Antioxidant Activity of Brazilian Vegetables and Its Relation with Phenolic Composition
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
3.1. Chemicals and Reagents
3.2. Sample Collection and Extraction
3.3. Determination of Total Phenolic Content
3.4. DPPH Free Radical Scavenging Assay and IC50
3.5. Antioxidant Activity Using β-Carotene Bleaching Method
3.6. Antioxidant Activity Using ABTS•+ Assay
3.7. Ferric Reducing Antioxidant Power Assay (FRAP)
3.8. Oxidative Stability—Rancimat
3.9. Chromatographic Analysis
3.9.1. Removal of Outliers from Samples Using the Solid Phase Extraction (SPE) Technique
3.9.2. Derivatization—Formation of Trimethylsilyl Derivatives (TMS)
3.9.3. Gas Chromatography-Mass Spectrometry (GC-MS)
3.10. Statistical Analysis
4. Conclusions
Acknowledgments
Abbreviations
GC-MS | gas chromatography-mass spectrometry |
GA | gallic acid |
UV | ultraviolet |
DPPH• | 2,2-diphenyl-1-picryl-hydrazine |
ABTS•+ | 2,2′-azinobis-3-ethylbenzotiazoline-6-sulfonic acid |
MSTFA | N-methyl-N-(trimethylsilyl)trifluoroacetamide |
FRAP | ferric reducing antioxidant power |
TPC | total phenolic content |
Fe3+-TPTZ | ferric tripyridyltriazine |
SPE | solid phase extraction |
TMS | trimethylsilyl |
GLM | general linear models |
IC50 | inhibitory concentration |
AA | antioxidant activity |
DRc | control degradation rat |
DRs | degradation rate in the presence of standard or vegetable extract |
a | absorbance at initial time (0 min) |
b | absorbance at final time (120 min) |
BHT | butylated hydroxytoluene |
IP | induction period |
PF | protection factor |
PIa | IP of the oil with the vegetable extracts or standards |
Plc | IP of the control (oil without the vegetable extracts or standards) |
DW | dry weight |
References
- Sreeramulu, D.; Raghunath, M. Antioxidant activity and phenolic content of roots, tubers and vegetables commonly consumed in India. Food Res. Int 2010, 43, 1017–1020. [Google Scholar]
- Szeto, Y. T.; Kwok, T. C.; Benzie, I. F. Effects of a long-term vegetarian diet on biomarkers of antioxidant status and cardiovascular disease risk. Nutrition 2004, 20, 863–866. [Google Scholar]
- Kähkönen, M. P.; Hopia, A. I.; Vuorela, H. J.; Rauha, J. P.; Pihlaja, K.; Kujala, T. S.; Heinonen, M. Antioxidant activity of plant extracts containing phenolic compounds. J. Agric. Food Chem 1999, 47, 3954–3962. [Google Scholar]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr 2004, 79, 727–747. [Google Scholar]
- Roginsky, V.; Lissi, E. A. Review of methods to determine chain-breaking antioxidant activity in food. Food Chem 2005, 92, 235–254. [Google Scholar]
- Halliwell, B.; Gutteridge, J. M. C. Free Radicals in Biology and Medicine, 2th ed; Clarendon Press: Oxford, UK, 1989. [Google Scholar]
- Nakatani, N. Antioxidants from Spices and Herbs. In Natural Antioxidants: Chemistry, Health Effects and Applications; Shahidi, F., Ed.; AOCS Press: Champaign, IL, USA, 1996; pp. 64–65. [Google Scholar]
