Antibiotic combinations: Should they be tested? Clin. Microbiol. Rev 1988, 1, 139–56. [Google Scholar]
- Giertsen, E.; Scheie, A.A.; Rolla, G. Inhibition of plaque formation and plaque acidogenicity by zinc and chlorhexidine combinations. Scand. J. Dent. Res 1988, 96, 541–550. [Google Scholar]
- Grytten, J.; Scheie, A.A.; Giertsen, E. Synergistic antibacterial effects of copper and hexetidine against Streptococcus sobrinus and Streptococcus sanguis. Acta Odontol. Scand 1988, 46, 181–183. [Google Scholar]
- Isenberg, H.D. Synergism Testing: Broth Microdilution Checkerboard and Broth Macrodilution Methods. In Clinical Microbiology Procedures Handbook, 2th ed; American Society Microbiology: Washington DC, USA, 1992. [Google Scholar]
- Bhusal, Y.; Shiohira, C.M.; Yamane, N. Determination of in vitro synergy when three antimicrobial agents are combined against Mycobacterium tuberculosis. Int. J. Antimicrob. Agents 2005, 26, 292–297. [Google Scholar]
- Petersen, P.J.; Labthavikul, P.; Jones, C.H.; Bradford, P.A. In vitro antibacterial activities of tigecycline in combination with other antimicrobial agents determined by chequerboard and time-kill kinetic analysis. J. Antimicrob. Chemother 2006, 57, 573–576. [Google Scholar]
- Kamatou, G.P.P.; Viljoen, A.M.; van Vuuren, S.F.; van Zyl, R.L. In vitro evidence of antimicrobial synergy between Salvia chamelaeagnea and Leonotis leonurus. S Afr. J. Bot 2006, 72, 634–636. [Google Scholar]
- Rybak, M.J.; McGrath, B.J. Combination antimicrobial therapy for bacterial infections. Guidelines for the clinician. Drugs 1996, 52, 390–405. [Google Scholar]
- Marr, K.A.; Boeckh, M.; Carter, R.A.; Kim, H.W.; Corey, L. Combination antifungal therapy for invasive aspergillosis. Clin. Infect. Dis 2004, 39, 797–802. [Google Scholar]
- Horsburgh, C.R., Jr; Feldman, S.; Ridzon, R. Practice guidelines for the treatment of tuberculosis. Clin. Infect. Dis 2000, 31, 633–639. [Google Scholar]
- Berenbaum, M.C. Correlations between methods for measurement of synergy. J. Infect. Dis 1980, 142, 476–480. [Google Scholar]
- Hall, M.J.; Middleton, R.F.; Westmacott, D. The fractional inhibitory concentration (FIC) index as a measure of synergy. J. Antimicrob. Chemother 1983, 11, 427–433. [Google Scholar]
- Betoni, J.E.; Mantovani, R.P.; Barbosa, L.N.; di Stasi, L.C.; Junior, A.F. Synergism between plant extract and antimicrobial drugs used on Staphylococcus aureus diseases. Mem. Inst. Oswaldo Cruz 2006, 101, 387–390. [Google Scholar]
- Yang, Z.C.; Wang, B.C.; Yang, X.S.; Wang, Q.; Ran, L. The synergistic activity of antibiotics combined with eight traditional Chinese medicines against two different strains of Staphylococcus aureus. Colloids Surf. B Biointerfaces 2005, 41, 79–81. [Google Scholar]
- Braga, LC.; Leite, A.A.M.; Xavier, K.G.S.; Takahashi, J.A.; Bemquerer, M.P.; Chartone-Souza, B.; Nascimento, A.M.A. Synergistic interaction between pomegranate extract and antibiotics against Staphylococcus aureus. Can. J. Microbiol 2005, 51, 541–547. [Google Scholar]
