Enrichment and Purification of Syringin, Eleutheroside E and Isofraxidin from Acanthopanax senticosus by Macroporous Resin
Abstract
:1. Introduction
2. Results and Discussion
2.1. Adsorption and Desorption Properties of the Resins
2.2. Static Adsorption Kinetics on HPD100C and HPD300
2.3. Adsorption Isotherms
2.4. Dynamic Adsorption and Desorption Tests
2.4.1. Dynamic Breakthrough Curves on HPD-100C Resin
2.4.2. Effect of Ethanol–Water Solution on Desorption Tests
2.4.3. Dynamic Desorption Curve on HPD100C
3. Experimental Section
3.1. Materials, Chemical and Reagents
3.2. Adsorbents
3.3. Preparation of Crude RAS Extracts
3.4. HPLC Analysis of Syringin, Eleutheroside E and Isofraxidin
3.5. Static Adsorption and Desorption Tests
3.5.1. Adsorption and Desorption Properties of the Resins
3.5.2. Static Adsorption Kinetics on HPD100C and HPD300
3.5.3. Adsorption Isotherms
3.6. Dynamic Adsorption and Desorption
3.7. Adsorption and Desorption Capacity, the Recovery Equation
3.8. Langmuir Equation and Freundlich Equation
4. Conclusions
Acknowledgments
References
- WHO, Monographs on Selected Medicinal Plants; World Health Organization: Geneva, Switzerland, 2004.
- Brekhman, I.I.; Dardymov, I.V. New substances of plant origin which increase nonspecific resistance. Annu. Rev. Pharmacol 1969, 9, 419–430. [Google Scholar]
- Davydov, M.; Krikorian, A.D. Eleutherococcus senticosus (Rupr. & Maxim.) Maxim. (Araliaceae) as an adaptogen: A closer look. J. Ethnopharmacol 2000, 72, 345–393. [Google Scholar]
- Weng, S.; Tang, J.; Wang, G.; Wang, X.; Wang, H. Comparison of the addition of Siberian Ginseng (Acanthopanax senticosus) versus Fluoxetine to Lithium for the treatment of bipolar disorder in adolescents: A randomized, double-blind trial. Curr. Ther. Res 2007, 68, 280–290. [Google Scholar]
- Deyama, T.; Nishibe, S.; Nakazawa, Y. Constituents and pharmacological effects of Eucommia and Siberian ginseng. Acta Pharmacol. Sin 2001, 22, 1057–1070. [Google Scholar]
- Panossian, A.; Wagner, H. Stimulating effect of adaptogens: An overview with particular reference to their efficacy following single dose administration. Phytother. Res 2005, 19, 819–838. [Google Scholar]
- Cho, J.Y.; Nam, K.H.; Kim, A.R.; Park, J.; Yoo, E.S.; Baik, K.U.; Yu, Y.H.; Park, M.H. In-vitro and in-vivo immunomodulatory effects of syringin. J. Pharm. Pharmacol 2001, 53, 1287–1294. [Google Scholar]
- Liu, K.Y.; Wu, Y.C.; Liu, I.M.; Yu, W.C.; Cheng, J.T. Release of acetylcholine by syringin, an active principle of Eleutherococcus senticosus, to raise insulin secretion in Wistar rats. Neurosci. Lett 2008, 434, 195–199. [Google Scholar]
- Niu, H.S.; Hsu, F.L.; Liu, I.M. Role of sympathetic tone in the loss of syringin-induced plasma glucose lowering action in conscious Wistar rats. Neurosci. Lett 2008, 445, 113–116. [Google Scholar]
- Yamazaki, M.; Hirota, K.; Chiba, K.; Mohri, T. Promotion of neuronal differentiation of PC12h cells by natural lignans and iridoids. Biol. Pharm. Bull 1994, 17, 1604–1608. [Google Scholar]
- Kimura, Y.; Sumiyoshi, M. Effects of various Eleutherococcus senticosus cortex on swimming time, natural killer activity and corticosterone level in forced swimming stressed mice. J. Ethnopharmacol 2004, 95, 447–453. [Google Scholar]
- Liu, J.; Tian, J.; Tian, X.; Hu, Z.; Chen, X. Interaction of isofraxidin with human serum albumin. Bioorg. Med. Chem 2004, 12, 469–474. [Google Scholar]
- Yamazaki, T.; Tokiwa, T.; Shimosaka, S.; Sakurai, M.; Matsumura, T.; Tsukiyama, T. Anti-inflammatory effects of a major component of Acanthopanax senticosus Harms, isofraxidin. J. Electrophoresis 2004, 48, 55–58. [Google Scholar]
- Chinese Pharmacopoeia Commission, Pharmacopoeia of the People’s Republic of China; China Medical Science Press: Beijing, China, 2010.