- Pokorný, J. Are natural antioxidants better—and safer—than synthetic antioxidants? Eur. J. Lipid Sci. Technol 2007, 109, 629–642. [Google Scholar]
- Sánchez-Moreno, C. Review: Methods used to evaluate the free radical scavenging activity in foods and biological systems. Food Sci. Technol. Int 2002, 8, 121–137. [Google Scholar]
- Magalhães, L. M.; Segundo, M. A.; Reis, S.; Lima, J. L. F. C. Methodological aspects about in vitro evaluation of antioxidant properties. Anal. Chim. Acta 2008, 613, 1–19. [Google Scholar]
- Karadag, A.; Ozcelik, B.; Saner, S. Review of methods to determine antioxidant capacities. Food Anal. Methods 2009, 2, 41–60. [Google Scholar]
- Huang, D.; Ou, B.; Prior, R. L. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem 2005, 53, 1841–1856. [Google Scholar]
- Frankel, E. N.; Meyer, A. S. The problems using one-dimensional methods to evaluate multifunctional food and biological antioxidants. J. Sci. Food Agric 2000, 80, 1925–1941. [Google Scholar]
- Oliveira, A. C.; Valentim, I. B.; Goulart, M. O. F.; Silva, C. A.; Bechara, E. J. H.; Trevisan, M. T. S. Fontes vegetais naturais de antioxidantes. Quim. Nova 2009, 32, 689–702. [Google Scholar] [Green Version]
- Becker, E. M.; Nissen, L. R.; Skibsted, L. H. Antioxidant evaluation protocols: Food quality or health effects. Eur. Food Res. Technol 2004, 219, 561–571. [Google Scholar]
- Ou, B.; Huang, D.; Hampsch-Woodill, M.; Flanagan, J. A.; Deemer, E. K. Analysis of antioxidant activities of common vegetables employing oxigen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays: A comparative study. J. Agric. Food Chem 2002, 50, 3122–3128. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med 1999, 26, 1231–1237. [Google Scholar]
- Assimopoulou, A. N.; Sinakos, Z.; Papageorgiou, V. P. Radical scavenging activity of Crocus sativus L. extract and its bioactive constituents. Phytother Res 2005, 19, 997–1000. [Google Scholar]
- Nilsson, J.; Pillai, D.; Önning, G.; Persson, C.; Nilsson, A.; Åkesson, B. Comparison of the 2,2′-azinobis-3-ethylbenzotiazoline-6-sulfonic acid (ABTS) and ferric reducing anti-oxidant power (FRAP) methods to assess the total antioxidant capacity in extracts of fruits and vegetables. Mol. Nutr. Food Res 2005, 49, 239–246. [Google Scholar]
- Zhou, K.; Yu, L. Total phenolic contents and antioxidant properties of commonly consumed vegetables grown in Colorado. Food Sci. Technol 2006, 39, 1155–1162. [Google Scholar]
- Roy, M. K.; Takenaka, M.; Isobe, S.; Tsushida, T. Antioxidant potential, anti-proliferative activities, and phenolic content in water-soluble fractions of some commonly consumed vegetables: Effects of thermal treatment. Food Chem 2007, 103, 106–114. [Google Scholar]
- Llorach, R.; Martínez-Sánchez, A.; Tomás-Barberán, F. A.; Gil, M. I.; Ferreres, F. Characterisation of polyphenols and antioxidant properties of five lettuce varieties and escarole. Food Chem 2008, 108, 1028–1038. [Google Scholar]