- Kumar, A.S.; Venkateshwaran, K.; Vanitha, J.; Saravanan, V.S.; Ganesh, M.; Vasudevan, M.; Sivakumar, T. Synergistic activity of methanolic extract of Thespesia populnea (Malvaceae) flowers with oxytetracycline. Bangladesh J. Pharmacol 2009, 4, 13–16. [Google Scholar]
- Aiyegoro, O.; Adewusi, A.; Oyedemi, S.; Akinpelu, D.; Okoh, A. Interactions of antibiotics and methanolic crude extracts of Afzelia africana (Smith.) against drug resistance bacterial isolates. Int. J. Mol. Sci 2011, 12, 4477–4487. [Google Scholar]
- Pei, R.S.; Zhou, F.; Ji, B.P.; Xu, J. Evaluation of combined antibacterial effects of eugenol, cinnamaldehyde, thymol, carvacrol against E. coli with an improved method. J. Food Sci 2009, 74, M379–M383. [Google Scholar]
- Cushnie, T.P.T.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 2005, 26, 343–356. [Google Scholar]
- Sato, Y.; Shibata, H.; Arai, T.; Yamamoto, A.; Okimura, Y.; Arakaki, N.; Higuti, T. Variation in synergistic activity by flavone and its related compounds on the increased susceptibility of various strains of methicillin-resistant Staphylococcus aureus to β-lactam antibiotics. Int. J. Antimicrob. Agents 2004, 24, 226–233. [Google Scholar]
- Dickson, R.A.; Houghton, P.J.; Hylands, P.J.; Gibbons, S. Antimicrobial, resistance-modifying effects, antioxidant and free radical scavenging activities of Mezoneuron benthamianum Baill, Securinega virosa Roxb. and Wild. and Microglossa pyrifolia Lam. Phytother. Res 2006, 20, 41–45. [Google Scholar]
- Sibanda, T.; Okoh, A.I. The challenges of overcoming antibiotic resistance: Plant extracts as potential sources of antimicrobial and resistance modifying agents. Afr. J. Biotechnol 2007, 6, 2886–2896. [Google Scholar]
- Gibbons, S. Phytochemicals for bacterial resistance: Strengths, weaknesses and opportunities. Planta Med 2008, 74, 594–602. [Google Scholar]
- Phillipson, J.D.; O’Neill, M.J. New leads to the treatment of protozoal infections based on natural product molecules. Acta Pharm. Nord 1987, 1, 131–144. [Google Scholar]
- Tsuchiya, H.; Sato, M.; Miyazaki, T.; Fujiwara, S.; Tanigaki, S.; Ohyama, M.; Tanaka, T.; Iinuma, M. Comparative study on the antibacterial activity of phytochemical flavonones against methicillin-resistant Staphylococcus aureus. J. Ethnopharmacol 1996, 50, 27–34. [Google Scholar]
- Prasad, R.N.; Viswanathan, S.; Devi, J.R.; Nayak, V.; Swetha, V.C.; Archana, B.R.; Parathasarathy, N.; Rajkumar, J. Preliminary phytochemical screening and microbial activity of Samaea saman. J. Med. Plant Res 2008, 2, 268–270. [Google Scholar]
- Abukakar, M.G.; Ukwuani, A.N.; Shehu, R.A. Phytochemical screening and antibacterial activity of Tamarindus indica pulp extract. Asian J. Biochem 2008, 3, 134–138. [Google Scholar]
- Esinome, C.O.; Iroha, I.R.; Ibezim, E.C.; Okeh, C.O.; Okpana, E.M. In vitro evaluation of the interaction between tea extracts and penicillin G against Staphylococcus aureus. Afr. J. Biotechnol 2006, 5, 1082–1086. [Google Scholar]
