Green Synthesis of Silver Nanoparticles through Reduction with Solanum xanthocarpum L. Berry Extract: Characterization, Antimicrobial and Urease Inhibitory Activities against Helicobacter pylori
Abstract
:1. Introduction
2. Results and Discussion
2.1. UV-Visible Analysis of AgNps
2.2. PXRD and TEM Studies
2.3. In Vivo Anti-H. pylori Activities
2.4. Urease Inhibitory Assay
3. Experimental Section
3.1. Materials/Chemicals/Reagents and Strains
3.2. Isolation of S. xanthocarpum Berry Extract (SXE)
3.3. Synthesis of Silver Nanoparticles
3.4. Factors Affecting Synthesis Rate, Size and Shape of Silver Nanoparticles
3.4.1. Temperature Effect
3.4.2. Time Effect
3.4.3. pH Effect
3.4.4. Effect of Volume of SXE Extracts
3.5. Characterization Techniques
3.5.1. UV-Vis Spectroscopy
3.5.2. Transmission Electron Microscopy (TEM)
3.5.3. X-ray Diffraction Analysis
3.6. In Vitro Anti-Helicobacter pylori Activity
3.7. Urease Inhibition Assay and Kinetics
3.7.1. Isolation of H. Pylori Urease
3.7.2. Urease Inhibitory Assay
4. Conclusions
References
- Dastjerdi, R.; Montazer, M.; Shahsavan, S. Size-controlled preparation of silver nanoparticles by a modified polyol method. Colloids Surf. A Physicochem. Eng. Aspects 2010, 366, 197–202. [Google Scholar]
- Setua, P.; Chakraborty, A.; Seth, D.; Bhatta, M.U.; Satyam, P.V.; Sarkar, N. Glucosamine-functionalized silver glyconanoparticles: Characterization and antibacterial activity. J. Phys. Chem. C 2007, 111, 3901–3907. [Google Scholar]
- Yugang, S.; Mayers, B.; Xia, Y. Polyol synthesis of uniform silver nanowires: A plausible growth mechanism and the supporting evidence. Nano Lett 2003, 3, 955–960. [Google Scholar]
- Du, W.L.; Niu, S.S.; Xu, Y.L.; Xu, Z.R.; Fan, C.L. Antibacterial activity of chitosan tripolyphosphate nanoparticles loaded with various metal ions. Carbohydr. Polym 2009, 75, 385–389. [Google Scholar]
- Savage, N.; Diallo, M.S. Determination of ascorbic acid by modified method based on photoluminescence of silver nanoparticles. J. Nanopart. Res 2005, 7, 331–342. [Google Scholar]
- Sinha, S.; Pan, I.; Chanda, P.; Sen, S.K. Nanoparticles fabrication using ambient biological resources. J. Appl. Biosci 2009, 19, 1130. [Google Scholar]
- Huang, J.; Li, Q.; Sun, D.; Lu, Y.; Su, Y.; Yang, X.; Wang, H.; Wang, Y.; Shao, W.; He, N.; et al. Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 2007, 18, 106. [Google Scholar]
- Hyning, V.; Klemperer, D.L. Silver nanoparticle formation: Predictions and verification of the aggregate growth model. Langmuir 2001, 17, 3128–3135. [Google Scholar]
- Pastoriza-Santos, I.; Liz-Marzan, L.M. Formation of PVP-protected metal nanoparticles in DMF. Langmuir 2002, 18, 2888–2894. [Google Scholar]
- Code of Federal Regulations via GPO Access. Federal Register. 1997, 62, pp. 67257–67548. Available online: http://www.gpo.gov/fdsys/pkg/FR-1997-12-24/pdf/FR-1997-12-24.pdf accessed on 28 April 2012.