- Chu, Y. F.; Sun, J.; Wu, X.; Liu, R. H. Antioxidant and antiproliferative activities of common vegetables. J. Agric. Food Chem 2002, 50, 6910–6916. [Google Scholar]
- Gobbo-Neto, L.; Lopes, N. P. Plantas medicinais: Fatores de influência no conteúdo de metabólitos secundários. Quim. Nova 2007, 30, 374–381. [Google Scholar]
- Sreejayan, N.; Rao, M. N. S. Curcuminoids as potent inhibitors of lipid peroxidation. J. Pharm. Pharmacol 1994, 46, 1013–1016. [Google Scholar]
- Kuttan, R.; Bhanumathy, P.; Nirmala, K.; George, M. C. Potential anticancer activity of turmeric (Curcuma longa). Cancer Lett 1985, 29, 197–202. [Google Scholar]
- Bachmeier, B. E.; Mohrenz, I. V.; Mirisola, V.; Schleicher, E.; Romeo, F.; Höhneke, C.; Jochum, M.; Nerlich, A. G.; Pfeffer, U. Curcumin downregulates the inflammatory cytokines CXCL1 and -2 in breast cancer cells via NFκB. Carcinogenesis 2008, 29, 779–789. [Google Scholar]
- Kukić, J.; Popović, V.; Petrović, S.; Mucaji, P.; Ćirić, A.; Stojković, D.; Soković, M. Antioxidant and antimicrobial activity of Cynara cardunculus extracts. Food Chem 2008, 107, 861–868. [Google Scholar]
- DuPont, M. S.; Mondin, Z.; Willamson, G.; Price, K. R. Effect of variety, processing, and storage on the flavonoid glycoside content and composition of lettuce and endive. J. Agric. Food Chem 2000, 48, 3957–3964. [Google Scholar]
- Singleton, V. L.; Orthofer, R.; Lamuela-Raventós, R. M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteau reagent. Methods Enzymol 1999, 299, 152–178. [Google Scholar]
- Moraes-de-Souza, R. A.; Oldoni, T. L. C.; Regitano-d’Arce, M. A. B.; Alencar, S. M. Antioxidant activity and phenolic composition of herbal infusions consumed in Brazil. Cienc. Tecnol. Aliment 2008, 6, 41–47. [Google Scholar]
- Mensor, L. L.; Menezes, F. S.; Leitão, G. G.; Reis, A. S.; Santos, T. C.; Coube, C. S.; Leitão, S. G. Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytother. Res 2001, 15, 127–130. [Google Scholar]
- Emmons, C. L.; Peterson, D. M.; Paul, G. L. Antioxidant capacity of oat (Avena sativa L.) extracts. 2. In vitro antioxidant activity and content of phenolic and tocol antioxidants. J. Agric. Food Chem 1999, 47, 4894–4898. [Google Scholar]
- Benzie, I. F. F.; Strain, J. J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem 1996, 239, 70–76. [Google Scholar]
- American Oil Chemists’ Society (AOCS), Official Methods and Recommended Practices, 5th ed; AOCS: Champaign, IL, USA, 1999.
- Bonatto, P. S. Cromatografia Gasosa. In Fundamentos de Cromatografia; Collins, C. H., Braga, G. L., Bonatto, P. S., Eds.; Unicamp: Campinas, Brazil, 2006; pp. 203–270. [Google Scholar]
- SAS Institute, SAS Version 9.0; SAS Institute: Cary, NC, USA, 2002.
Vegetable | Antioxidant activity | ||||
---|---|---|---|---|---|
ABTS•+ (μmol Trolox/g DW) | β-carotene (%) | FRAP (μmol Fe2+/g DW) | Rancimat (protection factor) | DPPH (μmol Trolox/g DW) | |