- Vaara, M. Agents, that increase the permeability of the outer membrane. Microbiol. Rev 1992, 56, 395–411. [Google Scholar]
- Haukland, H.H.; Ulvatne, H.; Sandvik, K.; Vorland, L.H. The antimicrobial peptides lactoferricin B and magainin 2 cross over the bacterial cytoplasmic membrane and reside in the cytoplasm. FEBS Lett 2001, 508, 389–393. [Google Scholar]
- Aburjai, T.; Darwish, R.M.; Al-Khalil, S.; Mahafzah, A.; Al-Abbadi, A. Screening of antibiotic resistant inhibitors from local plant materials against two different strains of Pseudomonas aeruginosa. J. Ethnopharmacol 2001, 76, 39–44. [Google Scholar]
- Darwish, R.M.; Aburjai, T.; Al-Khalil, S.; Mahafzah, A. Screening of antibiotic resistant inhibitors from local plant materials against two different strains of Staphylococcus aureus. J. Ethnopharmacol 2002, 79, 359–364. [Google Scholar]
- Hemaiswarya, S.; Kruthiventi, A.K.; Doble, M. Synergism between natural products and antibiotics against infectious diseases. Phytomedicine 2008, 15, 639–652. [Google Scholar]
- Zhao, W.H.; Hu, Z.Q.; Okubo, S.; Hara, Y.; Shimamura, T. Mechanism of synergy between epigallochatechin gallate and β-lactams against methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother 2001, 45, 1737–1742. [Google Scholar]
- Gunics, G.; Farkas, S.; Motohashi, N.; Shah, A.; Harsukh, G.; Kawase, M.; Molnár, J. Interaction between 3,5-diacetyl-1,4-dihydropyridines and ampicillin, and erythromycin on different E. coli strains. Int. J. Antimicrob. Agents 2002, 20, 227–229. [Google Scholar]
- Wagner, H.; Ulrich-Merzenich, G. Synergy research: Approaching a new generation of phytopharmaceuticals. Phytomedicine 2009, 16, 97–110. [Google Scholar]
- Coutinho, H.D.M.; Costa, J.G.M.; Falcão-Silva, V.S.; Lima, E.O.; Siqueira, J.P., Jr. Enhancement of the antibiotic activity against a multi-resistant Escherichia coli by Mentha arvensis L. and chlorpromazine. Chemotherapy 2008, 54, 328–330. [Google Scholar]
- Basri, D.F.; Fan, S.H. The potential of aqueous and acetone extracts of galls of Queercus infectoria as antibacterial agents. Indian J. Pharmacol 2005, 37, 26–29. [Google Scholar]
- European Committee for Antimicrobial Susceptibility Testing (EUCAST). Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by agar dilution. Clin. Microbiol. Infect 2000, 6, 509–515.
- National Committee for Clinical Laboratory Standards (NCCLS), Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 4th ed; Approved Standard M7-A4; NCCLS: Wayne, PA, USA, 1997.
- Richard, S.; Lynn, S.M.; Avery, C.G. Antimicrobial Susceptibility Testing Protocols; CRC Press: New York, NY, USA, 2007. [Google Scholar]
- Cheesbrough, M. Medical Laboratory Manual for Tropical Countries, 2th ed; Butterworth-Heinemann: Cambridge, UK, 1987; pp. 2–392. [Google Scholar]
- BSAC, Disc Diffusion Method for Antimicrobial Susceptibility Testing, Version 2.1.2; British Society of Antimicrobial Chemotherapy: Birmingham, UK, 2002.