- Chen, M.; Zhou, M.; Li, A.; Qu, Z.; Wang, F.; Tian, F. Study on purity and characterization of syringin standard material. Food Sci 2002, 23, 121–123. [Google Scholar]
- Peng, Y.; Ma, G.; Ji, B.; Shi, Y. Isolation and purification of Eleutherococcus glycoside B, B1 and the amount of glycoside B, B1 indifferent parts of Eleutherococcus senticosus. J. Hebei Acad. Sci 1984, 1, 91–97. [Google Scholar]
- Tan, X.; Jia, X.; Shen, M.; Peng, Y.; Tan, X.; Jia, X. Pharmacodynamic optimization of purification technique for Acanthopanax senticosus Harms. China Pharmacy 2007, 18, 902–904. [Google Scholar]
- Slacanin, I.; Marston, A.; Hostettmann, K.; Guédon, D.; Abbe, P. The isolation of Eleutherococcus senticosus constituents by centrifugal partition chromatography and their quantitative determination by high performance liquid chromatography. Phytochem. Anal 1991, 2, 137–142. [Google Scholar]
- Fu, Y.; Zu, Y.; Liu, W.; Efferth, T.; Zhang, N.; Liu, X.; Kong, Y. Optimization of luteolin separation from pigeonpea [Cajanus cajan (L.) Millsp.] leaves by macroporous resins. J. Chromatogr. A 2006, 1137, 145–152. [Google Scholar]
- Jia, G.; Lu, X. Enrichment and purification of madecassoside and asiaticoside from Centella asiatica extracts with macroporous resins. J. Chromatogr. A 2008, 1193, 136–141. [Google Scholar]
- Pi, G.; Ren, P.; Yu, J.; Shi, R.; Yuan, Z.; Wang, C. Separation of sanguinarine and chelerythrine in Macleaya cordata (Willd) R. Br. based on methyl acrylate-co-divinylbenzene macroporous adsorbents. J. Chromatogr. A 2008, 1192, 17–24. [Google Scholar]
- Jiang, X.; Zhou, J.; Zhou, C. Study on adsorption and separation of naringin with macroporous resin. Front.Chem. in China 2006, 1, 77–81. [Google Scholar]
- Silva, E.M.; Pompeu, D.R.; Larondelle, Y.; Rogez, H. Optimisation of the adsorption of polyphenols from Inga edulis leaves on macroporous resins using an experimental design methodology. Sep. Purif. Tech 2007, 53, 274–280. [Google Scholar]
- Liu, X.; Xiao, G.; Chen, W.; Xu, Y.; Wu, J. Quantification and purification of Mulberry anthocyanins with macroporous resins. J. Biomed. Biotechnol 2004, 2004, 326–331. [Google Scholar]
- Jin, Q.; Yue, J.; Shan, L.; Tao, G.; Wang, X.; Qiu, A. Process research of macroporous resin chromotography for separation of N-(p-coumaroyl)serotonin and N-feruloylserotonin from Chinese safflower seed extracts. Sep. Purif. Tech 2008, 62, 370–375. [Google Scholar]
- Ma, C.; Liu, T.; Yang, L.; Zu, Y.; Yang, F.; Zhao, C.; Zhang, L.; Zhang, Z. Preparation of high purity biphenyl cyclooctene lignans from Schisandra extract by ion exchange resin catalytic transformation combined with macroporous resin separation. J. Chromatogr. B 2011, 879, 3444–3451. [Google Scholar]