Artichoke | 39.9 ± 3.54 defg | 57.7 ± 1.3 fgh | 98.7 ± 6.10 h | 1.09 ± 0.005 cde | 70.1 ± 5.44 b |
Asparagus | 37.5 ± 0.80 efg | 88.3 ± 2.8 abc | 95.2 ± 2.11 h | 1.11 ± 0.04 cd | 15.8 ± 0.38 h |
Broccoli | 43.0 ± 0.48 def | 54.7 ± 2.7 gh | 188.0 ± 3.64 d | 1.29 ± 0.05 a | 33.4 ± 0.97 f |
Cabbage | 15.3 ± 1.58 ijk | 16.7 ± 4.7 jk | 49.7 ± 2.32 i | * | 8.6 ± 0.35 ijk |
Carrot | 0.9 ± 1.13 o | 49.5 ± 7.5 h | 13.2 ± 0.92 k | * | 3.5 ± 0.07 mn |
Celery | 2.9 ± 1.38 lmno | 36.2 ± 2.2 i | 13.7 ± 0.67 k | * | 3.8 ± 0.33 lmn |
Chicory | 54.9 ± 4.53 de | 82.2 ± 4.9 c | 217. 2 ± 6.85 c | * | 9.9 ± 0.93 ijk |
Chives | 25.8 ± 1.06 fghi | 28.8 ± 4.8 i | 130.8 ± 3.58 fg | 1.24 ± 0.03 ab | 8.2 ± 0.14 ijkl |
Cucumber | 10.1 ± 1.48 jklm | 67.6 ± 3.0 de | 16.3 ± 1.64 jk | * | 2.3 ± 0.23 n |
Escarole | 19.1 ± 5.22 hij | 82.0 ± 1.9 c | 148.5 ±3.21 ef | 0.98 ± 0.01 f | 48.1 ± 0.61 de |
Leek | 8.3 ± 0.21 jklmn | 9.4 ± 0.6 lm | 12.2 ± 1.06 k | * | 3.2 ± 0.12 mn |
Lettuce | 85.8 ± 5.34 bc | 90.0 ± 3.0 ab | 447.1 ± 4.55 a | 1.02 ± 0.002 ef | 77.2 ± 0.83 a |
Parsley | 30.7 ± 3.98fgh | 60.7 ± 2.1 efg | 104.8 ± 1.44 gh | 1.05 ± 0.01 def | 10.8 ± 0.47 ij |
Pumpkin | 11.0 ± 1.39 jkl | 54.3 ± 5.3 gh | 19.5 ± 1.77 jk | * | 5.8 ± 0.095 klmn |
Radish | 61.7 ± 0.21 cd | 22.2 ± 6.0 j | 90.0 ± 4.39 h | 1.17 ± 0.01 bc | 26.1 ± 0.40 g |
Red beet | 2.5 ± 2.03 no | 15.5 ± 9.7 jk | 43.3 ±1.07 ij | * | 11.5 ± 0.13 hij |
Rocket | 25.5 ± 0.75 ghi | 54.0 ± 4.2 gh | 113.8± 5.94 gh | 1.04 ± 0.05 def | 11.6 ± 0.26 hi |
Snap beans | 3.4 ± 0.51 lmno | 67.0 ± 2.3 de | 15.7 ± 1.26 jk | * | 3.8 ± 0.26 lmn |
Spinach | 41.2 ± 5.42 defg | 85.6 ± 1.5 bc | 273.3 ± 6.10 b | 1.16 ± 0.05 bc | 50.9 ± 0.31 d |
Swiss chard | 25.4 ± 2.12 ghi | 65.6 ± 3.9 def | 50.5 ± 4.36 i | 1.10 ± 0.01 cde | 9.1 ± 0.12 ijk |
Turmeric | 118.6 ± 3.77 a | 92.8 ± 1.3 a | 169.1 ± 4.0 de | 1.04 ± 0.04 def | 57.6 ± 2.39 c |
Turnip | 6.5 ± 0.42 klmn | 3.4 ± 1.7 m | 15.5 ±0.43 jk | * | 7.1 ± 0.33 jklm |
Watercress | 97.1 ± 2.82 ab | 70.9 ± 4.6 d | 277.4 ± 8.78 b | 1.29 ± 0.01 a | 44.0 ± 2.53 e |
Correlation | r | r2 (%) |
---|---|---|
TPC vs. DPPH | 0.89 | 80.64 |
TPC vs. β-carotene | 0.52 | 27.49 |
TPC vs. ABTS | 0.79 | 61.85 |
TPC vs. FRAP | 0.82 | 68.60 |
TPC vs. Rancimat | 0.18 | 3.47 |
Correlation | r | r2 (%) |
---|---|---|
DPPH vs. β-carotene | 0.52 | 27.36 |
DPPH vs. ABTS | 0.71 | 51.03 |
DPPH vs. FRAP | 0.75 | 56.65 |
DPPH vs. Rancimat | 0.22 | 4.93 |
β-carotene vs. ABTS | 0.53 | 28.67 |
β-carotene vs. FRAP | 0.58 | 34.07 |
β-carotene vs. Rancimat | 0.44 | 19.9 |
ABTS vs. FRAP | 0.74 | 56.08 |
ABTS vs. Rancimat | 0.09 | 0.97 |
FRAP vs. Rancimat | 0.03 | 0.09 |
Vegetable ethanol extract | Area of the component (%) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | |
Artichoke | – | – | – | 0.01 | – | – | – | – | – | 32.46 | – | – | – | – |
Asparagus | – | – | – | – | 0.15 | – | – | – | 2.61 | 1.40 | – | 5.56 | – | – |