- Raveendran, P.; Fu, J.; Wallen, S.L. Role of biopolymers in green nanotechnology. J. Am. Chem. Soc 2003, 125, 13940–13941. [Google Scholar]
- Li, P.; Wang, Y.; Peng, Z.; She, F.; Kong, L. Effects of starch nanocrystal on structure and properties of waterborne polyurethane-based composites. Carbohydr. Polym 2011, 85, 698–703. [Google Scholar]
- El-Rafie, M.H.; El-Naggar, M.E.; Ramadan, M.A.; Al-Deyab, S.S.; Hebeish, A. Environmental synthesis of silver nanoparticles using hydroxypropyl starch and their characterization. Carbohydr. Polym 2011, 86, 630–635. [Google Scholar]
- Vigneshwaran, N.; Ashtaputre, N.M.; Varadarajan, P.V.; Nachane, R.P.; Par-Alikar, K.M.; Balasubramanya, R.H. Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater. Lett 2007, 61, 1413–1418. [Google Scholar]
- Shahverdi, R.; Minaeian, S.; Shahverdi, H.R.; Jamalifar, H.; Nohi, A.A. Biosynthesis and application of silver and gold nanoparticles. Process Biochem 2007, 42, 919–923. [Google Scholar]
- Vigneshwaran, N.; Kathe, A.A.; Varadarajan, P.V.; Nachane, R.P.; Balsubra-Manya, R.H. Synthesis of ecofriendly silver nanoparticle from plant latex used as an important taxonomic tool for phylogenetic interrelationship. Colloids Surf. B 2006, 53, 55–59. [Google Scholar]
- Mandal, D.; Bolander, M.E.; Mukhopadhyay, D.; Sankar, G.; Mukherjee, P. The use of microorganisms for the formation of metal nanoparticles and their application. Appl. Microbiol. Biotechnol 2006, 69, 485–492. [Google Scholar]
- Basavaraja, S.; Balaji, S.D.; Lagashetty, A.; Rajasab, A.H.; Venkataraman, A. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mater. Res. Bull 2008, 43, 1164–117. [Google Scholar]
- Gardea-Torresdey, J.L.; Gomez, E.; Peralta-Videa, J.; Parsons, J.G.; Troiani, H.E. Formation and growth of Au nanoparticles inside live alfalfa plants. Nano. Lett 2002, 2, 397–401. [Google Scholar]
- Prathna, T.C.; Chandrasekaran, N.A.; Raichur, M.; Mukherjee, A. Kinetic evolution study of silver nanoparticles in bio-based green synthesis process. Colloids Surf. A Physicochem. Eng. Aspects 2011, 377, 212–216. [Google Scholar]
- Rastogi, L.; Arunachalam, J. Sunlight based irradiation strategy for rapid green synthesis of highly stable silver nano particles using aqueous garlic (Allium sativum) extract and their antibacterial potential. Mater. Chem. Phys 2011, 129, 558–563. [Google Scholar]
- Liu, Y.; Zhang, Y.A.; Zhang, M. Green hydrothermal synthesis and characterization of CdO2 nanoparticles. Mater. Lett 2010, 64, 1779–1781. [Google Scholar]
- Ali, M.D.; Thajuddin, N.; Jeganathan, K.; Gunasekaran, M. Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens. Colloids Surf. B 2011, 85, 360–365. [Google Scholar]
- Vidhu, V.K.; Aromal, S.A.; Philip, D. Green synthesis of silver nanoparticles using Macrotyloma uniflorum. Spectrochim. Acta A 2011, 83, 392–397. [Google Scholar]
- Zhan, G.; Huang, J.; Du, M.; Abdul-Rauf, I.; Ma, Y.; Li, Q. Green synthesis of Au–Pd bimetallic nanoparticles: Single-step bioreduction method with plant extract. Mater. Lett 2011, 65, 2989–2991. [Google Scholar]