- Bauer, A.W.; Kirby, W.M.; Sherris, J.C.; Truck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol 1966, 45, 493–496. [Google Scholar]
- Mandal, S.; Mandal, M.D.; Pal, N.K. Evaluation of combination effect of ciprofloxacin and cefazolin against Salmonella enteric serovar typhi isolates by in vitro methods. Calicut Med. J 2004, 2, e2. [Google Scholar]
Average Zones of Inhibition (±1.0 mm) Produced by Methanolic Extract (AmM) Alone, Antibiotics Alone and Their Combinations | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bacteria Used | A | B | C | D | E | F | G | H | I | J | K | L | M | N | P | Q | R | S |
S. aureus (ATCC 6538) | 17 ± 0.58 | 0 | 18 ± 0.58 | 0 | 17 ± 0.58 | 0 | 15 ± 0.58 | 13 ± 0.58 | 18 ± 0.58 | 17 ± 0.00 | 22 ± 1.00 | 23 ± 0.58 | 17 ± 0.58 | 19 ± 0.58 | 21 ± 1.00 | 18 ± 0.00 | 25 ± 1.00 | 24 ± 0.58 |
E. faecalis (ATCC 29212) | 15 ± 0.58 | 22 ± 0.58 | 23 ± 0.00 | 19 ± 0.00 | 20 ± 0.58 | 0 | 16 ± 0.58 | 20 ± 0.58 | 18 ± 1.00 | 15 ± 0.58 | 20 ± 1.00 | 19 ± 0.58 | 17 ± 1.00 | 18 ± 0.58 | 23 ± 1.00 | 20 ± 1.00 | 21 ± 0.58 | 22 ± 0.58 |
E. coli (ATCC 25922) | 16 ± 0.00 | 0 | 18 ± 0.58 | 20 ± 0.58 | 22 ± 0.58 | 0 | 15 ± 0.58 | 22 ± 1.00 | 20 ± 0.58 | 19 ± 0.58 | 30 ± 1.00 | 27 ± 0.58 | 25 ± 0.00 | 29 ± 0.58 | 22 ± 0.00 | 21 ± 0.58 | 20 ± 1.00 | 21 ± 0.58 |
B. subtilis KZN | 18 ± 0.00 | 0 | 20 ± 0.58 | 19 ± 0.58 | 21 ± 0.58 | 0 | 19 ± 0.58 | 24 ± 1.53 | 16 ± 0.00 | 18 ± 0.58 | 26 ± 1.00 | 29 ± 0.58 | 20 ± 0.58 | 22 ± 0.58 | 17 ± 0.58 | 20 ± 0.58 | 22 ± 0.58 | 21 ± 0.58 |
P. vulgaris KZN | 16 ± 1.00 | 0 | 18 ± 0.58 | 0 | 19 ± 0.00 | 0 | 15 ± 1.00 | 30 ± 1.53 | 25 ± 1.00 | 17 ± 0.58 | 27 ± 0.58 | 25 ± 0.00 | 21 ± 0.58 | 19 ± 0.00 | 23 ± 0.58 | 24 ± 0.58 | 25 ± 0.58 | 26 ± 0.00 |
E. faecalis KZN | 18 ± 0.58 | 0 | 18 ± 0.00 | 21 ± 0.58 | 24 ± 0.58 | 0 | 20 ± 0.58 | 23 ± 0.58 | 22 ± 0.00 | 18 ± 0.00 | 30 ± 1.00 | 29 ± 0.58 | 24 ± 0.58 | 25 ± 0.58 | 23 ± 0.58 | 21 ± 0.58 | 22 ± 0.58 | 25 ± 0.58 |
E. cloacae (ATCC 13047) | 17 ± 0.00 | 0 | 17 ± 1.15 | 17 ± 1.52 | 19 ± 0.58 | 0 | 13 ± 0.58 | 19 ± 1.15 | 22 ± 1.00 | 16 ± 1.00 | 27 ± 1.53 | 24 ± 0.58 | 22 ± 0.58 | 20 ± 0.58 | 22 ± 0.58 | 20 ± 0.58 | 22 ± 0.58 | 21 ± 1.00 |
K. pneumoniae (ATCC 10031) | 17 ± 0.58 | 23 ± 0.58 | 23 ± 1.53 | 20 ± 1.00 | 22 ± 0.58 | 0 | 17 ± 0.58 | 18 ± 0.58 | 18 ± 1.15 | 17 ± 0.00 | 19 ± 1.53 | 22 ± 0.58 | 18 ± 0.00 | 19 ± 0.58 | 21 ± 0.58 | 22 ± 0.58 | 21 ± 0.58 | 24 ± 1.00 |