Broccoli | 1.12 | – | – | – | 0.51 | – | 6.72 | – | 1.95 | 0.31 | – | – | – | – |
Cabbage | 0.63 | – | – | – | – | – | 12.61 | 0.41 | 12.61 | 0.28 | – | – | – | – |
Carrot | – | 0.13 | – | – | – | – | – | 0.42 | – | 0.49 | – | – | 0.78 | – |
Celery | – | – | – | 1.68 | – | – | – | – | 1.08 | 9.88 | – | – | – | 0.99 |
Chicory | – | – | – | – | – | – | – | 0.39 | – | 47.04 | – | 1.32 | – | – |
Chives | 0.26 | – | – | – | – | – | 0.10 | 2.72 | 15.60 | 0.56 | 4.60 | 0.93 | 0.12 | – |
Cucumber | – | – | – | 1.43 | 14.23 | – | – | – | 0.22 | – | – | – | – | – |
Escarole | – | – | – | – | – | – | – | – | 0.22 | 42.53 | 3.19 | – | – | – |
Leek | – | – | – | – | – | – | – | 0.19 | 0.96 | – | – | – | – | – |
Lettuce | – | – | – | – | – | – | – | 0.60 | – | 26.92 | – | 2.02 | – | 0.16 |
Parsley | 1.08 | – | – | 0.06 | 0.82 | – | – | – | – | 0.14 | – | – | – | 0.41 |
Pumpkin | – | – | – | – | – | 0.32 | – | – | – | – | – | – | – | – |
Radish | – | 0.89 | – | – | – | – | – | 1.81 | 1.81 | 1.18 | – | – | – | – |
Red beet | – | – | 9.54 | 0.52 | – | – | – | 0.43 | 0.82 | – | – | – | – | – |
Rocket | 5.31 | – | – | 0.14 | – | – | 0.21 | – | – | – | – | – | – | – |
Snap beans | – | – | – | – | 1.14 | – | – | 2.63 | 0.71 | 0.50 | 3.41 | 8.67 | 9.73 | 1.67 |
Spinach | – | – | – | – | – | – | – | – | 1.60 | 53.54 | – | – | – | – |
Swiss chard | – | – | – | – | 0.24 | – | 10.85 | – | 1.38 | – | – | – | – | – |
Turmeric | – | – | – | – | – | – | – | – | – | – | – | – | 0.57 | 0.35 |
Turnip | – | 0.96 | – | – | – | – | – | 0.42 | 0.78 | – | – | – | – | – |
Watercress | 10.90 | – | – | – | – | – | 0.48 | 0.13 | 0.60 | 0.66 | – | – | – | – |
© 2012 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Tiveron, A.P.; Melo, P.S.; Bergamaschi, K.B.; Vieira, T.M.F.S.; Regitano-d’Arce, M.A.B.; Alencar, S.M. Antioxidant Activity of Brazilian Vegetables and Its Relation with Phenolic Composition. Int. J. Mol. Sci. 2012, 13, 8943-8957. https://doi.org/10.3390/ijms13078943
Tiveron AP, Melo PS, Bergamaschi KB, Vieira TMFS, Regitano-d’Arce MAB, Alencar SM. Antioxidant Activity of Brazilian Vegetables and Its Relation with Phenolic Composition. International Journal of Molecular Sciences. 2012; 13(7):8943-8957. https://doi.org/10.3390/ijms13078943
Chicago/Turabian StyleTiveron, Ana P., Priscilla S. Melo, Keityane B. Bergamaschi, Thais M. F. S. Vieira, Marisa A. B. Regitano-d’Arce, and Severino M. Alencar. 2012. "Antioxidant Activity of Brazilian Vegetables and Its Relation with Phenolic Composition" International Journal of Molecular Sciences 13, no. 7: 8943-8957. https://doi.org/10.3390/ijms13078943
APA StyleTiveron, A. P., Melo, P. S., Bergamaschi, K. B., Vieira, T. M. F. S., Regitano-d’Arce, M. A. B., & Alencar, S. M. (2012). Antioxidant Activity of Brazilian Vegetables and Its Relation with Phenolic Composition. International Journal of Molecular Sciences, 13(7), 8943-8957. https://doi.org/10.3390/ijms13078943