- Dubey, S.P.; Lahtinen, M.; Sillanpää, M. Tansy fruit mediated greener synthesis of silver and gold nanoparticles. Process Biochem 2010, 45, 1065–1071. [Google Scholar]
- Kumar, V.G.; Gokavarapu, S.D.; Rajeswari, A.; Dhas, T.S.; Karthick, V.; Kapadia, Z.; Shrestha, T.; Barathy, I.A. Facile green synthesis of gold nanoparticles using leaf extract of antidiabetic potent Cassia auriculata. Colloids Surf. B 2011, 87, 159–163. [Google Scholar]
- Smitha, S.L.; Philip, D.; Gopchandran, K.G. Green synthesis of gold nanoparticles using Cinnamomum zeylanicum leaf broth. Spectrochim. Acta A 2009, 74, 735–739. [Google Scholar]
- Sathishkumar, M.; Sneha, K.; Won, S.W.; Cho, C.W.; Kim, S.; Yun, Y.S. Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Colloids Surf. B 2009, 73, 332–338. [Google Scholar]
- Paul, A.T.; Vir, S.; Bhuttani, K.K. Liquid chromatography-mass spectrometry based quantification of steroidal glycoalkaloids from Solanum xanthocarpum and effect of different extraction methods on their content. J. Chromatogr. A 2008, 1208, 146. [Google Scholar]
- Siddique, S.; Faize, S.; Siddique, B.S. Studies in the chemical composition of fresh berries of Solaum xanthocarpum schard. J. Chem. Soc. Pak 1983, 5, 102. [Google Scholar]
- Hussain, T.; Gupta, R.K.; Sweety, K.; Khan, M.S.; Sarfaraj Hussain, M.D.; Ari, M.D.; Hussain, A.; Faiyazuddin, M.D.; Rao, C.V. Evaluation of antihepatotoxic potential of Solanum xanthocarpum fruit extract against antitubercular drugs induced hepatopathy in experimental Rodents. Asian Pac. J. Trop. Biomed 2012, 5, 686–691. [Google Scholar]
- Kumar, N.; Prakash, D.; Kumar, P. Wound healing activity of Solanum xanthocarpum. Indian J. Nat. Prod. Res 2010, 1, 475. [Google Scholar]
- Singh, O.M.; Singh, T.P. Phytochemistry of Solanum xanthocarpum: An amazing traditional healer. J. Sci. Ind. Res 2010, 69, 734. [Google Scholar]
- Dunn, B.E.; Cohen, H.; Blaser, M.J. Helicobacter pylori. Clin. Microbiol. Rev 1997, 10, 720–741. [Google Scholar]
- Mégraud, F.; Lehn, N.; Lind, T.; Bayerdorffer, E.; O’morain, C.; Spiller, R.; Unge, P.; van Zanten, S.V.; Wrangstadh, M.; Burman, C.F. Antimicrobial susceptibility testing of Helicobacter pylori in a large multicenter trial: The MACH 2 study. Antimicrob. Agents Chemother 1999, 43, 2747–2752. [Google Scholar]
- Amin, M.; Iqbal, M.S.; Hughes, R.W.; Khan, S.A.; Reynolds, P.A.; Enne, V.I.; Rahman, S.; Mirza, A.S. Mechanochemical synthesis and in vitro anti-Helicobacter pylori and uresase inhibitory activities of novel zinc(II)-famotidine complex. J. Enzyme Inhib. Med. Chem 2010, 25, 390. [Google Scholar]
- Bruggraber, S.F.; French, G.; Hompson, T.R.P.; Powell, J.J. Selective and effective bactericidal activity of the cobalt (II) cation against Helicobacter pylori. Helicobacter 2004, 9, 428. [Google Scholar]