P. vulgaris (ATCC 6830) | 18 ± 0.00 | 0 | 19 ± 0.00 | 21 ± 1.53 | 23 ± 1.15 | 0 | 15 ± 0.58 | 17 ± 0.58 | 21 ± 0.58 | 18 ± 0.00 | 22 ± 1.00 | 17 ± 0.58 | 19 ± 0.58 | 19 ± 0.58 | 23 ± 0.58 | 20 ± 0.58 | 21 ± 0.00 | 21 ± 1.15 |
S. sonnei (ATCC 29930) | 19 ± 0.58 | 22 ± 1.00 | 23 ± 0.58 | 22 ± 1.53 | 23 ± 0.58 | 0 | 21 ± 0.58 | 21 ± 0.58 | 22 ± 0.58 | 19 ± 0.58 | 20 ± 0.58 | 18 ± 0.00 | 19 ± 0.58 | 21 ± 0.58 | 24 ± 1.00 | 21 ± 0.58 | 22 ± 0.00 | 23 ± 0.00 |
Minimum Inhibitory Concentrations | |||||||||
---|---|---|---|---|---|---|---|---|---|
AmM (mg/mL) | Ery | Tet | Met | Amx | Cip | Nal | Chl | Kan | |
(μg/mL) | |||||||||
S. aureus (ATCC 6538) | 0.313 | 6.250 (R) | 7.813 (R) | 15.625 (R) | 31.250 (R) | 0.020 (S) | 31.250 (R) | 1.953 (S) | 1.953 (S) |
E. faecalis (ATCC 29212) | 1.250 | 0.195 (S) | 3.906 (S) | 31.250 (R) | 3.906 (S) | 0.313 (S) | 31.250 (R) | 1.953 (S) | 125.000 (R) |
E. coli (ATCC 25922) | 0.313 | 1.563 (R) | 1.953 (S) | 31.250 (R) | 7.813 (I) | 0.039 (S) | 1.953 (S) | 3.906 (S) | 125.000 (R) |
B. subtilis KZN | 1.250 | 6.250 (R) | 0.977 (S) | 31.250 (R) | 62.500 (R) | 0.020 (S) | 7.813 (S) | 3.906 (S) | 3.906 (S) |
P. vulgaris KZN | 0.313 | 12.500 (R) | 7.813 (R) | 62.500 (R) | 0.488 (S) | 0.313 (S) | 62.500 (R) | 0.977 (S) | 7.8125 (S) |
E. faecalis KZN | 0.156 | 12.500 (R) | 31.250 (R) | 15.625 (R) | 0.976 (S) | 0.313 (S) | 62.500 (R) | 31.250 (R) | 250.000 (R) |
E. cloacae (ATCC 13047) | 0.625 | 6.250 (R) | 15.625 (R) | 31.250 (R) | 500.000 (R) | 0.156 (S) | 62.500 (R) | 1.953 (S) | 62.500 (R) |
K. pneumoniae (ATCC 10031) | 0.313 | 0.195 (S) | 0.488 (S) | 31.250 (R) | 0.977 (S) | 0.039 (S) | 3.906 (S) | 1.953 (S) | 15.625 (S) |
P. vulgaris (ATCC 6830) | 0.313 | 25.000 (R) | 15.625 (R) | 62.250 (R) | 250.000 (R) | 0.156 (S) | 1.953 (S) | 7.813 (I) | 31.250 (R) |
S. sonnei (ATCC 29930) | 0.156 | 0.391 (S) | 1.953 (S) | 62.250 (R) | 500.000 (R) | 0.020 (S) | 15.563 (I) | 1.953 (I) | 31.250 (R) |
Fractional Inhibitory Concentration | Remarks | Fractional Inhibitory Concentration | Remarks | |||||
---|---|---|---|---|---|---|---|---|
FICI (AmM) | FICI (Ery) | FICI index | FICI (AmM) | FICI (Tet) | FICI index | |||
S. aureus (ATCC 6538) | 0.5 | 0.25 | 0.75 | Synergy | 0.5 | 0.5 | 1 | Indifference |
E. faecalis(ATCC 29212) | 0.0156 | 1 | 1.0156 | Indifference | 0.125 | 1 | 1.125 | Indifference |
E. coli (ATCC 25922) | 0.25 | 0.5 | 0.75 | Synergy | 0.0624 | 0.25 | 0.3125 | Synergy |
B. subtilis KZN | 0.25 | 0.5 | 0.75 | Synergy | 0.0156 | 0.5 | 0.5156 | Synergy |