- Yang, F.; Ma, C.; Yang, L.; Zhao, C.; Zhang, Y.; Zu, Y. Enrichment and purification of deoxyschizandrin and γ-schizandrin from the extract of Schisandra chinensis fruit by macroporous resins. Molecules 2012, 17, 3510–3523. [Google Scholar]
- Mi, J.; Song, C. Advances of application of macroporous resin in study of traditional Chinese herbs. Chin. Tradit. Pat. Med 2001, 23, 914–917. [Google Scholar]
- Drasar, P.; Moravcova, J. Recent advances in analysis of Chinese medical plants and traditional medicines. J. Chromatogr. B 2004, 812, 3–21. [Google Scholar]
- Liu, S.; Yi, L.; Liang, Y. Traditional Chinese medicine and separation science. J. Sep. Sci 2008, 31, 2113–2137. [Google Scholar]
- Li, Q.Y.; Fu, Y.J.; Mu, F.S.; Zu, Y.G. Extraction of syringin from Acanthopanax senticosus by adsorptive resin. Chin. J. Appl. Chem 2003, 20, 1214–1216. [Google Scholar]
- Shao, J.; Liu, S.; Mou, H.; Fan, Z.; An, L.; Dong, Y. Separation and purification of syringin and elentheroside E by macroporous adsorbents. Chin. J. Exp. Tradit. Med. Formulae 2011, 17, 10–14. [Google Scholar]
- Campbell, L.S.; Davies, B.E. Soil sorption of caesium modelled by the Langmuir and Freundlich isotherm equations. Appl. Geochem 1995, 10, 715–723. [Google Scholar]
- Apers, S.; Naessens, T.; van Miert, S.; Pieters, L.; Vlietinck, A. Quality control of roots of Eleutherococcus senticosus by HPLC. Phytochem. Anal 2005, 16, 55–60. [Google Scholar]
Syringin | Eleutheroside E | Isofraxidin | ||||
---|---|---|---|---|---|---|
Resins | Adsorption capacity (mg/g) | Desorption ratio (%) | Adsorption capacity (mg/g) | Desorption ratio (%) | Adsorption capacity (mg/g) | Desorption ratio (%) |
HPD100 | 0.24 ± 0.01 | 55.24 ± 2.71 | 6.32 ± 0.32 | 53.08 ± 2.72 | 4.59 ± 0.23 | 44.03 ± 2.19 |
HPD100B | 0.20 ± 0.01 | 32.45 ± 1.42 | 5.76 ± 0.29 | 51.31 ± 2.60 | 3.96 ± 0.20 | 45.55 ± 2.25 |
HPD100C | 0.42 ± 0.02 | 54.51 ± 2.72 | 5.82 ± 0.29 | 68.07 ± 3.42 | 3.76 ± 0.19 | 62.01 ± 3.11 |
HPD200A | 0.23 ± 0.01 | 30.48 ± 1.58 | 5.80 ± 0.29 | 53.13 ± 2.59 | 4.02 ± 0.20 | 48.58 ± 2.29 |
HPD300 | 0.42 ± 0.02 | 51.54 ± 2.64 | 5.98 ± 0.30 | 64.77 ± 3.23 | 4.05 ± 0.20 | 57.15 ± 2.90 |
HPD700 | 0.11 ± 0.00 | 60.72 ± 3.12 | 3.94 ± 0.20 | 49.35 ± 2.45 | 4.25 ± 0.21 | 42.27 ± 2.19 |
HPDD | 0.09 ± 0.00 | 50.24 ± 2.58 | 3.62 ± 0.18 | 46.40 ± 2.32 | 3.21 ± 0.16 | 51.98 ± 2.57 |
D101 | 0.13 ± 0.01 | 48.31 ± 2.54 | 4.42 ± 0.22 | 52.67 ± 2.57 | 3.23 ± 0.16 | 52.67 ± 2.49 |