- Zaborska, W.; Krajewska, B.; Olech, Z. Heavy metal ions inhibition of jack bean urease: Potential for rapid contaminant probing. J. Enzyme Inhib. Med. Chem 2004, 19, 96. [Google Scholar]
- Zaborska, W.; Krajewska, B.; Leszko, M.; Olech, Z. Inhibition of urease by Ni2+ ions. Analysis of reaction progress curves. J. Mol. Catal. B Enzym 2001, 13, 108. [Google Scholar]
- Stensberg, M.C.; Wei, Q.; McLamore, E.S.; Porterfield, D.M.; Wei, A.; Sepúlveda, M.S. Toxicological studies on silver nanoparticles: Challenges and opportunities in assessment, monitoring and imaging. Nanomedicine (Lond.) 2011, 6, 879–898. [Google Scholar]
- Dhawan, A.; Sharma, V. Toxicity assessment of nanomaterials: Methods and challenges. Anal. Bioanal. Chem 2010, 398, 589–605. [Google Scholar]
- Asharani, P.V.; Wu, Y.L.; Gong, Z.; Valiyaveettil, S. Toxicity of silver nanoparticles in zebrafish models. Nanotechnology 2008, 19, 255102. [Google Scholar]
- Duran, N.; Marcato, P.D.; de Conti, R.; Alves, O.L.; Costa, F.T.M.; Brocchi, M. Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action. J. Brazil. Chem. Soc 2010, 21, 949–959. [Google Scholar]
- Lubick, N. Nanosilver toxicity: Ions, nanoparticles—Or both? Environ. Sci. Technol 2008, 42, 8617. [Google Scholar]
- Samberg, M.E.; Oldenburg, S.J.; Monteiro-Riviere, N.A. Evaluation of silver nanoparticle toxicity in skin in vivo and keratinocytes in vitro. Environ. Health. Perspect 2010, 118, 407–413. [Google Scholar]
- Mock, J.J.; Barbic, M.; Smith, D.R.; Schultz, D.A.; Schultz, S. Localized surface plasmon resonance effects by naturally occurring Chinese yam particles. J. Chem. Phys 2002, 116, 6755. [Google Scholar]
- Daizy, P. Green synthesis of gold and silver nanoparticles using Hibiscus rosa sinensis. Phys. E 2010, 42, 1417–1424. [Google Scholar]
- Daiz, P. Honey mediated green synthesis of gold nanoparticles. Spectrochim. Acta A 2009, 73, 650–653. [Google Scholar]
- Brause, R.; Moeltgen, H.; Kleinermanns, K. Characterization of laser-ablated and chemically reduced silver colloids in aqueous solution by UV/VIS spectroscopy and STM/SEM microscopy. Appl. Phys. B 2002, 75, 711–716. [Google Scholar]
- Arfan, M.; Ali, M.; Ahmad, H.; Anis, I.; Khan, A.; Choudhary, M.I.; Shah, M.R. Urease inhibitors from Hypericum oblongifolium WALL. J. Enzyme Inhibit. Med. Chem 2010, 25, 296–299. [Google Scholar]
- Kreibig, U.; Vollmer, M. Silver nanowires as surface plasmon resonators. Mat. Sci 1995, 25, 531. [Google Scholar]
- Mulvaney, P. Surface plasmon spectroscopy of nanosized metal particles. Langmuir 1996, 12, 800. [Google Scholar]
- Sosa, I.O.; Noguez, C.; Barrera, R.G. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 2003, 107, 668–677. [Google Scholar]
- Paul, A.T.; Vir, S.; Bhuttani, K.K. Apoptosis inducing activity of steroidal constituents from Solaum xanthocarpum and Asparagus racemosus. J. Chromatogr. A 2008, 1208, 146. [Google Scholar]
- Chen, S.; Carroll, D.L. Synthesis and characterization of truncated triangular silver nanoplates. Nano Lett 2002, 2, 1003–1007. [Google Scholar]