P. vulgaris KZN | 1 | 0.25 | 1.25 | Indifference | 0.5 | 0.5 | 1 | Indifference |
E. faecalis KZN | 0.5 | 0.0625 | 0.5625 | Synergy | 2 | 0.5 | 2.5 | Indifference |
E. cloacae (ATCC 13047) | 0.5 | 0.5 | 1 | Indifference | 0.5 | 0.5 | 1 | Indifference |
K. pneumoniae (ATCC 10031) | 0.0312 | 0.5 | 0.5312 | Synergy | 0.0156 | 0.25 | 0.2656 | Synergy |
P. vulgaris (ATCC 6830) | 0.5 | 0.0625 | 0.5625 | Synergy | 0.5 | 0.25 | 0.75 | Synergy |
S. sonnei (ATCC 29930) | 0.015625 | 0.0625 | 0.0781 | Synergy | 0.0312 | 0.0625 | 0.0937 | Synergy |
Fractional Inhibitory Concentration | Remarks | Fractional Inhibitory Concentration | Remarks | |||||
FICI (AmM) | FICI (Met) | FICI index | FICI (AmM) | FICI (Amx) | FICI index | |||
S. aureus (ATCC 6538) | 0.5 | 0.25 | 0.75 | Synergy | 0.5 | 0.125 | 0.625 | Synergy |
E. faecalis (ATCC 29212) | 0.125 | 0.125 | 0.25 | Synergy | 0.0078 | 0.0625 | 0.0703 | Synergy |
E. coli (ATCC 25922) | 0.25 | 0.0625 | 0.3125 | Synergy | 0.25 | 0.25 | 0.5 | Synergy |
B. subtilis KZN | 0.5 | 0. 5 | 1.0 | Indifference | 0.5 | 0.25 | 0.75 | Synergy |
P. vulgaris KZN | 1 | 0.25 | 1.25 | Indifference | 0.125 | 2 | 2.125 | Indifference |
E. faecalis KZN | 0.5 | 0.125 | 0.625 | Synergy | 0.0625 | 0.25 | 0.3125 | Synergy |
E. cloacae (ATCC 13047) | 0.5 | 0.25 | 0.75 | Synergy | 0.5 | 0.015625 | 0.5156 | Synergy |
K. pneumoniae (ATCC 10031) | 1 | 0.25 | 1.25 | Indifference | 0.25 | 2 | 2.25 | Indifference |
P. vulgaris (ATCC 6830) | 0.5 | 0.0625 | 0.5625 | Synergy | 1 | 0.03125 | 1.03125 | Indifference |
S. sonnei (ATCC 29930) | 2 | 0.25 | 2.25 | Indifference | 0.015625 | 0.000122 | 0.0157 | Synergy |
Fractional Inhibitory Concentration | Remarks | Fractional Inhibitory Concentration | Remarks | |||||
FICI (AmM) | FICI (Cip) | FICI index | FICI (AmM) | FICI (Nal) | FICI index | |||
S. aureus (ATCC 6538) | 0.25 | 4 | 4.25 | Antagonistic | 1 | 0.25 | 1.25 | Indifference |
E. faecalis (ATCC 29212) | 0.25 | 1 | 1.25 | Indifference | 0.5 | 0.5 | 1.0 | Indifference |
E. coli (ATCC 25922) | 0.0625 | 0.5 | 0.5625 | Synergy | 0.125 | 0.5 | 0.625 | Synergy |
B. subtilis KZN | 0.0625 | 4 | 4.0625 | Antagonistic | 0.3125 | 0.125 | 0.4375 | Synergy |
P. vulgaris KZN | 0.25 | 0.25 | 0.5 | Synergy | 2 | 0.25 | 2.25 | Indifference |
E. faecalis KZN | 1 | 0.5 | 1.5 | Indifference | 4 | 0.25 | 4.25 | Antagonistic |
E. cloacae (ATCC 13047) | 0.125 | 0.5 | 0.625 | Synergy | 1 | 0.25 | 1.25 | Indifference |