HPD910 | 0.21 ± 0.01 | 24.39 ± 1.21 | 3.40 ± 0.17 | 53.55 ± 2.71 | 2.52 ± 0.13 | 66.57 ± 3.25 |
AB-8 | 0.05 ± 0.00 | 98.91 ± 4.63 | 5.33 ± 0.27 | 50.52 ± 2.63 | 3.23 ± 0.16 | 33.43 ± 1.46 |
HPD450 | 0.09 ± 0.00 | 50.90 ± 2.50 | 3.50 ± 0.18 | 48.61 ± 2.40 | 3.41 ± 0.17 | 44.53 ± 2.53 |
HPD750 | 0.09 ± 0.01 | 59.50 ± 2.93 | 3.15 ± 0.16 | 44.65 ± 2.22 | 3.44 ± 0.17 | 41.86 ± 2.23 |
HPD850 | 0.37 ± 0.02 | 37.48 ± 1.81 | 2.00 ± 0.10 | 57.60 ± 2.85 | 3.22 ± 0.16 | 56.74 ± 2.76 |
HPD400 | 0.21 ± 0.01 | 29.10 ± 1.58 | 4.68 ± 0.24 | 42.85 ± 2.06 | 4.33 ± 0.22 | 43.39 ± 2.23 |
HPD500 | 0.06 ± 0.00 | 99.66 ± 5.02 | 0.79 ± 0.04 | 43.71 ± 2.32 | 3.44 ± 0.17 | 61.27 ± 3.12 |
HPD600 | 0.11 ± 0.01 | 42.94 ± 2.23 | 1.20 ± 0.06 | 28.76 ± 1.43 | 3.95 ± 0.20 | 52.11 ± 2.57 |
HPD826 | 0.09 ± 0.01 | 58.33 ± 3.02 | 1.61 ± 0.08 | 38.77 ± 1.87 | 4.00 ± 0.20 | 52.75 ± 2.46 |
Adsorbate | Temperature (°C) | Langmuir equation | Freundlich equation | ||||
---|---|---|---|---|---|---|---|
Qmax | KL | R2 | KF | n | R2 | ||
Syringin | 25 | 0.52 | 1428.57 | 0.9922 | 0.9139 | 8.4746 | 0.9181 |
30 | 0.48 | 833.33 | 0.9841 | 0.9543 | 6.5488 | 0.9309 | |
35 | 0.42 | 526.32 | 0.9718 | 0.9211 | 5.5928 | 0.9136 | |
Eleutheroside E | 25 | 10.79 | 769.23 | 0.9903 | 18.8930 | 3.5676 | 0.9201 |
30 | 10.57 | 714.29 | 0.9891 | 18.8278 | 3.4211 | 0.9380 | |
35 | 10.33 | 526.32 | 0.9868 | 18.9758 | 3.0637 | 0.9393 | |
Isofraxidin | 25 | 6.33 | 434.78 | 0.9972 | 35.1965 | 1.7015 | 0.9622 |
30 | 5.42 | 289.02 | 0.9857 | 38.9404 | 1.4943 | 0.9903 | |
35 | 4.79 | 208.33 | 0.9821 | 33.7054 | 1.4347 | 0.9942 |
Ethanol–water solution (v/v) | 30:70 | 40:60 | 50:50 | 60:40 | 70:30 | 80:20 | 90:10 |
---|---|---|---|---|---|---|---|
Mass of dried residue (g) | 2.00 ± 0.09 | 2.06 ± 0.11 | 2.09 ± 0.11 | 2.17 ± 0.10 | 2.38 ± 0.12 | 2.83 ± 0.10 | 3.50 ± 0.12 |
Mass of syringin (mg) | 1.14 ± 0.05 | 1.28 ± 0.07 | 1.76 ± 0.06 | 2.10 ± 0.10 | 2.19 ± 0.10 | 2.26 ± 0.12 | 2.32 ± 0.12 |
Content of syringin (%) | 0.057 ± 0.002 | 0.062 ± 0.003 | 0.084 ± 0.004 | 0.097 ± 0.004 | 0.092 ± 0.005 | 0.080 ± 0.004 | 0.066 ± 0.003 |
Mass of eleutheroside E (mg) | 22.40 ± 1.06 | 25.67 ± 1.28 | 38.79 ± 1.89 | 46.09 ± 2.22 | 46.24 ± 2.28 | 46.38 ± 2.28 | 46.60 ± 2.25 |
Content of eleutheroside E (%) | 1.118 ± 0.056 | 1.247 ± 0.062 | 1.854 ± 0.092 | 2.128 ± 0.110 | 1.943 ± 0.095 | 1.638 ± 0.083 | 1.333 ± 0.067 |
Mass of isofraxidin (mg) | 12.54 ± 0.58 | 14.21 ± 0.73 | 21.18 ± 1.12 | 27.62 ± 1.39 | 27.71 ± 1.38 | 27.82 ± 1.42 | 27.98 ± 1.42 |
Content of isofraxidin (%) | 0.626 ± 0.031 | 0.690 ± 0.035 | 1.012 ± 0.051 | 1.275 ± 0.055 | 1.165 ± 0.055 | 0.982 ± 0.048 | 0.801 ± 0.042 |