- Morones, J.R.; Elechiguerra, J.L.; Camacho, A.; Holt, K.; Kouri, J.B.; Ramirez, J.T.; Yacaman, M.J. The bactericidal effect of silver nanoparticles. Nanotechnology 2005, 16, 2346–2353. [Google Scholar]
- Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M.A. The chemistry and properties of nanocrystals of different shapes. Chem. Rev 2005, 105, 1025–1102. [Google Scholar]
- Fang, M.; Chen, J.H.; Xu, X.L.; Yang, P.H.; Hildebrand, H.F. Antibacterial activities of inorganic agents on six bacteria associated with oral infections by two susceptibility tests. Int. J. Antimicrob. Agents 2006, 27, 513–517. [Google Scholar]
- Yuan, P.; He, H.P. Advances of Ag-type inorganic antibacterial agents’ research. Ind. Miner. Process 2002, 31, 5–9. [Google Scholar]
- Millar, M.R.; Pike, J. Bactericidal activity of antimicrobial agents against slowly growing Helicobacter pylori. Antimicrob. Agents. Chemother 1992, 36, 185–187. [Google Scholar]
- Lu, C.H.; Ni, Y.R.; Xu, Z.Z.; Zhang, Q.T. SSLP-based SSR fingerprinting and indica/japonica classification of yongyou series hybrid rice. J. Nanjing Univ. Technol 2003, 25, 107–110. [Google Scholar]
- Ki, H.Y.; Kim, J.H.; Kwon, S.C.; Jeong, S.H. A study on multifunctional wool textiles treated with nanosized silver. J. Mater. Sci 2007, 42, 8020–8024. [Google Scholar]
- Shrivastava, T.; Bera, A.; Roy, G.; Singh, P.; Ramachandrarao, D. Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 2007, 18, 223–225. [Google Scholar]
- Hecht, D.W.; Citron, D.M.; Jenkins, S.G.; Onderdonk, A.; Roe-Carpenter, D.; Rosenblatt, J.E.; Wexler, H.M. Methods for Susceptibility Testing of Anaerobic Bacteria; Approved Standards 7th Edition; Clinical Laboratory Standard Institute (CLSI): Wayne, PA, USA, 2007. Available online: http://www.clsi.org/source/orders/free/m11a7.pdf accessed on 10 February 2012.
- Wu, H.; Shi, D.; Wang, H.T.; Liu, J.X. Resistance of Helicobacter pylori to metronidazole, tetracycline and amoxycillin. J. Antimicrob. Chemother 2000, 46, 121–123. [Google Scholar]
- Mao, W.J.; Lv, P.C.; Shi, L.; Li, H.Q.; Zhu, H.L. Synthesis, molecular docking and biological evaluation of metronidazole derivatives as potent Helicobacter pylori urease inhibitors. Bioorg. Med. Chem 2009, 17, 7531. [Google Scholar]
- Weatherburn, M.W. Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem 1967, 39, 971–974. [Google Scholar]
H. pylori strains | AMX | CLT | TET | MNZ | AgNp (S1) | AgNO3 |
---|---|---|---|---|---|---|
Reference strains | ||||||
NCTC-11637 | 0.5 | 0.5 | 2 | 16 | 4 | 16 |
NCTC-11638 | 0.125 | 0.5 | 2 | 4 | 2 | 16 |
Clinical isolates | ||||||
SA-1 | 0.125 | 0.25 | 16 | 32 | 4 | 16 |
SA-2 | 0.25 | 0.25 | 1 | 4 | 2 | 16 |
SA-3 | 0.125 | 1 | 32 | 64 | 4 | 32 |
SA-4 | 0.125 | 0.25 | 1 | 2 | 4 | 32 |
SA-5 | 0.25 | 4 | 32 | 16 | 8 | 64 |
SA-6 | 4 | 0.5 | 2 | 16 | 2 | 64 |
SA-7 | 2 | 0.25 | 4 | 32 | 4 | 32 |
SA-8 | 0.25 | 0.25 | 1 | 64 | 2 | 64 |
SA-9 | 0.125 | 0.5 | 0.5 | 128 | 2 | 64 |