K. pneumoniae (ATCC 10031) | 0.25 | 2 | 2.25 | Indifference | 0.25 | 0.5 | 0.75 | Synergy |
P. vulgaris (ATCC 6830) | 0.5 | 1 | 1.5 | Indifference | 1 | 4 | 5 | Antagonistic |
S. sonnei (ATCC 29930) | 2 | 16 | 18 | Antagonistic | 2 | 0.5 | 2.5 | Indifference |
Fractional Inhibitory Concentration | Remarks | Fractional Inhibitory Concentration | Remarks | |||||
FICI (AmM) | FICI (Chl) | FICI index | FICI (AmM) | FICI (Kan) | FICI index | |||
S. aureus (ATCC 6538) | 0.125 | 0.5 | 0.625 | Synergy | 0.125 | 0.5 | 0.625 | Synergy |
E. faecalis (ATCC 29212) | 0.03125 | 0.5 | 0.53125 | Synergy | 1 | 0.25 | 1.25 | Indifference |
E. coli (ATCC 25922) | 0.125 | 0.25 | 0.375 | Synergy | 1 | 0.0625 | 1.0625 | Indifference |
B. subtilis KZN | 0.015625 | 0.125 | 0.140625 | Synergy | 0.125 | 1 | 1.125 | Indifference |
P. vulgaris KZN | 0.0625 | 0.5 | 0.5625 | Synergy | 0.5 | 0.5 | 1.0 | Indifference |
E. faecalis KZN | 2 | 0.25 | 2.25 | Indifference | 8 | 0.125 | 8.125 | Antagonistic |
E. cloacae (ATCC 13047) | 0.5 | 4 | 4.5 | Antagonistic | 2 | 0.5 | 2.5 | Indifference |
K. pneumoniae (ATCC 10031) | 0.125 | 0.5 | 0.625 | Synergy | 1 | 0.5 | 1.5 | Indifference |
P. vulgaris (ATCC 6830) | 0.25 | 0.25 | 0.5 | Synergy | 1 | 0.25 | 1.25 | Indifference |
S. sonnei (ATCC 29930) | 0.125 | 0.25 | 0.375 | Synergy | 2 | 0.25 | 2.25 | Indifference |
© 2012 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Olajuyigbe, O.O.; Afolayan, A.J. Synergistic Interactions of Methanolic Extract of Acacia mearnsii De Wild. with Antibiotics against Bacteria of Clinical Relevance. Int. J. Mol. Sci. 2012, 13, 8915-8932. https://doi.org/10.3390/ijms13078915
Olajuyigbe OO, Afolayan AJ. Synergistic Interactions of Methanolic Extract of Acacia mearnsii De Wild. with Antibiotics against Bacteria of Clinical Relevance. International Journal of Molecular Sciences. 2012; 13(7):8915-8932. https://doi.org/10.3390/ijms13078915
Chicago/Turabian StyleOlajuyigbe, Olufunmiso O., and Anthony J. Afolayan. 2012. "Synergistic Interactions of Methanolic Extract of Acacia mearnsii De Wild. with Antibiotics against Bacteria of Clinical Relevance" International Journal of Molecular Sciences 13, no. 7: 8915-8932. https://doi.org/10.3390/ijms13078915
APA StyleOlajuyigbe, O. O., & Afolayan, A. J. (2012). Synergistic Interactions of Methanolic Extract of Acacia mearnsii De Wild. with Antibiotics against Bacteria of Clinical Relevance. International Journal of Molecular Sciences, 13(7), 8915-8932. https://doi.org/10.3390/ijms13078915