Adsorbate | Content in untreated extract (%) | Content in product (%) | Recovery (%) |
---|---|---|---|
Syringin | 0.04 | 6.97 | 80.93 |
Eleutheroside E | 0.59 | 12.18 | 93.97 |
Isofraxidin | 0.24 | 1.28 | 93.79 |
Resin | Surface area (m2/g) | Average pore diameter (Å) | Particle diameter (mm) | Polarity | Moisture content (%) |
---|---|---|---|---|---|
HPD100 | 650–700 | 85–90 | 0.300–1.200 | Non-polar | 65.00 |
HPD100B | 500–580 | 120–160 | 0.300–1.250 | Non-polar | 61.49 |
HPD100C | 720–760 | 80–90 | 0.300–1.250 | Non-polar | 61.68 |
HPD200A | 700–750 | 85–90 | 0.300–1.250 | Non-polar | 54.90 |
HPD300 | 800–870 | 50–55 | 0.300–1.200 | Non-polar | 75.52 |
HPD700 | 650–700 | 85–90 | 0.300–1.200 | Non-polar | 66.10 |
HPDD | 650–750 | 90–110 | 0.300–1.250 | Non-polar | 73.06 |
D101 | ≥400 | 100–110 | 0.300–1.250 | Non-polar | 66.47 |
HPD910 | 450–550 | 85–90 | 0.300–1.250 | Non-polar | 50.00 |
AB-8 | 480–520 | 130–140 | 0.300–1.250 | Weak-polar | 65.00 |
HPD450 | 500–550 | 90–110 | 0.300–1.200 | Weak-polar | 72.00 |
HPD750 | 650–700 | 85–90 | 0.300–1.200 | Middle-polar | 57.58 |
HPD850 | 1100–1300 | 85–95 | 0.300–1.200 | Middle-polar | 46.81 |
HPD400 | 500–550 | 75–80 | 0.300–1.200 | Polar | 68.93 |
HPD500 | 500–550 | 55–75 | 0.300–1.200 | Polar | 70.45 |
HPD600 | 550–600 | 80 | 0.300–1.200 | Polar | 69.32 |
HPD826 | 500–600 | 90–100 | 0.300–1.250 | Polar | 67.52 |
© 2012 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Yang, F.; Yang, L.; Wang, W.; Liu, Y.; Zhao, C.; Zu, Y. Enrichment and Purification of Syringin, Eleutheroside E and Isofraxidin from Acanthopanax senticosus by Macroporous Resin. Int. J. Mol. Sci. 2012, 13, 8970-8986. https://doi.org/10.3390/ijms13078970
Yang F, Yang L, Wang W, Liu Y, Zhao C, Zu Y. Enrichment and Purification of Syringin, Eleutheroside E and Isofraxidin from Acanthopanax senticosus by Macroporous Resin. International Journal of Molecular Sciences. 2012; 13(7):8970-8986. https://doi.org/10.3390/ijms13078970
Chicago/Turabian StyleYang, Fengjian, Lei Yang, Wenjie Wang, Yang Liu, Chunjian Zhao, and Yuangang Zu. 2012. "Enrichment and Purification of Syringin, Eleutheroside E and Isofraxidin from Acanthopanax senticosus by Macroporous Resin" International Journal of Molecular Sciences 13, no. 7: 8970-8986. https://doi.org/10.3390/ijms13078970
APA StyleYang, F., Yang, L., Wang, W., Liu, Y., Zhao, C., & Zu, Y. (2012). Enrichment and Purification of Syringin, Eleutheroside E and Isofraxidin from Acanthopanax senticosus by Macroporous Resin. International Journal of Molecular Sciences, 13(7), 8970-8986. https://doi.org/10.3390/ijms13078970