SA-10 | 0.25 | 0.25 | 1 | 256 | 2 | 64 |
SA-11 | 0.25 | 0.25 | 0.25 | 32 | 2 | 32 |
SA-12 | 0.125 | 0.5 | 0.25 | 64 | 2 | 32 |
SA-13 | 0.5 | 0.125 | 2 | 16 | 2 | 32 |
SA-14 | 0.5 | 0.5 | 64 | 4 | 2 | 32 |
SA-15 | 0.25 | 0.125 | 8 | 256 | 4 | 32 |
SA-16 | 0.25 | 0.5 | 8 | 512 | 2 | 32 |
SA-17 | 1 | 8 | 8 | 512 | 2 | 32 |
SA-18 | 0.125 | 0.125 | 0.5 | 32 | 4 | 32 |
SA-19 | 0.25 | 0.125 | 0.25 | 32 | 8 | 32 |
SA-20 | 0.5 | 0.125 | 0.5 | 32 | 4 | 16 |
SA-21 | 1 | 0.5 | 32 | 64 | 4 | 32 |
SA-22 | 0.25 | 0.125 | 0.25 | 16 | 4 | 16 |
SA-23 | 0.25 | 0.125 | 0.5 | 8 | 4 | 64 |
SA-24 | 0.25 | 0.5 | 0.25 | 8 | 4 | 64 |
SA-25 | 0.25 | 0.125 | 0.5 | 8 | 2 | 64 |
SA-26 | 0.25 | 0.5 | 0.25 | 64 | 2 | 32 |
SA-27 | 0.5 | 0.125 | 0.25 | 64 | 4 | 32 |
SA-28 | 0.5 | 8 | 0.25 | 512 | 2 | 16 |
SA-29 | 0.125 | 0.5 | 0.25 | 512 | 2 | 64 |
SA-30 | 0.5 | 0.125 | 1 | 512 | 2 | 64 |
SA-31 | 4 | 0.5 | 1 | 256 | 2 | 32 |
SA-32 | 0.125 | 0.125 | 0.25 | 16 | 2 | 16 |
SA-33 | 0.125 | 0.125 | 1 | 16 | 2 | 32 |
SA-34 | 2 | 0.5 | 0.25 | 16 | 2 | 32 |
AgNp Sample | Inhibition at 16 μM | Inhibition at 8 μM | Inhibition at 4 μM | Inhibition at 2 μM | Inhibition at 1 μM |
---|---|---|---|---|---|
S1 | 64.00 ± 1.06 | 32.13 ± 1.12 | 16.10 ± 0.52 | 8.86 ± 1.56 | 1.34 ± 1.10 |
AgNps sample | Volume of SXE (mL) | Volume of AgNO3 (mL) |
---|---|---|
S1 | 10 | 20 |
S2 | 08 | 20 |
S3 | 06 | 20 |
S4 | 04 | 20 |
S5 | 02 | 20 |
© 2012 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Amin, M.; Anwar, F.; Janjua, M.R.S.A.; Iqbal, M.A.; Rashid, U. Green Synthesis of Silver Nanoparticles through Reduction with Solanum xanthocarpum L. Berry Extract: Characterization, Antimicrobial and Urease Inhibitory Activities against Helicobacter pylori. Int. J. Mol. Sci. 2012, 13, 9923-9941. https://doi.org/10.3390/ijms13089923
Amin M, Anwar F, Janjua MRSA, Iqbal MA, Rashid U. Green Synthesis of Silver Nanoparticles through Reduction with Solanum xanthocarpum L. Berry Extract: Characterization, Antimicrobial and Urease Inhibitory Activities against Helicobacter pylori. International Journal of Molecular Sciences. 2012; 13(8):9923-9941. https://doi.org/10.3390/ijms13089923
Chicago/Turabian StyleAmin, Muhammad, Farooq Anwar, Muhammad Ramzan Saeed Ashraf Janjua, Muhammad Awais Iqbal, and Umer Rashid. 2012. "Green Synthesis of Silver Nanoparticles through Reduction with Solanum xanthocarpum L. Berry Extract: Characterization, Antimicrobial and Urease Inhibitory Activities against Helicobacter pylori" International Journal of Molecular Sciences 13, no. 8: 9923-9941. https://doi.org/10.3390/ijms13089923
APA StyleAmin, M., Anwar, F., Janjua, M. R. S. A., Iqbal, M. A., & Rashid, U. (2012). Green Synthesis of Silver Nanoparticles through Reduction with Solanum xanthocarpum L. Berry Extract: Characterization, Antimicrobial and Urease Inhibitory Activities against Helicobacter pylori. International Journal of Molecular Sciences, 13(8), 9923-9941. https://doi.org/10.3390/ijms13089923